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Abstract: Microgels have unique and versatile properties allowing their use in forward osmosis
areas as a draw agent. In this contribution, poly(4-vinylpyridine) (P4VP) was synthesized via
RAFT polymerization and then grafted to a poly(N-Isopropylacrylamide) (PNIPAAm) crosslinking
network by reverse suspension polymerization. P4VP was successfully obtained by the quasiliving
polymerization with the result of nuclear magnetic resonance and gel permeation chromatography
characterization. The particle size and particle size distribution of the PNIPAAm-g-P4VP microgels
containing 0, 5, 10, 15 and 20 wt% P4VP were measured by means of a laser particle size analyzer. It
was found that all the microgels were of micrometer scale and the particle size was increased with
the P4VP load. Inter/intra-molecular-specific interactions, i.e., hydrogen bond interactions were then
investigated by Fourier infrared spectroscopy. In addition, the water flux measurements showed
that all the PNIPAAm-g-P4VP microgels can draw water more effectively than a blank PNIPAAm
microgel. For the copolymer microgel incorporating 20 wt% P4VP, the water flux was measured to be
7.48 L·m−2·h−1.

Keywords: microgel; forward osmosis; draw agent; P4VP

1. Introduction

Water shortages have always posed a threat to living bodies around the world. By 2025,
the proportion of the population lacking water will increase to two-thirds of the world's
population [1,2]. In particular, the available water resources per capita are one quarter
of the world’s average in China, and several cities have the problem of insufficient water
supply, so it is of crucial importance to take action to alleviate the burden of water shortage.
Fresh water is a very precious resource, and the reuse of freshwater paves the way for
ensuring the water supply without the sacrifice of the natural freshwater ecosystem. With
the rapid development of functional polymers since the 1980s, various water purification
technologies such as nanofiltration, reverse osmosis, ion exchange membranes, photother-
mal evaporators, etc., have emerged and been widely applied [3]. Currently, most countries
in the world mainly use reverse osmosis technology for seawater desalination [4]. The
energy consumption of this technology is generally 3–4 KWh/m3. Although great progress
has been achieved compared with phase-change seawater desalination technologies such
as distillation, the problem of energy consumption is still troublesome [5–7].

Forward osmosis (FO) is a membrane separation process which utilizes the osmotic
pressure gradient between the draw and the feed solution as the driving force without
external pressure [8]. The FO process has the advantages of low energy consumption,
non-contaminated performance of the membrane, and operation convenience, which has
recently arose as a hotspot in the fields of drug release, renewable energy storage, desali-
nation and concentrated brine treatment [9]. Draw agent and membrane technologies are
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key factors affecting the further application of FO technology, in which the ideal draw
agent should have the characteristics of causing high osmotic pressure, preventing reverse
diffusion, easy and rapid separation from water, reusability, non-toxicity, etc. [2,10–16].
Among the academic and engineering research findings of forward osmosis technology,
inorganic-salt-type draw agents have been extensively developed [17]. New types of draw
agents such as organic ion salt draw agents, polyelectrolyte draw agents, magnetic nanopar-
ticles and polymer hydrogel extracting agents have been explored [18–21]. Yen SK et al. [22]
found that 2-methylimidazole compounds as draw agents could produce an osmotic pres-
sure of 35 MPa, and they obtained a high forward osmotic water flux of 2.5–6 L·m−2·h−1

(LMH). Moreover, the draw agents can be recovered by membrane distillation at 70 ◦C.
The preparation of a highly effective draw agent has always been an important orienta-

tion of FO research. In 2011, Dan Li et al. [23] synthesized a temperature-sensitive polymer
hydrogel that could achieve a switch in water absorption and dehydration by temperature
stimulation, although its maximum water flux was only 0.77 L·m−2·h−1 (LMH). Aijiao
Zhou et al. [24] obtained a gel draw agent with dual response of temperature and magnetic
field through mixing Fe3O4 into PNIPAAm-co-AMPS; however, the water flux only reached
0.26 LMH. The lower water fluxes mentioned above did not meet the requirements of
the engineering application [25]. Hong et al. [26] synthesized a 2-Acrylamido-2-methyl-1-
propane sulfonic acid/2-(Dimethylamino)ethyl methacrylate (AMPS/DMAEMA) gel that
responded to the electric field, and the water flux could be as high as 2.09 LMH. As an
advanced draw agent in the FO process, the strategy to increase water flux [27] and grab
pure water [28] has become one of the areas of focus of forward osmosis research.

