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Abstract: Methylene blue (MB) immobilized onto a sulfonated poly(glycidyl methacrylate) (SPGMA)
polymer composite has been developed as a novel adsorbent for water treatment applications.
The MB adsorptions onto sulfonated poly(glycidyl methacrylate) polymer characters have been
studied. The adsorption isotherms, namely Langmuir and Freundlich, have been investigated. Other
isotherm models. As a compromise between the Freundlich and Langmuir isotherm models, such
as the D–R isotherm and the Temkin isotherm, have been compared. The results indicated that
the adsorption process followed the Freundlich isotherm model, indicating heterogeneous surface
site energies and multi-layer levels of sorption. This study selected three linear kinetic models,
namely pseudo-first order, pseudo-second order, and Elovich, to describe the MB sorption process
using SPGMA negatively charged nanoparticles (430 nm). The obtained data revealed that the
adsorption process obeyed the pseudo-second-order kinetic model, suggesting that the rate-limiting
step in these sorption processes may be chemisorption. Furthermore, the thermodynamic parameters
have been evaluated. Moreover, the interaction of the MB molecules with SPGMA nanoparticles
has been simulated using the governing equation that describes ion exchange resin derived from
Nernst—Plank equations between two ion species. Finally, the developed MB-SPGMA composite
adsorbent (27 mg/g) wastested for the first time for the removal of Cr6+ ions and Mn7+ metal ions
from dichromate and permanganate-contaminated waters under mild adsorption conditions, opening
a new field of multiuse of the same adsorbent in the removal of more than one contaminant.

Keywords: composite; MB; sulphonated poly(glycidyl methacrylate); adsorbent; water treatment;
adsorption; isotherm; kinetic; thermodynamic; stimulation

1. Introduction

Ionic and non-ionic dyes are used in a variety of sectors, including food, paper, textiles,
and carpet. As a result, dyes are polluting the wastewater produced by these enterprises.
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Around the world, 10,000 tonnes are used each year, and at least 1000 tonnes are emitted in
the wastewater from these industries [1,2].

The most dangerous source of dyes is thought to be textile dyes [3,4]. The release
of colors into the water system has a negative effect on aquatic life directly as well as
indirectly on human life. Cationic dyes such asmethylene blue (MB) are frequently utilized
as coloring agents around the world [5]. Therefore, corrective action is required to remove
dyes from wastewater. Physical, chemical, and even biological approaches have all been
explored to remove colors from wastewater [6]. Physical and chemical procedures have
emerged as the most problematic among them from a number of perspectives, including
the ease of design, accessibility, and the capacity to handle dyes more concentrated than
with other techniques [7–10]. The search for alternative adsorbents has been fueled by
studies into their viability and affordability over the past few decades. Regardingthe
removal of various dyes, numerous publications have been published [11–13]. Among
other methodologies, the physiochemical methodology is well regarded [14–21]. The key
interaction in the removal process is the physical adsorption of the dyes or chemicals
attached to the surface of the adsorbent surface by electron exchange [22]. The effectiveness
of adsorption is impacted by various factors. Some of these have to do with the adsorbent’s
structure, while others have to do with the operational circumstances [23].

Based on a variety of factors, including the initial cost, convenience of design, sim-
plicity of operation, and insensitivity to harmful compounds, the adsorption technique
is typically the most preferred in the contaminate removal process [7–24]. Activated car-
bon has demonstrated a wide range of applications in this setting [25]. However, other
polymer-based adsorbents have been studied for the removal of Methylene Blue dye from
contaminated wastewater, including grafted cotton textiles [26], carboxylated alginate
beads [27], and pyrazole-g-poly(glycidyl methacrylate) [28]. Additionally, various adsor-
bents, particularly those based on nanopolymers, have been used [29–32]. Polystyrene
was created by Mohy-Eldin et al. as a nanoparticle ion exchange resin for use in water
purification applications. Polystyrene and poly(4-vinylbenzenesulfonic acid) copolymer
nanoparticles were created using the sedimentation polymerization method, and the ion
exchange mechanism was modelled [33].

Additionally, as the industry has developed, heavy metal pollution of the environment
has spread to every country. The most common harmful heavy metals utilized and found in
the environment includemany heavy metals, such as nickel, copper, cadmium, manganese,
and chromium [34,35]. Low concentrations of certain metals are necessary as co-factors for
enzymes, whereas high concentrations are hazardous to live cells because they obstruct
metabolism. Bioremediation has received a great dealof attention recently due to its
significant potential for purifying the ground of heavy metal contamination [36].

As a powerful oxidizing agent for the oxidative treatment of several organic and
inorganic chemicals in soil and water solutions, potassium permanganate is frequently
utilized in multidisciplinary processes [37,38]. Few papers have, to our knowledge, dis-
cussed the elimination of permanganate ions. Activated orange peel powder [39], activated
carbon [40,41], Prosopis cineraria leaf powder [42], and millet husk [43] are some of the
different adsorbents that have been used to remove Mn7+ from wastewater. Adsorption is
thought to be a cheap and effective way for this task.

Chromium can primarily be found in the natural world as Cr6+ or Cr3+. In contrast to
Cr6+ species, which are highly soluble and mobile in aqueous solutions, Cr3+ species are
less soluble and more stable [44]. Because Cr6+ is more mobile than Cr3+, it has a greater
potential to contaminate groundwater. The high reactivity and probable carcinogenicity
of Cr6+ are connected toits high risk [45]. Acute exposure to Cr6+ can result in respiratory
issues, dermatitis, internal bleeding, nausea, diarrhea, liver, and kidney damage [5]. Acute
toxicity, irritation, nasal septum ulceration, and respiratory sensitization (asthma) can
all be brought on by inhalation [46]. Liver and kidney functioning may be impacted by
consumption. Skin contact has the potential to cause serious burns and systemic poisoning
and impede the healing of cuts and scrapes. This could result in severe chronic allergic
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contact dermatitis and ulceration if not addressed right away. Exposure to the eyes could
harm them permanently. The removal of Cr6+ from wastewater using various adsorbents,
including charcoal [47], activated carbon from various sources [48–50], polyaniline and
its composites [51], and chitosan [52], is also thought to be a cheap and effective method.
Diazo acid Blue 11 (AB 113) was created by Nicoleta Mirela Marin [53] and used as a
chelating agent in natural and acrylic polymers to selectively remove Zn2+, Mn2+, and Cr3+

from acid-polluted wastewater.
The adsorption of heavy metals, noble metals, and dyes in wastewater has recently

