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Abstract: The presence of cationic dyes, even in a tiny amount, is harmful to aquatic life and pollutes
the environment. Therefore, it is essential to remove these hazardous dyes to protect the life of marine
creatures from these pollutants. In this research, crystal violet (CV) dye elimination was performed
using a lignin copper ferrite (LCF) adsorbent. The adsorbent was synthesized and characterized using
FTIR, Raman, SEM, EDX with mapping, and VSM, which proved the successful formation of magnetic
LCF. Adsorption experiments were performed using different effective parameters. The highest
adsorption potential (97%) was executed at mild operating conditions, with a 5 min contact time at
room temperature and pH 8. The adsorption kinetic study utilized four kinetic models: first-order,
second-order, intraparticle diffusion, and Elovich. The results revealed that the adsorption process
complies with the pseudo-first-order with a maximum adsorption capacity of 34.129 mg/g, proving
that the adsorption process mechanism is a physical adsorption process. Three isotherm models,
Langmuir, Freundlich, and Temkin, were examined. The adsorption mechanism of CV onto LCF
was also followed by the Langmuir and Freundlich models. The thermodynamic parameters were
examined and revealed that the adsorption onto LCF was an exothermic process. It was proposed
that the adsorption process is a spontaneous exothermic process. LCF appears to forcefully remove
toxic CV dye from textile wastewater.

Keywords: adsorption; crystal violet; magnetic adsorbent; kinetics; isotherm; thermodynamic

1. Introduction

Excessive acceleration in the world population, environmental contamination, fast
diminishing of fossil fuels, effects of oligopoly in extraction and distribution of fossil fuels,
and unstable fuel prices are the key factors leading to an urgent search for alternative,
sustainable, and renewable energy resources [1,2]. Bioethanol is one of the most alternative
renewable energy sources that has gained a lot of global attention in recent years, as it can be
produced from agricultural waste. Annually, the world produces approximately 2.4 billion
tons of agricultural waste, mostly disposed of incorrectly or open burned, leading to many
environmental and health hazards [3]. The biomass mainly consists of lignin (15–30%),
cellulose (30–50%), and hemicellulose (20–35%), which indicates that lignin is the second
amplest component after cellulose. This polymer consists of complex phenyl propane
units and is always produced as waste from bioethanol production and other industries
such as the pulp and paper industry [4–6]. Hence, the annual lignin production can reach
100 million tons as agricultural waste and 50 million tons as industrial waste [7].

Water is used in various industrial and agricultural applications, and more than
359 billion cubic meters of wastewater are estimated to be generated per year worldwide
due to toxic waste, dyes, petroleum, microorganisms, and/or chemicals [8]. All these
substances hinder the advantageous use of water or the natural function of ecosystems and
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cause plenty of environmental and health obstacles [9]. Organic dyes are types of pollutants
that are produced by the textile industry, as well as others, in significant amounts [10].
Annually, 10,000 different types of dyes formed are worldwide. The estimated percentage
of dye discharged as effluent during the dyeing process ranges between 10 and 15% [8].

Consequently, more than 50,000 tons of organic dyes are released to the surroundings
annually [8]. The presence of dyes such as congo red, red-blue 19, crystal violet, malachite
green, or reactive red 141 in water, even in a small portion, is undesirable, as dyes hinder
light penetration, destroy water quality, and ruin gas solubility. Moreover, they are highly
toxic, endangering aquatic life [11].

Crystal violet (CV) is a triphenylmethane dye, abundantly used in fabric synthesis and
biological coloring processes. However, it is severely carcinogenic and causes numerous
health problems following human exposure, such as skin and eye irritation, kidney failure,
respiratory system complication, nausea, vomiting, and permanent blindness. Therefore,
CV removal from wastewater is crucial. However, CV is a compound with a convoluted
structure that is difficult to remove. Several treatment methods have been investigated,
including coprecipitation, adsorption, oxidation–reduction, flocculation–coagulation, sev-
eral types of membrane filtration, and biological treatment [12]. Most of them require high
investment and high operating costs, although they show low efficiency in dye removal.
Currently, the adsorption process is a popular method that can be used as an ideal alterna-
tive to other expensive water treatment methods, attributable to its simplicity, selectivity,
affordability, and extraordinary efficiency [13,14].