A micro-hydrogel, with three-dimensional crosslinking networks at the micrometer
scale, is able to absorb water until the swelling equilibrium and expel water with the process
of deswelling. In contrast, a nano-scale hydrogel could have a high uptake of water owing
to its large specific surface area, which would be beneficial to achieve a high water flux.
However, the recovery of nano-scale draw agents in the FO procedure would be ineffective
in terms of the suspension state of the nano-scale particles. As for common hydrogels with
a centimeter scale, the efficiency of dehydration would also be low with the consideration
of thermodynamics. Therefore, it is essential to synthesize a micro-meter hydrogel to avoid
the disadvantages mentioned above and achieve balanced FO properties for the purpose of
engineering applications. On the other hand, it is valuable to trigger the recovery process
of draw materials under a specific condition such as heat, electric, or magnetic fields. Of
them, a thermal-responsive micro-hydrogel featured with the gel collapse temperature
(GCT) [29] is a good choice in consideration of the convenience of processing. Thermo-
sensitive micro-hydrogels can shrink or swell in response to the change in temperature,
accompanied by a distinct volume change. For example, poly(N-isopropylacrylamide)
(PNIPAAm) microgels [30] and poly (N-isopropylmethylacrylamide) microgels will shrink
when the environmental temperature is above the GCT. The gel collapse temperature (GCT)
of the PNIPAAm gel system is only 32 ◦C, which paves the way for the PNIPAAm draw
agent to potentially be easily recovered with a small amount of thermal energy. Li et al. [31]
concluded that thermo-responsive PNIPAAm hydrogels not only induced a higher water
permeation rate in the FO process but also improved dehydration efficiency. Water flux
is significantly related to the chemical potential of draw agents. Generally, hydrophilic
materials will result in a large chemical potential difference between draw agents and water
and then exhibit high water flux.

In this work, 4-vinylpyridine was quasiliving polymerized through the reversible
addition-fragmentation chain transfer (RAFT) method to prepare the hydrophilic polymer
chain-transfer agent (P4VP). Then, P4VP was reacted with the N-Isopropylacrylamide
monomer to afford the PNIPAAm-g-P4VP microgel via reverse suspension polymerization.
Nuclear magnetic resonance (1H-NMR), gel permeation chromatography (GPC), Fourier
infrared spectroscopy (FT-IR), and laser particle size analyzer LPSA were adopted to
characterize the synthesized products. Furthermore, the water flux was tested in order to
measure its performance.
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2. Results and Discussion
2.1. Synthesis and Characterization of the PNIPAAm-g-P4VP

In this study, RAFT polymerization and reverse suspension polymerization were
adopted to synthesize the PNIPAAm-g-P4VP microgel particles as the driving agent of
forward osmosis. The synthesis process was presented, as shown in Scheme 1. At the begin-
ning of this experiment, by adopting AIBN as the initiator and BSPA as the chain transfer
agent, respectively, P4VP was synthesized via the reversible addition-fragmentation chain
transfer (RAFT) polymerization of 4-vinylpyridine. By controlling the monomer conversion
of 4-vinylpyridine, the P4VP with the targeted molecular weight was achieved.
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Scheme 1. Synthesis routine of PNIPAAm-g-P4VP.