attracted a great dealof attention and has been successfully applied using poly(glycidyl
methacrylate) (PGMA)-based resins [54]. PGMA-based resins have good mechanical
strength, high tensile strength, acidic and alkaline resistance, and wear resistance [55]. The
most notable features of PGMA include its porous structure, the presence of highly reactive
epoxy groups, and the ease with which it can be functionalized with diverse groups by
straightforward chemical reactions [56]. Younis et al. [57] created an amined poly(glycidyl
methacrylate) nanosorbent for the treatment of wastewater that was contaminated with phe-
nol and malathion. Aversa et al. [58] investigated how the modified glycidyl methacrylate
polymer exchange group affected phenol removal in batch and continuous-flow methods.
Using grafted Polypyrrole chains, Yu et al. [59] created magnetic Poly(glycidyl methacry-
late) microspheres for the high-capacity removal of Congo red dye from aqueous solutions.
Magnetic Poly(glycidyl methacrylate) resin was created by Chen et al. [60] for the treatment
of drinking water. To purify glucosinolates from cruciferous vegetables, Cheng et al. [61]
created Poly(glycidyl methacrylate) (PGMA) and amine-modified PGMA adsorbents. Be-
naglia et al. [62] described the post-polymerization processes used to create a range of
polymers with different properties from poly(glycidyl methacrylate) (PGMA) produced
using RAFT. Waly et al. [63] created an adsorbent for the removal of the dyes C.I. Acid Black
194 and C.I. Reactive Black 5 from wastewater using an amino-functionalized cellulose-
poly(glycidyl methacrylate) graft copolymer (AM-Cell-g-PGMA). Sulfonated Poly(glycidyl
methacrylate) nanoparticles were created by Mohy-Eldin colleagues [29,63] for the removal
of Cadmium ions from contaminated water. Additionally, they created sulfonated PGMA-
g-cellophane membranes [64] and sulfonated PGMA-g-Nafion membranes [65] for use as
ionic conducting membranes in fuel cells.

For the first time, a novel adsorbent for water treatment applications has been created
in the first section of our recently published work by immobilizing methylene blue (MB)
as the first pollutant onto composites of sulfonated poly(glycidyl methacrylate) (SPGMA)
polymers through an adsorption technique. The elimination of metal ions such Cr6+ and
Mn7+ from dichromate and permanganate-contaminated water, as the second contaminant,
has been further studied using the created MB-SPGMA composite [66].

Adsorption isotherms such as Langmuir and Freundlich, as well as other isotherm
models that serve as a compromise between the Freundlich and Langmuir isotherm models
such as the D-R isotherm and the Temkin isotherm, have been used in the current study to
analyze the first step of the MB immobilization by adsorption onto sulfonated poly(glycidyl
methacrylate) polymers. In this study, three linear kinetic models, pseudo-first order,
pseudo-second order, and Elovich, were chosen to describe how MB sorption occurs when
SPGMA particles are used. The thermodynamic parameters have also been assessed. Last
but not least, the governing equation that describes ion exchange resin and is derived from
Nernst–Plank equations between two ion species has been used to simulate the interaction
of the MB molecules with SPGMA particles. As a model of toxic metal ions, Cr6+ and
Mn7+ ions were tested for removal from dichromate- and permanganate-contaminated
waters using the newly developed MB-SPGMA composite adsorbent under mild adsorption
conditions, opening a new field of harmful anion removal from contaminated water.
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2. Results and Discussion

The development of the MB-SPGMA adsorbent using the adsorption process of MB
molecules onto SPGMA nanoparticles has been characterized using isotherm, kinetic,
thermodynamic, and simulation models as follows. Moreover, the developed MB-SPGMA
adsorbent has been examined in removing harmful ions from contaminated water.

2.1. Methylene Blue Concentration and Adsorption Isotherms

Figure 1 shows the effect of variation of the MB concentration on the adsorption
capacity. The effect of the initial dye concentration factor depends on the immediate
relation between the dye concentration and the available binding sites on an adsorbent
surface [12]. From the figure, the increase in the initial dye concentration causes a linear
increase in the loading capacity of the adsorbent, and this may be due to the high driving
force for mass at a high initial dye concentration [67]. That indicates a high number of active
sites relative to the number of MB molecules in the liquid phase of all the MB concentrations
used where free active sites are still available. This postulation has been confirmed by the
linear increase in the adsorption capacity to reach the highest value of 3.94 mg/g.
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Figure 1. Effect of MB concentration on its immobilization capacity; [MB 10 mL, room temperature,
30 min, 0.1 g SPGMA, rpm 200, and pH 6.5].

Freundlich and Langmuir isotherm models are the most common isotherm models
used in almost all the publications that deal with the characterization of the adsorption
process. Unfortunately, the two models are opposite each other.

The Freundlich isotherm is a widely used equilibrium isotherm model but provides no
information on the monolayer sorption capacity, in contrast to the Langmuir model [68,69].
The Freundlich isotherm model is the first used isotherm model, which postulates hetero-
geneous surface site energies and multi-layer levels of sorption. The linear mathematical
formula of the model is expressed as the following equation [70]:

ln qe = ln KF + (1/nf) ln Ce (1)

qe (mg/g) and Ce (mg/L) represent the adsorbent capacity and the adsorbate ions
concentration at equilibrium. The indicators of the adsorption capacity and adsorption
intensity are given by KF and nf Freundlich constants. Linear fits of the sorption data of
MB molecules are provided in Figure 2. According to the figure, the Freundlich equation
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predicts that the MB molecules concentration on the sorbents will increase as long as there
is an increase in the MB molecules’ concentration; this is compatible with the experimental
results. Furthermore, the correlation coefficient (R2) value (0.994) demonstrated that the
removal of MB molecules obeyed the Freundlich isotherm. The values of Freundlich
constants nf (0.506) and KF (4.822) are estimated from the slope and intercept of the linear
plot. From the assessed value of nf, it was found that nf < 1 dictated non-favorable sorption
for MB molecules with the SPGMA particles [71].

Molecules 2022, 27, x FOR PEER REVIEW 5 of 26 
 

 

qe (mg/g) and Ce (mg/L) represent the adsorbent capacity and the adsorbate ions 

concentration at equilibrium. The indicators of the adsorption capacity and adsorption 

intensity are given by KF and nfFreundlich constants. Linear fits of the sorption data of 

MB molecules areprovided in Figure 2. According to the figure, the Freundlich equation 

predicts that the MB molecules concentration on the sorbents will increase as long as 

there is an increase in the MB molecules’ concentration; this is compatible with the ex-

perimental results. Furthermore, the correlation coefficient (R2) value (0.994) demon-

strated that the removal of MB molecules obeyed the Freundlich isotherm. The values of 

Freundlich constants nf (0.506) and KF (4.822) are estimated from the slope and intercept 

of the linear plot. From the assessed value of nf, it was found that nf ˂ 1 dictated 

non-favorable sorption for MB molecules with the SPGMA particles [71]. 