The high adsorbent synthesis cost, lengthy centrifugation, and/or filtration are the
bottlenecks to using the adsorption process on a large or industrial scale. Therefore, many
researchers have investigated the utilization of magnetic materials as adsorbents to simplify
the adsorbent separation step, reduce operating time, and, consequently, operating costs.
However, the high magnetic adsorbent synthesis cost can increase the overall adsorption
cost. Hence, some studies have investigated the synthesis of magnetic adsorbents using
different precursors such as carbon nanotubes [15], graphene oxide [16], and nanocellu-
lose [17]; however, these precursors are nonrenewable, unfeasible for large-scale utilization,
difficult to synthesize, and relatively expensive [18]. Thus, this work aims to utilize the
lignin produced as waste from the bioethanol production of corn stover as a precursor to
copper ferrite magnetic material to benefit from its renewability, availability, and low cost,
and protect the environment from its improper disposal and pollution. This novel material,
lignin copper ferrite (LCF), was utilized as a novel, effective, and affordable adsorbent for
CV removal. The synthesized LCF was characterized using different techniques such as
Fourier-transform infrared spectra (FTIR), Raman, scanning electron microscopy (SEM),
energy-dispersive X-ray spectroscopy (EDX) with elemental mapping, surface charge
(pHzpc), and vibrating-sample magnetometry (VSM). The selected adsorption parameters,
such as operation contact time, LCF weight, initial CV concentration, temperature, pH,
and ionic strength, were investigated to evaluate the adsorbent activity and optimize the
adsorption operating conditions. Furthermore, the adsorption kinetics, isotherms, and
thermodynamics were examined for adsorption of CV onto LCF. To the best of the authors’
knowledge, no study has previously investigated the induction of lignin copper ferrite or
used it as an adsorbent.

2. Materials and Methodology
2.1. Material and Chemical Agents

Corn stover was obtained from El-Behara farms, Egypt. Crystal violet (C25H30Cl N3)
was supplied from Bio-Basic Canada Inc., molecular weight 407.99 gm (assay 98%). Chem-
ical materials such as sodium hydroxide (NaOH) with purity ≥ 97%, hydrochloric acid
(HCl) (37%), ferric chloride (FeCl3), copper chloride (CuCl2), zinc chloride (ZnCl2), calcium
chloride (CaCl2), sodium chloride (NaCl), and lithium chloride (LiCl) with purity ≥ 97%
were provided from Sigma-Aldrich Co., St. Louis, MI, USA.
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2.2. Adsorbent Synthesis
2.2.1. Lignin Extraction

For lignin extraction, about 100 g corn stover was soaked in 1000 mL sulfuric acid
(72%) for 4 h. This combination was treated in an autoclave at 120 ◦C for 1 h. Posteriorly,
the combination was penetrated, and the formed solid was rinsed with warm water till
pH 7. Then, the produced powder was located in a laboratory muffle furnace at 300 ◦C for
2 h and labeled TL300 for further use.

2.2.2. Synthesis of Lignin Copper Ferrite

The iron and copper chloride salts were mixed in a molar ratio of 2:1 and added to
100 mL distilled water as a solvent in a three-neck flask. Then, the pH of this solution
was adjusted at 11 using 2 N NaOH by titration under moderate stirring to ensure full
contact and complete reaction. The suspension was left overnight at ambient temperature
to separate and lie down. Then, the acquired mixture was filtrated and washed with
distilled water three times. This prepared copper ferrite paste was mixed with 100 mL
TL300 suspended solution with concentration 1% (w/v). The components suspended
solution was placed in a 250 mL stainless steel Teflon lined autoclave and thermally treated
at 120 ◦C for 12 h to significantly associate the reactants. Subsequently, the synthesized
magnetic composite was allowed to cool. The mixture was filtrated, washed considerably
with distilled water to eliminate residual ions, and sintered at 180 ◦C for 4 h in a vacuum
oven. Finally, the created powder was calcined at 800 ◦C for 1 h and labeled LCF.

2.3. Characterization of LCF

Fourier-transform infrared (FTIR) detected the functional groups attached to the
LCF surface (Shimadzu FTIR–8400 S, Kyoto, Japan). Raman spectra were recorded using
(SENTERRA spectrometer, Bruker, Karlsruhe, Germany) with a 532 nm Ar laser. The
LCF surface features and characteristic morphology were inspected by scanning electron
microscopy using (SEM, JEOL Model JSM6360 LA, Tokyo, Japan) at room temperature
with accelerating voltage 15 kV. The SEM device is equipped with an EDX detector to
identify and map the synthesized LCF’s basic element structure. Magnetic characteristics
of LCF were scrutinized by a vibrating-sample magnetometer (VSM, LakeShore-7410, Lake
Shore Cryotronics, Inc., Westerville, OH, USA) with sensitivity up to 1 µ emu and a strong
magnetic field up to±20 koe to fully saturate the sample uniformly across the sample space.