In Figure 1a, successfully synthesized BSPA (A) is reflected in the signal peaks at chem-
ical shifts of 7.32 (multiplet), 4.61, 3.62, and 2.84 ppm, which are respectively attributed to
the proton on the benzene ring and the methylene connected to the benzene ring, the trithio-
carbonate group and the carboxyl group. As illustrated in Figure 1a, the resonance signals
of P4VP (B) at 8.34 and 6.38 ppm are respectively attributed to the protons of the pyridine
ring, and the resonance signals of P4VP (B) at 4.62, 1.92 and 1.89 ppm are respectively
attributed to the protons of methylene, methine and methylene of the polycyclic aromatic
hydrocarbons, which are respectively connected to trithiocarbonate and the pyridine ring
and carboxyl group. It is estimated that the (Mn) of P4VP -CTA is about 2200 Da. The
monomer conversion of 4VP is 31%. This is close to the value calculated from the monomer
conversion, indicating that the polymerization was a quasiliving polymerization [32,33].
Figure 1b shows the GPC curve of the P4VP long-chain molecule. GPC shows that the
number–average molecular weight (Mn) is 2210, and its polydispersity index is 1.47. In
order to ensure the same contangle of the pendent chains grafted to the crosslink network,
P4VP was synthesized by RAFT polymerization, i.e., quasiliving polymerization. Nev-
ertheless, the molecular weight distribution is not perfect. In fact, the molecular weight
distribution of polyelectrolytes synthesized via RAFT polymerization tends to be broad.
For example, the polydispersity index of poly[[N-isopropylacrylamide]-b-acrylic acid-b-
[N-isopropylacrylamide]] synthesized by Kamperman et al. was 1.59 [34]. The interaction
equilibrium derived from inter- and inter molecular hydrogen bonds could be achieved
competitively when P4VP was fully dissolved in DMF. However, when the DMF/P4VP so-
lution was characterized with GPC, the interaction equilibrium could be disproportionated
locally and thus have an effect on the hydrodynamic radius of the polymer.
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Figure 1. (a) 1H-NMR spectrum of the BSPA (A) and P4VP (B); (b) GPC traces of P4VP.

With the grafting reaction of P4VP, PNIPAAm-g-P4VP microgel particles were synthe-
sized by reverse suspension polymerization using BIS as the cross-linking agent and KPS as
the initiator. It was observed that as the polymerization reaction proceeded, the viscosity of
the system gradually increased, demonstrating that the degree of polymerization increased
accordingly. As shown in Table 1, the feed ratios for each PNIPAAm-g-P4VP copolymer
microgel network were summarized.

Table 1. The feed ratios of the crosslinking reaction for preparation of PNIPAAm-g-P4VP.

Sample Name P4VP in Feed NIPAAm P4VP NIPAAm:
P4VP

(wt%) (g) (g) (Molar Ratio)

PNIPAAm 0

1.58(≈1.60)

0 -
PNIPAAm-g-P4VP 5 5 0.1 16:1

PNIPAAm-g-P4VP 10 10 0.2 8:1 (16:2)
PNIPAAm-g-P4VP 15 15 0.3 16:3
PNIPAAm-g-P4VP 20 20 0.4 4:1 (16:4)

Figure 2 presents the FTIR spectra of a pure PNIPAAm microgel and PNIPAAm-
g-P4VP copolymer microgels. It can be seen from the infrared spectra that the band at
1056 cm−1 corresponds to the characteristic of the stretching vibration of the carbon–sulfur
double bond, as well as the vibration absorption band of the C-S bond appearing at
1243 cm−1. Combined with the NMR spectra, it can be concluded that the chain transfer
agent we designed was successfully obtained. In addition, it indicates that the carbon-
sulfur double bonds have not been destroyed during the polymerization reaction because
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the characteristic band of C-S double bonds all appear at approximately 1056 cm−1 in
the figures. There are characteristic absorption bands of the pyridine ring at 1412 cm−1

and 1623 cm−1, and a sharp band at 808 cm−1 corresponds to the absorption band of
the mono-substituted pyridine ring. The structure of the amide is explicitly verified by
the N–H stretching vibration peaks at 3288 cm−1 and -CH2 stretching vibration peaks at
2918 cm−1. Otherwise, an amide I band at 1656 cm−1 is assigned to the C=O stretching
vibration absorption peak, as well as an amide II band at 1548 cm−1 being an N–H bending
vibration peak.
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Figure 2. FTIR spectra of PNIPAAm and PNIPAAm−g−P4VP.