 

Figure 2. Freundlich isotherm for MB adsorption using SPGMA. 

On the other hand, the Langmuir isotherm assumes a completely homogeneous 

surface with a finite number of identical sites and little interaction between adsorbed 

molecules, which results in monolayer sorption. The linear mathematical formula of the 

model is presented by the following equation [72]: 

(Ce/qe) = (1/qmK) + (Ce/qm) (2) 

qm is the maximum monolayer adsorption capacity (mg/g) and K is the adsorption 

energy (L/mg). 

A plot of (Ce/qe) versus Ce should present a straight line of the slope (1/qm) and in-

tercept (1/qmK). Figure 3 illustrates a linear plot of the Langmuir equation for MB mole-

cules immobilization onto SPGMA polymer at various initial MB molecules concentra-

tions. According to the R2 value, the Langmuir equation does not represent the sorption 

process of MB molecules very well; the R2 value is 0.953. That indicates an excellent 

mathematical fit. Furthermore, it was found thatthe calculated value of qm (1/slope) is 

1.767 mg/g and that of K (intercept/slope) is 1.256 L/mg. That indicates that the SPGMA 

was highly efficient for MB molecule adsorption and had low-energy sorption (1.256 

L/mg), which referred to the affinity of SPGMA towards the MB molecules. 

Figure 2. Freundlich isotherm for MB adsorption using SPGMA.

On the other hand, the Langmuir isotherm assumes a completely homogeneous surface
with a finite number of identical sites and little interaction between adsorbed molecules,
which results in monolayer sorption. The linear mathematical formula of the model is
presented by the following equation [72]:

(Ce/qe) = (1/qmK) + (Ce/qm) (2)

qm is the maximum monolayer adsorption capacity (mg/g) and K is the adsorption
energy (L/mg).

A plot of (Ce/qe) versus Ce should present a straight line of the slope (1/qm) and inter-
cept (1/qmK). Figure 3 illustrates a linear plot of the Langmuir equation for MB molecules
immobilization onto SPGMA polymer at various initial MB molecules concentrations. Ac-
cording to the R2 value, the Langmuir equation does not represent the sorption process of
MB molecules very well; the R2 value is 0.953. That indicates an excellent mathematical fit.
Furthermore, it was found that the calculated value of qm (1/slope) is 1.767 mg/g and that
of K (intercept/slope) is 1.256 L/mg. That indicates that the SPGMA was highly efficient
for MB molecule adsorption and had low-energy sorption (1.256 L/mg), which referred to
the affinity of SPGMA towards the MB molecules.
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Figure 3. Langmuir isotherm for MB adsorption using SPGMA.

Prediction of the favorable or unfavorable of the adsorption system and the essential
characteristics defined by a dimensionless separation factor (RL) are used and calculated
according to the following equation [73]:

RL = 1/(1 + KC0) (3)

C0 is the MB molecules’ initial concentration (mg/L). The calculated values of RL
for MB molecules’ adsorption (Table 1) show favorable adsorption because the RL values
ranged between 0 and 1 [74,75]. That again confirms that the Langmuir isotherm was
favorable for the sorption of MB molecules onto SPGMA under the conditions used in
this study.

Table 1. RL values for different initial MB molecules concentrations.

Co RL

5 0.137

10 0.0737

15 0.0504

20 0.0382

30 0.0258

Other isotherm models are a compromise between the Freundlich and Langmuir
isotherm models, such as the D-R isotherm and the Temkin isotherm. The D-R isotherm
is a derivative from the Langmuir isotherm but is more general and rejects the constant
adsorption potential assumption [71]. The D-R isotherm is expressed as follows:

ln qe = lnV′m − K′E2 (4)



Molecules 2022, 27, 8418 7 of 25

where qe is the amount of MB molecules adsorbed per unit of adsorbent mass (mg/g),
V′m is the D-R sorption capacity (mg/g), K′ is a constant related to the removal energy
(mol2/kJ2), and Eis the Polanyi potential. Eis calculated with the following equation:

E= RT (1 + 1/Ce) (5)

R is the gas constant (8.314 × 10−3 kJ/mol K) and T is the temperature (K). The
constant K′ gives the mean free energy of sorption per molecule of the sorbate (E) when it
is transferred to the surface of the solid from infinity in the solution. This energy provides
information about the physical and chemical features of the sorption process [75] and can
be calculated using the following equation [76]:

E = (2 K′)−0.5 (6)

This energy provided information about the sorption mechanism. It was perceived as
the amount of energy required to transfer 1 mole of the adsorbate from infinity in the bulk
of the solution to the site of sorption. If E is between 8 and 20 kJ/mol, the sorption process
follows a chemical ion exchange, and if E < 8 kJ/mol, the sorption process has a physical
nature [77,78].

The D-R isotherm model was applied to the equilibrium data obtained from the
empirical studies for MB molecules’ adsorption using SPGMA to determine the nature
of the sorption processes (physical or chemical). For example, a plot of ln qe against E2 is
given in Figure 4.
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Figure 4. D-R isotherm for MB adsorption using SPGMA.

The D-R plot yields a straight line with the R2 value equal to 0.908, which indicates that
the D-R model fits the experimental data less compared with the Langmuir and Freundlich
isotherm models. According to the plotted D-R isotherm, the model parameters V′m, K′

and E are determined, and their values are 3.4205 mg/g, 0.1435, and 1.867 kJ/mol. The
calculated removal energy (E < 8 kJ/mol) indicates that the MB molecules’ adsorption
processes could be considered physisorption in nature [79]. Therefore, it is possible that
physical means such as electrostatic forces played a significant role as sorption mechanisms
for the sorption of MB molecules in this work. Furthermore, the adsorption of other metal
ions onto different adsorbents has been fitted with a D-R isotherm, for example, natural
clinoptilolite tuff modified with hexadecyltrimethyl ammonium bromide (HDTMA) and
dithizone (DTZ) in the removal of Pb2+ cations [80] and aspartic acid (ASP)-modified
clinoptilolite in the removal of Cu2+ ions [81].
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Finally, the Temkin isotherm considers the impact of indirect adsorbent/adsorbate
interactions on the adsorption process, which linearly reduces the heat of the adsorption of
all molecules in a layer [82]. That can be expressed in a linear form as follows [83]:

qe = B ln KT + B ln Ce (7)

KT is the Temkin equilibrium-binding constant corresponding to the maximum binding
energy, and B is the Temkin constant related to the heat of sorption. A plot of qe versus ln
Ce (Figure 5) enables the determination of isotherm constants B and KT from the slope and
the intercept, respectively.
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The calculated value of KT is 2.936 L/g, representing the equilibrium-binding constant
corresponding to the maximum binding energy; however, constant B, which is 3.6704 J/mol,
is related to the heat of sorption for the SPGMA matrix.