2.4. Adsorption Investigates

A standard solution of the CV dye (100 ppm) was prepared and utilized for preparing
the other investigated concentrations by dilution. Batch experiments were performed
in a 250 mL Erlenmeyer flask placed on an orbital shaker at 200 rpm at 25 ◦C until the
equilibrium was reached. A fixed amount of LCF was blended with 25 mL dye solution.
After different time intervals, a specific quantity was suctioned from the reaction media by
filter syringe, and residual CV dye concentrations were determined using a UV/visible
spectrophotometer (7230 G, Shanghai, China) at maximum absorbance at wavelength
(λmax = 570 nm), where this step was repeated three times. The effect of contact time (in a
range from 1 min to 180 min), pH (2, 4, 6, 8, and 10), adsorbate solution concentration (5,
10, 25, 50, 75, and 100 ppm), adsorbent dose (ranged from 0.0125 to 0.1 g), and temperature
(25, 40, 50, 60, and 70 ◦C) was inspected to determine the optimum conditions [9]. The
empirical conditions of this process were listed in Table 1.

2.5. Zero-Point Charge (pHPZC)

The LCF surface charge was performed using the salt addition method by specifying
the point of zero charges (pHpzc). Five solutions of 0.1 M NaCl with different pH values
were adjusted between 2 and 12 using 0.1 M NaOH and 0.1 M HCl. A 0.25 g amount
of LCF was mixed with 25 mL synthesis solution with shaking at 200 rpm for 24 h at
ambient temperature. After this duration of shaking, the final pH values of the mixture
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were measured. Finally, the results of (pHi-pHf) were drawn against the pHi to estimate
the pHPZC [11].

Table 1. The experimental conditions for adsorption of CV using LCF.

Experiment Type Concentration of
CV (ppm)

Adsorption Time
(min)

Adsorbent Weight
(g) pH Temperature

(◦C)

Influence of time 50 5–15 0.05 7 25

Influence of
adsorbent weight 10 5 0.025–0.125 7 25

Influence of CV
concentration 5–100 5 0.025 7 25

Influence of pH 10 5 0.025 2–12 25

Influence of
temperature 10 5 0.025 8 25–70

2.6. Ionic Strength

The influence in the presence of other salts on the removal efficiency of CV using
LCF, known as ionic strength, was studied according to the following procedure. Three
various concentrations (0.1, 0.5, and 1 M) of four various salts, ZnCl2, CaCl2, NaCl, and
LiCl, were prepared by dissolving a certain amount of the salt in 25 mL CV (10 ppm). A
0.025 g amount of LCF was combined with the prepared solution and agitated for 1 h at
200 rpm. Subsequently, the adsorbent was filtrated, and a UV/visible device determined
the dye concentration in the liquid phase.

2.7. Reusability Study

The reusability of the prepared magnetic adsorbent was determined through the
adsorption–desorption of CV pollutants. Two desorbing agents, water and 0.1M HCl,
were used to compare them. A 0.05 g amount of LCF magnetic adsorbent loaded with
CV, after the adsorption process, was separated from the solution by a magnetic bar. The
separated LCF was mixed with 25 mL eluent solution for 30 min at 200 rpm. After elution,
the material was separated using the magnetic bar and reloaded with dye through the
adsorption process. This process was repeated for 10 cycles, and the removal efficiency was
computed after each cycle.

2.8. Removal Mechanism

Kinetic models are helpful in the examination of the mechanism and rate-limiting
steps implicated in the adsorption treatment. The kinetic adsorption process for the
CV onto the LCF surface was examined by fitting the experimental data to the pseudo-
first-order Equation (1), pseudo-second-order Equation (2), intraparticle diffusion model
Equation (3), and Elovich model Equation (4). The pseudo-first-order model is monitored
by diffusion and mass transfer of the CV onto the LCF spot. The pseudo-second-order
reveals that chemisorption is the rate-limiting step. The intraparticle diffusion model
investigates the possible mechanism of adsorption of the studied molecules and verifies
the transport mechanism. The Elovich model assumes that the existing solid surface is
energetically heterogeneous.

ln(qe − qt) = ln qe − k1t (1)

t
qt

=
1

k2q2
e
+

t
qe

(2)

qt = kdi f
√

t + C (3)
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qt =
1
βe

ln(αβ)− 1
βe

ln t (4)

where qt and qe are the mass of CV loaded on the unit mass of adsorbent at time t and
equilibrium, respectively, (mg/g); k1 is the rate constant of the pseudo-first-order adsorption
process (min–1); and k2 is the rate constant of the pseudo-second-order adsorption process
(g/mg. min). Kdif is the intraparticle diffusion constant (mg/g.min), C is a kinetic constant,
and α is the initial rate (mg/g min) as (dqt/dt) approaches βe when qt is about zero. The
parameter βe is the extent of activation energy and surface coverage for chemisorption
(g/mg).