The results above prove that P4VP was successfully grafted onto the PNIPAAm
network. Meanwhile, the lower frequency stretching vibration band (1623 cm−1) appears
near 1656 cm−1. This spectral feature shows that intermolecular interactions between
PNIPAAm and P4VP were formed through hydrogen bond interactions. In addition, by
comparing the band intensity between 1656 cm−1 and 1623 cm−1, it is found that the
hydrogen bond interactions between PNIPAAm and P4VP are enhanced with the increase
in P4VP.

2.2. Analysis of Particle Size

The size averages and particle size distribution of the PNIPAAm based microgels
modified with different loads of 4-vinylpyridine are presented in Figure 3. It can be
observed that all of the particle sizes are of micrometer scale and the particle size increases
with the load of P4VP. For the microgel incorporating 5 wt% P4VP, the particle size is
548 nm. The particle size of PNIPAAm-g-P4VP containing 10 wt% P4VP is increased to
713 nm. When the P4VP load increases further, the particle size would be 996 nm and
1118 nm for microgels containing 15 wt% and 20 wt% P4VP, respectively. At the same time,
the particle size of blank PNIPAAm gel is 886 nm.
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P4VP is insoluble in water until the pH is less than 4.5. With the protonation of pyri-
dine groups, a transition from hydrophobic to hydrophilic states will take place quickly [35].
P4VP moieties of the microgel will not be hydrated and will thus have a negative effect
on the swelling ratio of the microgel. As a result, the particle size of a microgel containing
5 wt% or 10 wt% P4VP should be smaller than that of a blank PNIPAAm microgel. How-
ever, as mentioned above, the intensified hydrogen bond interactions between PNIPAAm
and 15 wt% or 20 wt% P4VP provide a different condition, i.e., P4VP moieties can be proto-
nated by accepting more H+ from PNIPAAm and extended more effectively in the water
environment. Accordingly, the particle size will be increased in consideration of swelling.

2.3. Test and Analysis of Water Flux

The effect of PNIPAAm microgels containing different proportions of P4VP on water
flux was investigated, and the results are shown in Figure 4. For all of the samples, the
maximum water flux can be observed in the first hour. When the treatment times last longer,
the values of the water flux tended downward and the plummets would always be found at
the processing time of 2 h. Moreover, the value of water flux can be improved significantly
with an increase in P4VP content, with the characteristics of rapid water permeation. For
the microgel draw materials incorporating 20 wt% P4VP, the water flux was measured to
be 7.48 LMH, far higher than that of blank PNIPAAm microgel draw agent. The microgels
featured a cross-linking network structure and would swell rather than dissolve in water
like other types of draw agents. Hu et al. clarified that water flux was essentially driven
by the water chemical potential or water activities. Strong interactions between hydrogels
composed of polyelectrolytes and water could reduce the water potential and then result in
high water flux [18]. In this work, the hydration and ionization of P4VP was believed to
be the cause of the marked difference in water flux. In addition, multivalent ionic solutes
have been considered as favorable draw agents on account of more ionic species. P4VP was
grafted to the three-dimensional PNIPAAm network in our work. Therefore, there were
lots of anionic-type polyelectrolytes tethered with the network, which would accelerate
water absorption and improve the performance of water flux. Furthermore, compared with
common hydrogels with a latitude of centimeters, microgels with sizes between 700 nm
and 1118 nm could grab water effectively due to their large specific surface area.
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3. Materials and Methods
3.1. Materials

2, 2-Azobisisbutyronitrile (AIBN; J&K Scientific, Beijing, China) was purified by
recrystallizing ethanol twice. 4-vinylpyridine (95%; Amethyst, Beijing, China) was re-
fined by removing the inhibitor with an alkaline alumina column before use. The al-
kaline alumina was purchased from the Sinopharm Chemical Reagent Company. N-
Isopropylacrylamide (NIPAAm; ≥98%; Accela, Beijing, China) was purified by recrystal-
lization from petroleum ether. N,N’-methylenebisacrylamide (BIS; ≥99%; J&K Scientific,
Beijing, China), 3-Mercaptopropionic acid (99%; Aladdin-Reagent, Shanghai, China) and
benzyl bromide (≥98%; Amethyst, Beijing, China) were used without further purification.
Carbon disulfide (≥99.9%) was pure analytical grade and was provided by the Sinopharm
Reagent Company. Pyridine and benzyl bromide were of a chemically pure grade. All
the other reagents were of analytical grade and used as received. Methanol was purified
via distillation.