Finally, all the R2 values obtained from the four equilibrium isotherm models applied
to MB molecules’ adsorption on SPGMA nanoparticles are summarized. The Freundlich
isotherm model yielded the highest R2 value (0.994). That showed that MB molecules’ ad-
sorption on the polymer was described well by this model, which considers heterogeneous
surfaces site energies and multi-layer levels of sorption. On the other hand, the Langmuir
isotherm yielded the next highest R2 value (0.954). It assumes an entirely homogeneous
surface with a finite number of identical sites and little interaction between adsorbed
molecules, which results in monolayer sorption. Finally, the Temkin isotherm and the D–R
isotherm, which are a compromise between the Freundlich and Langmuir isotherm models,
had lower R2 values of 0.923 and 0.908.

In conclusion, all the studied isotherms show excellent fitness of the adsorption results
according to the regression coefficient of the obtained lines (R2), which ranged between
0.91 and 0.998. This finding indicates the coexistence of monolayer adsorption (Langmuir
isotherm) and multilayer adsorption (Freundlich isotherm). The most dominant is the
Freundlich isotherm, which has higher fitness of the adsorption data. This explanation
is supported by the data obtained in our previous published study, where the PGMA
nanoparticles without and with sulfonation removed 100% of the MB from a 10 ppm
solution [66]. Based on our previous study of the sulfonation conditions, the resulting
SPGMA nanoparticles in our current study are partially sulfonated [27]. In other words,
the developed sulfonated PGMA nanoparticles are a copolymer of PGMA and SPGMA.
Accordingly, the induced sulfonic ionic sites in the SPGMA region contributed mainly to
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the immobilization process through the chemosorption step. On the other hand, the PGMA
region contributed mainly to the immobilization process through the physiosorption step.
This finding explains the D-R isotherm’s lower fitness of the adsorption results, which elim-
inates the variation of the adsorption potential assumption. The calculated removal energy
(E < 8 kJ/mol) indicates that the MB molecules’ adsorption processes could be considered
physisorption. Therefore, physical means such as electrostatic forces played a significant
role as sorption mechanisms for the sorption of MB molecules in this work. Furthermore,
the Temkin isotherm considers the impact of indirect adsorbent/adsorbate interactions on
the adsorption process, which linearly reduces the heat of adsorption of all molecules in a
layer. The obtained results indicate the absence of indirect adsorbent/adsorbate interac-
tions in the adsorption process since the R2 value is less than the Freundlich and Langmuir
isotherm models and there is an absence of compromise between them.

2.2. Methylene Blue Immobilization Time and Adsorption Kinetics

Variation of the adsorption time from 5 to 30 min slightly affects the adsorption
capacity from 3.65 to 3.94 mg/g (Figure 6). This behavior agreed with previously published
data by Mohy-Eldin et al. using amidoximated polyacrylonitrile particles [31] and OPA-
pyrazole-g-PGMA particles [28] for the removal of MB dye. In addition, a very fast
equilibrium was achieved due to many available exchange sites relative to the MB molecules
in the liquid phase.
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Three linear kinetic models were used to describe the kinetics of the sorption process and
were selected in this study for describing the MB sorption process using SPGMA particles.

The pseudo-first-order kinetic model given by Langergren and Svenska [84]:

ln (qe − qt) = ln qe − k1t (8)

The pseudo-second-order rate (chemisorptions) is expressed as [85]:

t/qt = (1/k2qe
2) + t/qe (9)
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The simple Elovich model is represented in the simple form [86]:

qt = α + β ln t (10)

qe and qt are the amounts of ions adsorbed (mg/g) at equilibrium and time t (min),
respectively. K1 (min−1) is the first-order reaction rate constant. K2 is the second-order reac-
tion rate equilibrium constant (g/mg min). α represents the initial sorption rate (mg/g min)
and β is related to the extent of surface coverage and activation energy for chemisorp-
tion (g/mg). The values of the first-order rate constant k1 and regression coefficient,
R2, obtained from the slope of the plot ln (qe − qt) versus time (Figure 7), are reported
in Table 2. From the table, it was indicated that the correlation coefficients are not high
(R2 = 0.493). Moreover, the estimated value of qe calculated from the equation, 0.277 (mg/g),
is clearly lower than the experimental value (3.94 mg/g). The pseudo-second-order kinetics
applies to the experimental data in Figure 7. From the figure, the values of qe, calculated
(4.0 mg/g), and k2 (0.142 g mg−1min−1) have been determined from the slope and intercept
of the plot, respectively. Furthermore, the value of the regression coefficient (R2 = 0.999)
was tabulated in Table 2. Based on linear regression values from this table (R2 ≈ 1), the
kinetics of MB molecules’ sorption onto SPGMA nanoparticles can be aptly described by
the second-order equation. Additionally, the values of qe calculated resulting from the
intersection points of the second-degree reaction kinetic curves (4.0 mg/g) are closer to
the experimental data (3.94 mg/g) than the counterpart obtained by the pseudo-first-order
model at 0.277 (mg/g). Under the studied conditions, the second-order rate expression
fits the data most satisfactorily. Hence, it suggests that the rate-limiting step in these
sorption processes may be chemisorptions involving influential forces through the sharing
or exchanging of electrons between the sorbent and the sorbate [87].
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Figure 8 shows the estimated Elovich equation parameters in Table 2. The value of
β indicates the number of sites available for removal. At the same time, α is the removal
quantity when ln t is equal to zero, i.e., the removal quantity when t is one hour (equilibrium
time). This value provides insight into the removal behavior of the first step [88]. However,
according to the Elovich equation, the obtained data agree with the experimental data, after
the pseudo-second-order model and better than the pseudo-first-order model.
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Table 2. The adsorption parameters of the pseudo-first- and pseudo-second-order and the Elovich
kinetic models.