2.9. Isothermal Studies

Adsorption isotherms were studied for different initial CV concentrations (10–100 ppm)
and room temperature, and adsorbent weight 0.025 g, which was added to 25 mL CV
solution at constant shaking (200 rpm), was used to study the Freundlich, Langmuir, and
Temkin isotherms. Three isotherm models, Langmuir Equation (5), Freundlich Equation (6),
and Temkin Equation (7), were studied to describe the influence of the interaction between
the CV and LCF to calculate the capacity of the LCF and detect whether the adsorption
would be monolayer or multilayer [13,19].

Ce

qe
=

1
qmKL

+
Ce

qm
(5)

ln qe = ln k f +
1
n

ln Ce (6)

q =
RT
b

ln kT +
RT
b

ln Ce (7)

where Ce is the equilibrium CV concentration in the solution (mg/L), qm is the maximum
adsorption capacity (mg/g), kL is the Langmuir constant that is related to the affinity of
binding sites and corresponds to the energy of sorption (L/mg), n and kf are the Freundlich
constants related to adsorption intensity and the adsorption capacity, R is the universal gas
constant (8.314 J mol–1 K–1), T is the absolute temperature (K), and KT is the equilibrium-
linked constant (mg–1).

2.10. Thermodynamics Studies

The thermodynamic behavior of the CV adsorption onto LCF was weighed by deter-
mining the change in Gibbs free energy (∆G◦), enthalpy (∆H◦), and entropy (∆S◦). These
aspects were studied using the following Equations (8) and (9) [19].

ln
qe

Ce
=

∆S
R
− ∆H

RT
(8)

∆G = ∆H − T∆S (9)

where ∆G◦, ∆H◦, and ∆S◦ are the deviations in free energy (KJ/mol), enthalpy (KJ/mol),
and entropy (KJ/K.mol), respectively. T is the temperature of the adsorption system (K).

3. Results and Discussion
3.1. Adsorbent Characterization

The FTIR spectroscopy was performed to detect the functional groups that are at-
tached to the LCF surface, as shown in Figure 1. There are three bands that emphasize
the presence of lignin in the sample. The first band is at 2321 cm–1, which is related to the
hydroxyl functional groups (–OH) in the stretching vibration mode [20,21]. The second
band is at 2047.28 cm–1, which corresponds to the symmetric and asymmetric (C-H) stretch-
ing vibrations of the (CH2) and/or (CH3) groups related to lignin. The third band is at
1637 cm–1, which indicates the presence of the C=O stretching and C=C aromatic skeletal
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stretching vibrations of lignin [6]. The band at 1540 cm–1 corresponds to the C=C stretching
of aromatic rings [22]. These bands are the main characteristics of lignin. The intensity
of these bands is relatively small, as the lignin was mixed in a small amount of 1% (w/v).
The band at 1080 cm−1 may be due to the presence of (Si-O-Si) [23]. The strong band at
528 cm−1 is related to the stretching vibration of the typical magnetic composite structure
(Cu+2-O–2) octahedral group [24]. The FTIR results emphasize the successful formation of
lignin copper ferrite. Moreover, the presence of hydroxyl groups on the LCF surface can
improve the adsorption process by interacting and attaching the CV cationic dye onto the
-OH groups on the LCF surface [21].
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Figure 1. Fourier-transform infrared (FTIR) spectra of LCF.

Raman spectra analysis was performed to provide further information for the syn-
thesized composite. As shown in Figure 2, the Raman spectra were recorded between
50 and 4500 cm−1 at room temperature. The strong peak at 1312 cm–1 and the peaks at
606, 405, and 353 cm–1 are the main characteristics of lignin, as the elevation at 1312 cm–1

contributes to the aliphatic (O-H) bending of lignin [25]. The peak at 655 cm–1 corresponds
to cubic-inverse cuprospinel A1g. The peaks at 576 and 493 cm–1 are assigned to cubic-
inverse copper ferrite F2g (1), F2g (2). The peak at 289 cm–1 corresponds to Eg and/or E1g

of the inverse copper ferrite. The height at 223 cm–1 is related to the inverse cuprospinel
F2g (3) [8,26]. The Raman results are compatible with the FTIR results and prove composite
components’ coalescence.
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The presented SEM images of LCF in Figure 3 show that the synthesized LCF has
a rough, irregular, and cracked surface, which may lead to a high contacting surface to
develop the CV adsorption process and expose higher functional (-OH) group sites to the
cationic dye.
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Figure 3. Image microscope photograph of LCF.