3.2. Synthesis of 3-Benzylsulfanylthiocarbonylsufanylpropionic Acid (BSPA)

The procedure for synthesizing 3-Benzylsulfanylthiocarbonylsufanylpropionic acid
(BSPA) was followed from Stenzel’s contribution [36]. In the first step, 3-mercaptopropionic
acid (20 mL, 0.23 mol) was added into the aqueous solution of potassium hydroxide (KOH)
(25.8 g, 0.46 mol), and then 30 mL carbon disulfide (CS2) was slowly introduced under
magnetic stirring within 30 min. In this state, after magnetic stirring for a further 5 h,
benzyl bromide (39.6 g, 0.23 mol) was added, heated up to 80 ◦C, and the reaction system
was kept under vigorous stirring for 12 h. Afterwards, the system was chilled to 25 ◦C and
300 mL of chloroform was introduced for the purpose of dissolving the intermediate. An
acidifying reaction was then carried out by dropping an aqueous solution of hydrochloric
acid, and the operation was continued until the organic layer turned bright yellow. The
role of chloroform (2 × 100 mL) here was to isolate the product from the aqueous phase.
The combined organic phase was further washed with 10 wt% sodium carbonate (Na2CO3)
(3 × 100 mL), 100 mL of Na2CO3 each time, and then extracted with chloroform, followed
by drying overnight with anhydrous magnesium sulfate (MgSO4). After filtration and
recrystallization in dichloromethane, the yellow crystals were obtained with a yield of 90%.
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3.3. Synthesis of Poly(4-vinylpyridine) (P4VP)

The preparation of poly(4-vinylpyridine), viz. P4VP was performed via RAFT polymer-
ization, in which BSPA was used as the chain transfer agent. 4-VP (6.2445 g, 59.39 mmol),
BSPA (0.6093 g, 2.24 mmol), AIBN (0.0734 g, 0.447 mmol), 2.4 mL of methanol and 0.6 mL
of deionized water were added into a 50 mL anhydrous round-bottomed flask and agitated
by magnetic stirring. The system was equipped with a standard Schlenk line to remove
oxygen (four cycles of freeze–thaw–exhaust–thaw) and then reacted under the protection
of nitrogen at 60 ◦C for 22 h. Methanol and ethyl ether were then used to dissolve and
precipitate the product, respectively. This purification procedure was repeated thrice, and
the final precipitate was dried in a 30 ◦C vacuum oven for 24 h to obtain the brown-red
P4VP powder.

3.4. Preparation of PNIPAAm-g-P4VP Polymer Micro-Hydrogel

The P4VP was employed to synthesize the PNIPAAm-g-P4VP microgel through the
method of reverse suspension polymerization. Typically, different weights of P4VP -CTA
monomers were taken as the control. NIPAAm (1.58 g, 14 mmol), BIS (0.0214g, 0.14 mmol),
and P4VP (0 g, 0.1 g, 0.2 g, 0.3 g, 0.4 g) were used as the dispersed phase in aqueous
solutions. An organic solution composed of cyclohexane and Span 60 (20%) was used
as the continuous phase. The aqueous solution of potassium persulfate (KPS) (0.0029 g,
0.0082 g, 0.0123 g, 0.0164 g) was prepared according to the different monomer weight to
initiate the crosslinking reaction, respectively. The continuous phase and the dispersed
phase were both bubbled with nitrogen for 30 min before mixing. The continuous phase
was then heated to 45 ◦C under nitrogen protection. After the continuous phase was mixed
with the dispersed phase, the pre-prepared KPS aqueous solution was injected into the
reaction system and heated to 75 ◦C and reacted for 24 h. The products obtained from the
reaction were rotary evaporated to remove the organic solvent, and then the final product
PNIPAAm-g-P4VP micro-hydrogels were achieved by a lyophilizer. The resultant products
were light yellow, and the yellow deepened with the increase in P4VP. The products were
stored in a vacuum oven at 30 ◦C for 24 h.