Adsorbent

Pseudo-First-Order Pseudo-Second-Order Elovich

qe,exp,
(mg/g)

qe,cal,
(mg/g)

K1
(min−1) R2 qe,cal

(mg/g)
K2

(g mg−1min−1) R2 β
(g/mg)

α
(mg/g min) R2

SPGMA 3.94 0.277 0.048 0.493 4.00 0.1422 0.999 0.137 3.449 0.829

2.3. MB Immobilization Temperature and Adsorption Thermodynamics

Figure 9 shows the effect of varying the MB immobilization temperature on the adsorp-
tion capacity. From the figure, it is clear that elevation of the immobilization temperature
has a negative effect on the MB adsorption capacity. The MB adsorption capacity was
reduced from 12 mg/g to 9.3 mg/g. The negative behavior upon elevation of the tempera-
ture indicates the exothermic nature of the MB adsorption process (Figure 9). This trend
agrees with theresults obtained earlier using amidoximated crosslinked polyacrylonitrile
particles [31]. The obtained results are an advantage since the dye immobilization process
does not need additional heating or other costs. This behavior may be referred to as the
acceleration effect of temperature on the dye molecules’ adsorption on the surface of both
SPGMA particles. This fast initial step reduces the concentration gradient between the
MB dye liquid and polymer solid phases. ThMB concentration limitation from one side
and high concentration of exchange sites over the surface of the particles on the other side
contribute significantly to obtaining this behavior. The absence of a pore diffusion process
also eliminates the effect of temperature [30].
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The values of thermodynamic parameters should be considered to conclude the
adsorption process’s spontaneity. With increasing temperature, an automatic system
will display a decrease in ∆G◦ and ∆H◦ values. All the thermodynamic parameters are
calculated from the following equations [89,90]:

lnKd =
∆S
R
− ∆H

RT
(11)

where:
Kd =

qe

Ce
(12)

∆G = −RTlnKd (13)

∆H = −R× Slope (14)

∆S = R× Intercept (15)

R is the gas constant (8.314 J/mol K) and T is the temperature in K. Table 3 lists
the values for the thermodynamic parameters (Figure 10). The negative value for the
∆H◦ (−12.52 kJ/mol) indicates the exothermic nature of the process, which explains the
decrease in the MB molecules’ adsorption capacity as the temperature increased. The
enthalpy change in the chemisorption process (40–120 kJ mol−1) is more significant than
the physisorption change [91]. Consequently, the obtained value of the heat of adsorption
acquired in this study, −12.52 kJ mol−1, indicates that the adsorption of the MB cations
is likelyattributable to the physisorption in accordance with the kinetics study, which
described the adsorption as a mix between chemisorption and physisorption. Thus, it is
evident from the lower ∆H◦ value that the physisorption also takes part in the adsorption
process. The MB molecules adhere to the adsorbent surface only through weak intermolecu-
lar interactions. The ∆G◦ values reflect the feasibility of the process. The negative value for
the entropy change, ∆S◦ (−45.03 J/mol K), illustrates the increment of the orderliness at the
solid/liquid interface resulting from the adsorption of the MB molecules. Kifuani et al. [92]
studied the preparation of a bioadsorbent from the seeds of Cucumeropsis mannii Naudin
(BCM) and examined its effectiveness in the removal of methylene blue (MB) from aqueous
solution by adsorption process. Thermodynamics parameters of the adsorption process
were determined. They found that the negative values of ∆H◦, higher than 41 kJ mol−1,
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show that the adsorption of MB on BCM is exothermic and essentially a chemical process.
A negative value of entropy, ∆S◦, indicates that the disorder of the molecules decreases
in the interface between the MB dye and BCM bioadsorbent. Moreover, the standard
free enthalpy hasa positive value, which indicates a non-spontaneous adsorption process.
Wu et al.’spublished resultsconcerned the adsorption of MB onto the bioadsorbent spent
substrate of Pleurotus eryngii (SSPE) [93]. They found that ∆H◦ and ∆S◦ were all negative.
The obtained value of ∆S◦ (−42.6 J/mol K) is very close to the result obtained in our study.
They claimed the obtained negative enthalpy was a result of the exothermic process of the
dye’s adsorption onto SSPE, while the negative entropy was attributed to the decreased
degree of system chaos because the dissolved dyes were adsorbed onto SSPE. The ∆G◦ of
methylene blue adsorbed onto SSPE were all negative, which indicated that the adsorption
process was a spontaneous process. Yagub et al. [94] studied the adsorption capacity of
raw and sodium hydroxide-treated pinecone powder in the removal of methylene blue
(MB) from aqueous solution The temperature-dependent performance of MB adsorption
was further analyzed based on the thermodynamic parameters, such as the change in free
energy ∆G◦, enthalpy ∆H◦, and entropy ∆S◦. ∆G◦ ranged from−13.64 to−12.25 kJ mole−1,
depending on the temperature, which ranged from 303 to 323 K. It was observed that the
∆G◦ values at all temperatures were negative. It indicates that the MB dye adsorption
reaction is spontaneous with the temperatures studied. The value of ∆G◦ increases, thus
indicating that the adsorption of MB on the pinecone became more favorable at lower tem-
peratures. The negative value of ∆H◦ indicates that the sorption process was exothermic,
whereas the negative value of ∆S◦ indicated decreased randomness at the solid–solute
interface as a result of the MB adsorption.

Molecules 2022, 27, x FOR PEER REVIEW 14 of 26 
 

 

 

Figure 10. The Van’t Hoff plot of the adsorption of MB using SPGMA polymer. 

Table 3. Thermodynamic parameter valuesof the MB molecules adsorption on the SPGMA under 

different temperatures. 

1/T ΔG (kJ/mol) ΔH (kJ/mol) ΔS (J·mol
−1

·K
−1

) 

0.00336 0.713 

−12.52 −45.03 
0.00325 1.309 

0.00319 1.965 

0.00300 2.309 

2.4. Simulation Mathematical Model 

The radial concentration profiles of MB (species A) into polymer particles (species B) 

were demonstrated by a dimensionless function, and the fractional attainment of equi-

librium was estimated with the mentioned initial and boundary conditions that depend 

upon the polymer particle size, diffusion constant of MB, and MB concentration. Figure 

11 shows the variation of equilibrium fractional attainment versus dimensionless time 

that depends on the diffusion constant of MB; therefore, it was used for a comparison 

between the ion exchange processes. 

Figure 11A represents the fractional attainment of equilibrium versus time for the 

diffusion coefficient of species A ≥ B, and DA/DB ≥ 1 is used to compare the ion exchange. 