The LCF elemental composition and mapping were detected using EDX analysis
to verify the ratios between the three main components of the adsorbent. As shown in
Figure 4a, the results show that the carbon content is about 0.8, related to the stoichiometric
ratio to % lignin in adsorbent paste (1%). The mass percentage of iron is higher than
the mass percentage of copper added stoichiometrically. Moreover, the EDX elemental
mapping images of the LCF presented in Figure 4b–f represent the C, Fe, Si, Cu, and LCF
samples, respectively. The elemental mapping distributed in the as-prepared LCF confirms
the successful interaction of lignin in the synthesis of copper ferrite magnetic paste [24].
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of the LCF.
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The magnetic hysteresis (MH) loops shown in Figure 5a were achieved at room tem-
perature using the utilized field range ±20 kOe. The results demonstrated that the sample
has magnetic properties due to the regular shape with a value of moderate saturation
magnetization (Ms) = ±11.396 memu of the LCF. The packed surface morphology and
high-iron ions percentage contributed to the magnetic properties’ presence [17]. As shown
in Figure 5b,c, the adsorbent could be easily collected with the magnetic bar even if it was in
an aqueous medium. Accordingly, the LCF could be easily collected and removed from the
dye solutions after the adsorption process, showing easier operation due to the sensitive
magnetic response [27].
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(b) LCF powder loaded on magnetic bar, and (c) LCF powder in water collected with eternal
magnetic bar.

3.2. Effect of Experimental Conditions
3.2.1. Effect of Adsorption Contact Time and Kinetic Models

The effect of agitation time on both the % removal and amount of dye adsorbed was
studied at different times varied from 0 to 15 min, dye concentration 50 ppm, and amount
of adsorbent 0.05 g at room temperature with agitation rate 200 rpm. As shown in Figure 6,
the amount of CV adsorbed on LCF versus contact time is initially quite rapid. Then,
the adsorption efficiency starts to decrease. The highest adsorption efficiency reached
about 68% after 5 min, which could be considered the optimum contact time. This rapid
equilibrium points out the adsorption process pursues fast kinetics, where the CV expedi-
tiously occupies the offered adsorption active sites on the LCF until they are saturated. This
behavior may be attributed to unoccupied active sites at the adsorbent surface and the high
difference between the CV concentration in solution and adsorbent surface. After 5 min,
the free adsorption sites drop together with CV concentration. The gradual retardation of
adsorption could be because of monolayer formation on the adsorbent surface due to the
low availability of vacant sites after attaining equilibrium.
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The fits of the kinetic records to the adsorption data are explored with pseudo-first,
pseudo-second, intraparticle diffusion, and Elivoch models (Figure 7a–c). The kinetic
parameters were calculated from the linearized integral for the four models and are summa-
rized in Table 2. For CV, Lagergren’s model showcased considerable experimental values
from the theoretical ones; generally, this line did not permit through the origin, suggesting
that boundary-layer diffusion also exists. As listed in Table 1, the values determined using
the pseudo-first-order model are similar to practical values than those expending from the
other studied models. Its correlation coefficient (R2 = 0.9998) is closer to unity than the
others, indicating that CV adsorption on LCF was a pseudo-first-order process. Hence, this
process is supposed to be controlled by physical adsorption [9,28].
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Table 2. Model parameters for adsorption kinetic study of adsorption CV using LCF.

First-Order Second-Order Intraparticle Diffusion Elovich

qe (experimental)mg/g 34.129

qe(mg/g) 34.2 qe mg/g 14.727 C (mg/g) 6.997 β(mg/g) 21.505

K1(L/min) 0.0316 K2(g/mg·min) 0.2022 kdif(mg/min0.5·g) 17.272 α(g/g·min) 0.046

R2 0.9998 R2 0.9782 R2 0.954 R2 0.7874

3.2.2. Effect of Adsorbent Weight on CV Removal

The influence of adsorbent weight on CV removal was inspected by adding different
adsorbent masses (0.0125, 0.025, 0.05, 0.075,0.1, and 0.125 g) in 25 mL 10 ppm dye solution,
and contact time 5 min at room temperature with agitation rate 200 rpm was tested. As
shown in Figure 8, the % removal of CV showed a gradual escalation from 36 to 75% as
the adsorbent dosage was augmented from 0.0125 to 0.075 g. After that, an insignificant
increase in adsorbent effectiveness occurred up to (78.7%). The increase in dye removal
when the adsorbent weight was 0.075 g could be interpreted as increasing removal efficiency
in the first stage caused by the small adsorbent amount for the efficient spreading of the
nanoparticles in the dye solution; therefore, available extra surface area and more available
active sites after the almost constant percentage removal has occurred in the following
step may be due to the accumulation of the particle and blocking the active site, which
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obstructs the reached the CV and its contact to the active site. Therefore, the optimum
dosage is found to be 3 g/L [29]. Similar trends have also been proposed by Cheruiyot et al.
in their studies on the removal of crystal violet from aqueous solution using coffee husk as
an affordable adsorbent [30].
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3.2.3. Effect of Initial Dye Concentration and Isotherm Models