3.5. Measurement and Characterization
1H-NMR spectra were acquired on a Varian Mercury Plus 400 MHz nuclear magnetic

resonance spectrometer. P4VP was dissolved in deuterated chloroform (CDCl3) with
tetramethylsilane (TMS), which was used as the internal reference. The infrared spectra
were recorded on a Thermo Scientific Nicolet IS10 Fourier transform infrared spectrometer
with a resolution of 2 cm−1, and all the spectra were recorded in the wavenumber range
of 4000–500 cm−1 by accumulating 64 scans. The synthesized micro-hydrogel samples
were evenly blended with anhydrous KBr power and pressed to prepare the small flakes
until all the flakes were thin enough to comply with the Beer-Lambert law. The number-
average molecular weight and polydispersity index were investigated by gel permeation
chromatography (GPC) on Waters 1515 GPC, in which the standard curve was calibrated
with standard polyethylene glycol. The sample was dissolved in N,N-Dimethyl formamide
(DMF) with a concentration of 3 mg/mL, and the liquid flow speed was controlled at
2.5 µL/min to pass through the double column. The particle size of the micro-hydrogels
was characterized by a zetasizer Nano S90 Laser Particle Size Analyzer of Malvern co.,
ltd (LPSA), reflecting the particle size as well as particle size distribution. Before the test,
the obtained sample powder needed to be swollen in deionized water, and each test was
continued for three minutes for balance consideration.

The water flux was measured with a device that was mainly composed of feed solution,
draw solution, and HTI cellulose triacetate (CTA) osmotic membrane, as depicted in
Figure 5. Prior to testing, the membrane was immersed in a 2000 ppm NaCl aqueous
solution for 24 h. At room temperature (25 ◦C), a peristaltic pump was used to form a
circulating flow of the raw material liquid in the channels of the permeable membrane, and
the flow of the liquid on both sides was adjusted by a flow meter to control the flow rate
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to 30 mL/min. The raw material liquid cylinder was placed on an electronic balance to
calculate the water flux. The obtained powdered microgel was flatly spread on the front
of the CTA membrane. A peristaltic pump was in gear to pass the NaCl aqueous solution
into the membrane after fixing the membrane module. Once the first drop of the aqueous
solution returned to the raw material tank, the first number was read, and the timing was
started simultaneously. The weight of the water was recorded every 1 h within 12 h. The
water flux (Jw, L·m−2·h−1, LMH) was calculated by using Equation (1):
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This is example 1 of an equation:

Jw =
∆V
A∆t

(1)

where ∆V is the water volume that passed through the permeable membrane (L); A denotes
the effective membrane area (m2) of the membrane; and ∆t is the unit time (h).

4. Conclusions

4-vinylpyridine was radically addition-fragmentation polymerized, and the afforded
poly(4-vinylpyridine) (P4VP) was characterized by means of nuclear magnetic resonance
and gel permeation chromatography. The results demonstrated that the P4VP was achieved
via quasiliving polymerization. Reverse suspension polymerization was then carried out
to prepare the PNIPAAm microgel grafted with pendent P4VP chains. The particle size
of the PNIPAAm-g-P4VP microgels was found to be increased with the increase in P4VP
content. At the same time, all of the particle sizes were of the micrometer scale. The
difference in particle size can be interpreted with consideration of the inter/intra-molecular
specific interactions. In essence, P4VP moieties could be extended more effectively in water
environments. In addition, water flux was measured to be increased significantly by using
the PNIPAAm-g-P4VP microgels as a draw agent. The water flux reached 7.48 LMH for the
PNIPAAm-g-P4VP draw system containing 20 wt% P4VP. This work would be inspiring for
the preparation of novel draw agents on account of the characteristics of P4VP. P4VP is not
only a pH-responsive polyelectrolyte, but also an antibacterial polymer. Further research
will be explored in the near future.
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