As time increases, the fractional attainment of equilibrium increases by decreasing the 

DA/DB as the fractional attainment of equilibrium increases. In the range of10−3 to 10−4, the 

trend slightly increases from 100 to 10−3as the curves rapidly increase. Figure 11B shows 

the fractional attainment of equilibrium versus time for the diffusion coefficient of spe-

cies, A < B, and DA/DB < 1 from 
1

5
 𝑡𝑜 

1

20
. By increasing the diffusion coefficient of spicy 

B, the fractional attainment of equilibrium decreases at 
𝑍𝐴

𝑍𝐵
= 1. 

Figure 10. The Van’t Hoff plot of the adsorption of MB using SPGMA polymer.

Table 3. Thermodynamic parameter valuesof the MB molecules adsorption on the SPGMA under
different temperatures.

1/T ∆G (kJ/mol) ∆H (kJ/mol) ∆S (J·mol−1·K−1)

0.00336 0.713

−12.52 −45.03
0.00325 1.309

0.00319 1.965

0.00300 2.309
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The interpretation of the contradictory findings of thermodynamic (physisorption,
enthalpy) and kinetics (chemisorption, rate laws) can be declared according to the fact that
the kinetic laws were applied ata fixed temperature, where the chemisorption takes place
in the SPGMA region with a higher rate than the physisorption (enthalpy) that takes place
in the PGMA region, which is larger. When using higher temperatures, the part of MB
molecules that is chemisorbed is limited by the fixed number of negative sulfonic adsorption
sites, which were already covered at the lowest used temperature (25 ◦C).A further increase
in the immobilization (adsorption) temperature has a negative linear effect up to 40 ◦C,
while the effect was reduced with a further increment of the temperature up to 60 ◦C due to
the exothermic nature of the chemisorption process. The obtained results indicate that the
chemisorption contributes approximately 25% in the MB adsorption process. On the other
hand, the MB molecules immobilized (adsorbed) by physisorption, which is the larger part
of immobilized MB, were not affected by the increase in temperature. Such an explanation
is supported by the obtained adsorption capacity behavior shown in Figure 9.

2.4. Simulation Mathematical Model

The radial concentration profiles of MB (species A) into polymer particles (species B)
were demonstrated by a dimensionless function, and the fractional attainment of equilib-
rium was estimated with the mentioned initial and boundary conditions that depend upon
the polymer particle size, diffusion constant of MB, and MB concentration. Figure 11 shows
the variation of equilibrium fractional attainment versus dimensionless time that depends
on the diffusion constant of MB; therefore, it was used for a comparison between the ion
exchange processes.
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Figure 11A represents the fractional attainment of equilibrium versus time for the
diffusion coefficient of species A ≥ B, and DA/DB ≥ 1 is used to compare the ion exchange.
As time increases, the fractional attainment of equilibrium increases by decreasing the
DA/DB as the fractional attainment of equilibrium increases. In the range of 10−3 to 10−4,
the trend slightly increases from 100 to 10−3 as the curves rapidly increase. Figure 11B
shows the fractional attainment of equilibrium versus time for the diffusion coefficient of
species, A < B, and DA/DB 1 from 1

5 to 1
20 . By increasing the diffusion coefficient of spicy

B, the fractional attainment of equilibrium decreases at ZA
ZB

= 1.
Figure 12A demonstrates the contours of the radial concentration profiles of species

A as a function of the radial coordinate and dimensionless time for both processes with
different DA/DB ratios and different valences. The results indicate that the curves increase
as DA/DB increases, of species A ≥ B with ZA

ZB
= 1. Figure 12B determines the contours

of the radial concentration profiles of species B as a function of the radial coordinate and
dimensionless time for both processes with different DA/DB ratios and different valences.
The results specify that the curves decrease by decreasing the DA/DB of species A < B with
ZA
ZB

= 1.
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Figure 13A represents the equivalent fraction of A versus the radial coordinate for
ZA/ZB = 1 for diffusion coefficients of species A ≥ B and (B) for diffusion coefficients
of species A < B. In conclusion, the mathematical simulation model indicates that the
ion exchange process performance between the MB ions and the ion exchange sites over
the SPGMA matrix decreased according to the decline in the fractional attainment of the
equilibrium with a change in the diffusion coefficient ratio from 1:1. Therefore, the ideal
case is when the diffusion coefficient percentage is close to one.
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2.5. Metal Ions Removal from Wastewater

The selected MB-SPGMA composite adsorbent with a composition of 27.32 mg/g has
been used for the first time in treating synthetic-contaminated water with dichromate (Cr6+)
or permanganate (Mn7+) ions under batch conditions. Synthetic-contaminated water with
various metal ions concentrations, 2–8 ppm, was used in the study. The removal percentage
of both ions is illustrated in Table 4.
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Table 4. Removal percentage of dichromate (Cr6+) and/or permanganate (Mn7+) ions from contami-
nated wastewater under batch conditions.

Metal Ions Concentration (ppm)
Metal Ions Removal Percentage (%)

Cr6+ Mn7+

2 16.5 11

4 20 22

6 25 38

8 36 55

The table shows that the affinity of the MB-SPGMA composite adsorbent increased to
remove the metal ions from the contaminated water increases with an increase in the metal
ions’ concentration. The removal percentage in the case of permanganate ions is higher
than the dichromate counters ions, especially at higher metal ion concentrations.

3. Materials and Methods
3.1. Materials

Glycidyl methacrylate (GMA) waspurchased from ACROS (USA). Potassium per-
sulfate (KPS) and sodium disulphite (SDS) were obtained from Sigma Chem. Co. (St.
Louis, MO, USA). Ethanol absolute was purchasedfrom Adwic, Egypt, and finally, MB was
purchased from Aldrich, Germany.

3.2. Polymerization Process

Glycidyl methacrylate was polymerized under fixed conditions to prepare poly(glycidyl
methacrylate) [64]. First, the 10% (v/v) monomer was dissolved in 0.05 M KPS solution in
ethanol/water (1:1) and mixed well. Next, the mixture was kept in awater bath at 60 ◦C
for 3 h to polymerize and then left overnight at room temperature while the precipitate of
poly(glycidyl methacrylate) (PGMA) was formed. Next, the formed polymer was filtered
and successively washed with an ethanol/water solution to remove the unreacted monomer
and initiator. Finally, the polymer was dried overnight at 80 ◦C. The polymerization process
was highly efficient, and the yield reached almost 100%.