The effect of the initial CV synthesis concentration on the adsorption process efficiency
using the LCF played an important role in the adsorption process. As shown in Figure 9,
the equilibrium adsorption capacity gradually increases from 4 to 27 mg/g, then this
improvement almost linearly increases from 27 to 30 mg/g when the concentration of CV
solution increases from 50 to 100 ppm. This phenomenon can be clarified by the interaction
between CV ions and the adsorbent. Increasing the dye concentration will enhance the
dynamic force by reducing the mass transfer resistance. In addition, the density of CV in the
solution increases, and the ratio of CV ions to the accessible adsorption sites grows as well.
Therefore, more CV ions in the solution can be adsorbed on LCF, giving the equilibrium
adsorption capacity. Similar phenomena have been observed in the adsorption of crystal
violet dye using water hyacinth plant biosorbent [31].

On the other hand, the % removal showed a different trend when it was compared
with the adsorption capacity. The maximum % removal occurred with 5 ppm (80%), and
by increasing the concentration, the % removal came down to reach 30%. However, the
difference in trend between the qe and % removal can explain that the rising initial CV
concentration enhances mass transfer and the consequent absorption of the dye grains.
Nevertheless, this increase is not proportional to the amount of dye, leading to a lessening
in % removal.
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Figure 9. Effect of initial CV concentration on % removal and adsorption capacity using LCF.

Likewise, the analyzed experimental data of the studied three isotherm models exist
in Figure 10a,b. Three isotherm models were tested to show the transfer mechanism of
adsorbate species during the adsorption process between the liquid and solid phase in
the equilibrium. The isotherms parameters are listed in Table 3. The sorption isotherms
show the distribution of adsorbate molecules between the liquid and solid phase when the
sorption experiment reaches an equilibrium state and determine the adsorbent capacity.
Compared to Temkin, the R2 values of Langmuir and Freundlich were higher than (0.99).
This R2 value infers that the Langmuir and Freundlich isotherms are compatible for ex-
plaining the adsorption mechanism of CV by LCF adsorbent. This isotherm could describe
the adsorption process between the CV and LCF as multilayer adsorption with adsorption
energy between adsorbent and dye molecules on the heterogeneous surface. Applying the
Langmuir model, the monolayer maximum adsorption capacity for LCF was 32.25 mg/g
and described the affinity of the binding sites KL = 0.1411 L/mg.
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Figure 10. Isotherm plots for the adsorption of CV using LCF (C0 = 25, 50, 75, and 100 ppm;
m = 0.025 g; contact time = 5 min): (a) Langmuir and (b) Freundlich and Temkin isotherm models.
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Table 3. Model parameters for adsorption isotherm study of adsorption CV by LCF.

Langmuir Freundlich Temkin

qm(mg/g) 30.5 nf 2.516 b 457.48

KL(L/mg) 0.1411 Kf 6.01 Kt 2.95

R2 0.9904 R2 0.9925 R2 0.09684

RL 0.013

3.2.4. Effect of Temperature and Thermodynamics Outcome

The effect of temperature on the CV dye sorption on LCF was studied at various
temperatures: 25, 40, 50, 60, and 70 ◦C. As shown in Figure 11, the adsorption capacity of
CV decreases from 79 to 70% when the temperature increase from 25 to 70 ◦C, indicating an
exothermic adsorption process. This deficiency could be due to the cracking of some of the
formed bonds between adsorbent and adsorbate after raising the temperature. These results
specify that it is preferable to operate this adsorption process at room temperature, which is
economical and positively affects the adsorption process. This behavior is consistent with
another study investigated by Al-Shehri et al. [32].
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To evaluate the thermodynamic parameters, the ln (qe/Ce) was plotted against 1/T
(K–1) for adsorption at different temperatures that range from 25 to 70 ◦C. The initial CV
concentration (10 ppm) was constant with 0.025 g adsorbent, 5 min contact time, and pH 7.
The ∆H0 and ∆S0 were determined from the trend line slope and intercept (Figure 12).
Conversely, ∆G0 was calculated from the values of ∆H0 and ∆S0 using Equations (8) and (9).
The thermodynamic obtained parameters are listed in Table 4. It was found that ∆H0 was
–1.3 KJ/mol for CV adsorption by LCF with a negative value, which agrees well with the
outcome of Figure 11. Moreover, the ∆H equals –1.3 kJ/mol, smaller than 40 KJ/mol,
implying that CV was physically adsorbed on the adsorbent active sites [28]. As listed in
Table 4, the adsorption process is spontaneous at all studied temperatures, as the value of
∆G0 is negative. The positive sign of ∆S0 means that the system has a good affinity of CV
towards magnetic LCF adsorbent [33].
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Table 4. Model parameters for adsorption thermodynamic study of CV adsorption using LCF.