3.3. Sulphonation Process

The PGMA was functionalized with negative sulphonic groups as follows. First,
0.5 g of the polymer was reacted with 20 mL of a 3% sodium sulfite (S.S.) solution
(ethanol/water) at room temperature for one hour. The sulphonated polymer (SPGMA)
was then washed with ethanol/water to remove unreacted S.S. The polymer was then dried
at 60 ◦C overnight. The SPGMA was characterized using FTIR, TGA, and SEM [29]. The
average particle size of SPGMA was 430 nm [66].

3.4. Preparation of Basic Methylen Blue Solution

A methylene blue (MB) stock solution was prepared by dissolving 0.1 g in 1000 mL of
distilled water using a magnetic stirrer. The MB concentration in the supernatant and residual
solutions was determined by measuring their absorbance in a 1 cm light-path cell at a maxi-
mum wavelength of 665 nm using a UV-visible spectrophotometer (T70+ PG Instruments).

3.5. Standard Curve of MB Concentration

Varied MB solution concentrations from 0.1 ppm to 5 ppm were prepared. The samples’
absorbance (Aabs) was measured using a UV-Visible spectrophotometer and plotted against
their concentrations. From the slope, we can derivative the constant, equal to (1/slope).
The standard curve of MB concentrations is presented in Figure 14. The constant has been
calculated from the curve’s slope and was found to be 4.65.
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3.6. Methylene Blue–Polymers Composite Formation (Immobilization Process)

The methylene blue–polymers composite formation process was performed through
immobilization experiments in a batch process using an MB aqueous solution.

To study the MB concentration effect, the MB immobilization was performed by
mixing 0.1 g of SPGMA-based polymers with 10 mL of 10–40 ppm MB of pH 6.5. The
mixture was agitated using a magnetic stirrer at 200 rpm at room temperature for 30 min
and then centrifuged at 12,000 rpm for 30 min to separate the matrix of the liquid phase.

To study the MB immobilization time effect, the MB immobilization was performed by
mixing 0.1 g of SPGMA-based polymers with 10 mL of 40 ppm MB of pH 6.5. The mixture
was agitated using a magnetic stirrer at 200 rpm at room temperature for 5–30min and then
centrifuged at 12,000 rpm for 30 min to separate the matrix of the liquid phase.

To study the effect of the MB immobilization temperature, the MB immobilization
was performed by mixing 0.02 g of SPGMA-based polymers with 10 mL of 40 ppm MB
of pH 6.5. The mixture was agitated using a magnetic stirrer at 200 rpm at temperatures
ranging from 25 to 60 ◦C for 5 min and then centrifuged at 12,000 rpm for 30 min to separate
the matrix of the liquid phase.

The remaining MB concentration (Ct and/or Ce; ppm) in the liquid phase after the
immobilization process was determined by measuring the absorbance at the maximum
wavelength (Lmax = 665 nm) using a UV-VIS spectrophotometer (T70+ PG Instruments)
and multiplied by a 4.65 constant extracted from the slope of the standard curve.

The MB–polymers composites composition (mg/g) was calculated according to the
following formula:

MB immobilization capacity (qe and/or qmax; mg/g) = V (C0 − Ct)/M (16)

where C0 and Ct are the MB initial and final concentrations at definite immobilization times,
V is the volume of the MB solution (L), and M is the mass of the SPGMA polymers (g).

3.7. Isotherm, Kinetic, and Thermodynamic Studies

The MB immobilization process via adsorption onto SPGMA particles has been char-
acterized using isotherm models, namely, Freundlich, Langmuir, D–R [73–76], and Temkin
isotherm models [82,83]. The data used in the calculation of the different isotherm parame-
ters and constants are summarized in Table 5.



Molecules 2022, 27, 8418 19 of 25

Table 5. The qe (mg/g) and Ce (mg/L) values for different MB concentrations.

MB (ppm) qe (mg/g) Ce (mg/L)

8 0.761 0.392

16 1.545 0.5536

24 2.328 0.72

32 3.118 0.80

40 3.916 0.88

The kinetics of the MB adsorption process followed three linear kinetic models, namely,
pseudo-first-order, pseudo-second-order, and Elovich models [84–86]. The data used in the
calculation of the kinetic models’ parameters are summarized in Table 6.

Table 6. The values used in the calculation of kinetic models’ parameters and constants.

Time (t) lnt Capacity (qt) t/qt ln(qe − qt)

5 1.61 3.65 1.37 −1.24

10 2.3 3.83 2.61 −2.21

15 2.71 3.8 3.95 −1.97

20 3 3.82 5.24 −2.12

30 3.4 3.94 7.61

Finally, the thermodynamic parameters, ∆G, ∆H, and ∆S, of the MB adsorption process
were investigated using the Van’t Hoff model [89–91]. The data used in the calculation of
the thermodynamic parameter, ∆G, are summarized in Table 7.

Table 7. The values used in the calculation of thermodynamic parameters and constants.

Temperature
(◦C)/(K) qe Ce Kd ln Kd

25/298 12 16 0.75 −0.288

35/308 10.9 18.2 0.6 −0.511

40/313 9.71 20.576 0.47 −0.755

60/333 9.3 21.412 0.43 −0.834

3.8. Mathematical Model of the MB Immobilization Process [95]

We consider the ion exchange between ion exchanger SPGMA of a postulated uniform
size (430 nm) containing the counter ions’ exchange sites (A) and the well-stirred solution
containing the MB counter species (B). During the immobilization (adsorption) process,
species (B) diffused into species (A).

The governing equation that describes the ion exchange resin is derived from Nernst–
Plank equations between two ion species [A] and [B]. The ion species fluxes of [A] and [B]
are given in Equations (17) and (18). A spherical coordinate system is used in 1-D under
spherical symmetry and then the dimensionless form of Equation (19) is derived from
(17) and (18). The equations written by applying these assumptions to the porous structure
of the resin are neglected and the resin will be treated as a quasi-homogeneous phase. The
concentration of the ion groups is assumed to be constant.

Ψ_A = −D_A [gradC_A + Z_AC_A (F/RT)gradϕ] (17)

ΨB = −DB

[
gradCB + ZBCB

(
F

RT

)
gradϕ

]
(18)
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∂γ

∂τ
− 1

ρ2
∂

∂ρ

[
1 + bγ

1 + aγ
ρ2 ∂γ

∂ρ

]
= 0 (19)

γ =
ZACA

C
τ =

DAt
r2

o
ρ =

r
ro

(20)

where [Ψ] is the flux for [A] and [B], [D] is the individual diffusion constant for [A] and [B],
[R] is the gas constant, [T] is the absolute temperature, [F] is the Faraday constant, [ϕ] is the
electric potential, [Ci] is the molar concentration of species i, [Zi] is the valence of species
i, [r] is the radial spherical coordinate, and [ro] is the particle radius. The finite difference
method is used to discretize Equation (19) as follows:

(ρ.τ + ∆τ) = γ(ρ.τ) +
∆τ

∆ρ2 {R+D+[γ(ρ + ∆ρ.τ)− γ(ρ.τ)]− R−D−[γ(ρ.τ)− γ(ρ− ∆ρ.τ)]} (21)

R+(ρ) =

[
ρ + 1

2 ∆ρ

ρ

]2

(22)

R−(ρ) =

[
ρ− 1

2 ∆ρ

ρ

]2

(23)

D+(γ) =
2 + b[γ(ρ + ∆ρ.τ) + γ(ρ.τ)]
2 + a[γ(ρ + ∆ρ.τ) + γ(ρ.τ)]

(24)

D−(γ) =
2 + b[γ(ρ.τ) + γ(ρ− ∆ρ.τ)]
2 + a[γ(ρ.τ) + γ(ρ− ∆ρ.τ)]

(25)

where [a] and [b] are constants

a =
ZADA
ZBDB

− 1 and b =
ZA
ZB
− 1 (26)

− dQA
dt

= −VCDA
ro2

dqA
dτ

(27)

qA(τ) = 3
∫ 1

0
γ(ρ.τ)ρ2 dρ (28)

where [qA] is the amount of species A in the bead and [V] is the bead volume. According
to Simpson’s rule, the equations are represented as follows:

qA(τ) = (∆ρ)3

4

1
∆ρ−1

∑
n=1.3.5

n2γ(ρ.τ) + 2

1
∆ρ−2

∑
n=2.4.6

n2γ(ρ.τ)

 (29)

where
n =

ρ

∆ρ
(30)

F(τ) = 1− qA(τ) (31)

where F(τ) represents the equilibrium fractional attainment. To solve Equation (18), the
initial and boundary conditions are applied as follows

γ(ρ.τ = 0) = 1 0 ≤ ρ < 1 (32)

γ(ρ = 1.τ) = 0 and γ(ρ = 0.τ) = γ(ρ = ∆ρ.τ) (33)

The stability condition for the discretized equation is

∆τ = 0.4
∆ρ2

Dmax
(34)
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Dmax = 1 i f a > 0 .b < 0 (35)

Dmax =
1 + b
1 + a

i f a< 0 .b >0 (36)

3.9. Chromium (VI) and Manganese (VII) Ion Removal [70,71]

Synthetic dichromate, Cr6+, and permanganate, Mn7+, 20 mL solutions with varying
concentrations (2–8 ppm) were mixed with 0.1 g of the MB-SPGMA composite at room tem-
perature for 3 h and were then separated by centrifugation under 12,000 rpm for 30 min in a
batch adsorption experiment. The Cr6+ and Mn7+ concentrations (ppm) before and after the
adsorption for each solution were determined by measuring the absorbance at a maximum
wavelength (Lmax = 380 nm and 550 nm) using a UV-VIS spectrophotometer (T70+ PG
Instruments) and multiplying it by the constant extracted from the slope of the standard
curve. The adsorption capacity was calculated according to the following equation:

Metal ions removal percentage (%) = [(CM0 − CMt)/CM0] × 100 (37)

CM0 and CMt are the metal ions’ initial and final concentrations at a defined adsorption time.

4. Conclusions

The methylene blue–sulphonated poly(glycidyl methacrylate) polymer composite
novel adsorbent was developed through an adsorption technique. The MB content of the
MB-polymer composite was monitored with the variation of the MB concentration, MB
immobilization time, and temperature. The MB immobilization capacity has a direct linear
relationship with the MB concentration. The MB immobilization process via adsorption
onto SPGMA particles has been characterized using other models, namely, Freundlich,
Langmuir, D–R, and Temkin isotherm models. The data best fit the Freundlich isotherm
model, which postulates heterogeneous surface site energies and multi-layer levels of sorp-
tion. The immobilization process was speedy, and more than 90% of MB was immobilized
within 5 min. The kinetics of the MB adsorption process followed three linear kinetic
models: Pseudo-first-order, pseudo-second-order, and Elovich models. The data were
found to follow the pseudo-second-order model followed by the pseudo-first-order model
assuming the coexistence of both chemisorption and physisorption of the MB onto SPGMA
and PGMA, respectively. The elevation of the immobilization temperature from 25 to 60 ◦C
reduced the MB content of the MB-SPGMA composites by roughly 25%. Finally, the MB
adsorption process’ thermodynamic parameters, ∆G, ∆H, and ∆S, were investigated using
theVan’t Hoff model. The negative value for the ∆H◦ (−12.52 kJ/mol) indicates the exother-
mic nature of the process, which explains the decrease inthe MB molecules’ adsorption
capacity as the temperature increased. The enthalpy change inthe chemisorption process
(40–120 kJ mol−1) is more significant than the physisorption. Consequently, the obtained
value of the heat of adsorption acquired in this study, −12.52 kJ mol−1, indicates that
the adsorption of the MB cations is like lyattributable to physisorption, which is not in
accordance with the kinetics study, which described that the adsorption is chemisorption.
Thus, it is evident from the lower ∆H◦ value that the physisorption also takes part in
the adsorption process, mainly in the PGMA region. The MB molecules adhere to the
adsorbent surface only through weak intermolecular interactions. The negative value for
the entropy change, ∆S◦ (−45.03 J/mol K), illustrates the orderliness at the solid/liquid
interface as a result of the adsorption of the MB molecules. The ∆G◦ values reflect the
feasibility of the process. Finally, the mathematical simulation model indicates that the
ion exchange process performance between the MB ions and the ion exchange sites over
the SPGMA matrix decreased according to the decline in the fractional attainment of the
equilibrium with a change in the diffusion coefficient ratio from 1:1. Therefore, the ideal
case is when the diffusion coefficient percentage is close to one. The selected MB-SPGMA
composite adsorbent with a composition of 27.32 mg/g was used for the first time to treat
synthetic-contaminated water with dichromate or permanganate under batch conditions.
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The obtained data declared that the affinity of the MB-SPGMA composite adsorbent in-
creased to remove the metal ions from the contaminated water with the increase in the
metal ion concentration. On the other hand, the removal percentage in the case of Mn7+

ions is higher than the Cr6+ counter ions, especially at higher metal ion concentrations.
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