∆S0
(J/K.mol)

∆H0
(KJ/mol)

∆G0(Kj/mol)

25 ◦C 40 ◦C 50 ◦C 60 ◦C 70 ◦C

4.74 −1.3 −2.736 −2.7836 −2.831 −2.8784 −2.9258

3.2.5. Effect of Adsorption pH and Point of Zero Charge

The pH of the solution is the most vital factor that controls the CV adsorption onto
LCF particles. This importance is due to many reasons, e.g., the adsorption of H+, OH−,
and other ions can affect the adsorption media pH. Moreover, the solution pH directly
affects the CV degree of ionization, the dissociation degree of the functional groups on
the LCF active sites, and the LCF surface charge [3]. Batch adsorption experiments were
performed to investigate the influence of the solution pH on the CV adsorption onto the
LCF in the solution pH range from 2 to 12. As shown in Figure 13, at acidic media, the
solution pH leads to decreased CV removal as a result of the competition between the
generated H+ and the CV cations ions [18]. However, the maximum CV removal (97%)
occurs at solution pH 8. It is reported that the low pKa of the CV (0.8) and (5.3) leads to
complete and facile ionization of this dye at almost all pH values and is present in the
solution as cations [33,34]. Therefore, adjusting the pH solution to be higher than the pka
value is favorable in dye removal. Increasing the pH from 2 to 8 increases the electrostatic
interaction between the LCF negative charges and the CV dye ions [11]. Further, an increase
in the solution pH up to 12 leads to a decrease in the CV removal to 85%, which may be
owing to repulsion forces between OH- groups generated in the solution due to the high
solution pH and the anionic function groups on the LCF surface. Cheruiyot et al. achieved
optimum dye removal at pH = 8 with the same behavior of dye by using coffee husk [30].

As shown in Figure 14, the magnified LCF’s point of zero charges (pHzpc) was in the
neutral range (6.1). The pHpzc indicates integral neutralization; thus, at pH lower than 6.1,
the surface of the LCF adsorbent is positively charged, and at pH above 6.1, it is negatively
charged. Nair et al. informed a pHpzc for a lignin–chitosan blend in nearly nutrient media
(6.8) [22]. Since CV is cationic, adsorption experiments were preferable to perform at pH
higher than 6.1, which was provided in the pH effect study.
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3.2.6. Ionic Strength

The consequence of the ionic strength on the CV removal using LCF was studied after
dissolving four salts with the same negative radical (Cl–1) and different in the positive
radical (Na+1, Li+1, Zn+2, and Ca+2). These cationic ions can alter the surface property.
Moreover, the presence of ions competes with the hydrated ions and pollutants for the active
sites on the material particles, and this competitiveness negatively affects waste removal.

As shown in Figure 15, after adding monovalent salts, the adsorption efficiency
decreased from 97 to 71% and 82% due to adding 1 M (NaCl) and (LiCl), respectively.
The hydrated radius of Na+ = 2.76 Å, which is shorter than Li+ = 3.4 Å. This clarifies the
stronger competition between CV, cationic dye, and other positive radicals; as a result, the
more pronounced impact on CV adsorption with the Li+ compared with Na+. However,
the limited drop in the CV adsorption efficiency points out the selective adsorption of
LCF for CV. As reported, the ions having a small hydrated radius forms a threat to the
adsorption as the cation conquers more sites on the adsorbent [35]. A similar sequence has
been reported for methylene blue adsorption onto multiparous palygorskite activated by
ion beam bombardment [36]. In addition, comparing the adsorption capacity of 1 M salt
solution with other lower concentrations to the adsorption capacity, it is found that minor
results differences are yielded.

On the other hand, the divalent salts (ZnCl2 and CaCl2) with the hydrous radius of
Zn+2 = 4.26 Å and Ca+2 = 4.1 Å followed the same trend as monovalent salts, but with
fiercer competition. Figure 15 shows that the % removal decreased from 92 to 56.8 and 66%
by dissolving 1 M of Zn and Ca salts in the dye solutions, respectively. The adsorption
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capacity increases for calcium and zinc salts by decreasing the salt concentration in the dye
solution. Consequently, none of the previous salts achieved a higher removal percentage
than the zero molar or even close. This behavior is due to the increase in the positive ionic
charge, which accelerates the repulsion force with the cationic dye resulting in aggressive
competition to occupy the active sites.
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3.2.7. Reusability of LCF

One of the most important economic aspects that is desirable to designate a material is
the possibility of reusing it several times. Compared with several eluents, many studies
have found that reusing acids as desorbing agents for removing cationic dye is the most
effective. As shown in Figure 16, using HCl has a great positive effect on the resorption
process, as LCF is able to reuse the five cycles with removal efficiency 86%, and this reaches
60% after 10 cycles. This trend could be attributed to the fact that the process of reabsorption
takes place effectively where the hydrogen ions are contained, competing with the dye
molecules and extracting them from the adsorbent surface and replacing it, which leads to
the possibility of reusing the material many times. On the other hand, the use of slightly
heated water resulted in less effectiveness than that previously studied, but it is resendable
as well, as when the adsorption reached 80% after the 4th cycle, then this percentage
declined to 47% at the 10th cycle. Perhaps the efficiency of the reuse process is due to the
weak physical bond (van der Waals bond) formed between the adsorbent and adsorbate,
which is easy to break. From the above, the LCF can be considered an economically effective
magnetic adsorbent and can be applied to the industrial field, and it is recommended to
be used in continuous systems with residual time 5 min to maximize the utilization of its
properties. This indicates an important feature that allows it to be used in the industrial
field effectively.
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speed = 200 rpm, solution temperature = 25 ◦C, dye concentration = 10 ppm, adsorption time = 6 min
and desorption time = 30 min).

3.2.8. Comparative Study of CV Dye Uptake Capacity with Different Adsorbents

Recently, using affordable adsorbents in wastewater treatment has been broadly
investigated. The capacity of removal of CV and other dyes by LCF and other adsorbents is
listed in Table 5. It turned out that as a result of the presence of negative functional groups
in the LCF surface to remove CV, this adsorbent is superior to its peers in its ability to get
rid of a high proportion (97%) of the pollutants exposed to it and this is a very little time
that was not reached before, which endorses the novelty and importance of the prepared
adsorbent in the current study among the other listed adsorbents.

Table 5. Comparison between LCF capacity and other adsorbents used for CV removal.

Adsorbent Conditions Adsorbent Capacity Time References

Lignin copper ferrite
(LCF)

pH 7, 0.05 g adsorbent dose, 27 ◦C for
dye initial concentration of 50 mg/L 34.12 mg/g 5 min Present study

Natural Iraqi
porcelanite rock

powder

pH 8, 0.02 g adsorbent dose, 25 C for
dye initial concentration of 30 mg/L 31.38 mg/g 20 min [37]

Activated charcoal 200 ultrasonic intensity, 5 g
adsorbent dose 24 mg/g 90 min. [38]

Semiconductor
nanoparticles

1.5–3 g of
Nanocatalyst adsorbents in the

basic medium
12.66 mg/g 100–120 min [39]

P-type zeolite/carbon
composite

initial dye concentration 100 mg/L,
pH 2 11.2 mg/g 120 min [40]
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Table 5. Cont.

Adsorbent Conditions Adsorbent Capacity Time References

Semiconductor
nanoparticles TiO2

with natural adsorbents

Adsorbent wight 0.5–1.2 g
of nanocatalyst 9.875 mg/g 120 min [41]

Copolymer adsorbent pH 10, adsorbent weight 0.1 g, initial
concentration 10 ppm 9.8 mg/g 180 min. [42]

Polyacrylonitrile
based-beads

pH 7, Co = 10 mg/L, adsorbent
dose = 0.4 gm, 200 rpm,

T = 35 ◦C
5.46 mg/g 300 min [43]

Mesoporous ZnO @
silica fume-derived
SiO2 nanocomposite

10 ppm initial concentration, at pH 9 4.9 mg/g 60 min [44]

Date palm fiber Adsorbent dose = 0.25 g, pH 7 at
room temperature 0.66 × 10−6 mol g−1 150 min [45]

4. Conclusions

In this research, lignin copper ferrite, a novel adsorbent, was successfully synthe-
sized and characterized. It proved to be an efficient method to remove crystal violet dye
from its synthesis solution. The impact of contact time, weight of adsorbent, initial dye
concentration, temperature, and pH on this adsorption process efficiency was studied. It
was found that the best process % removal (97%) in equilibrium time was 5 min, LCF
amount 0.025 g, initial concentration 10 ppm, room temperature, and pH 8. Furthermore,
it was found that this adsorption was deleteriously affected by a pH decrease from 8 to 2.
Thermodynamic results showed the physical nature of CV by LCF adsorbent. In addition,
the isotherm study showed that CV adsorption followed the Langmuir and Freundlich
isotherm model. Furthermore, LCF could easily be regenerated and recycled, which makes
it applicable for continuous treatment processes. The high maximum adsorption capacity
of LCF (34.12 mg/g) will meet special interest in polluted water treatment, among other
low-cost adsorbents. Further studies about the optimization of continuous adsorption
conditions are running in our lab.
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