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Abstract: The synthesis of methanol from CO2 hydrogenation is an effective measure to deal with
global climate change and an important route for the chemical fixation of CO2. In this work, carbon-
confined MoSe2 (MoSe2@C) catalysts were prepared by in situ pyrolysis using glucose as a carbon
source. The physico-chemical properties and catalytic performance of CO2 hydrogenation to yield
methanol were compared with MoSe2 and MoSe2/C. The results of the structure characterization
showed MoSe2 displayed few layers and a small particle size. Owing to the synergistic effect of
the Mo2C-MoSe2 heterojunction and in situ carbon doping, MoSe2@C with a suitable C/Mo mole
ratio in the precursor showed excellent catalytic performance in the synthesis of methanol from
CO2 hydrogenation. Under the optimal catalyst MoSe2@C-55, the selectivity of methanol reached
93.7% at a 9.7% conversion of CO2 under optimized reaction conditions, and its catalytic performance
was maintained without deactivation during a continuous reaction of 100 h. In situ diffuse infrared
Fourier transform spectroscopy studies suggested that formate and CO were the key intermediates in
CO2 hydrogenation to methanol.

Keywords: MoSe2@C; CO2; methanol; hydrogenation

1. Introduction

A large amount of CO2 is emitted when extravagant fossil fuels (coal, oil and natural
gas) are consumed, which causes a series of climate problems [1,2]. In view of the current
situation, in order to reduce CO2 emissions, carbon capture and storage (CCS) and carbon
capture and utilization (CCU) are currently the most effective means [3]. However, the high
cost and energy consumption of desorption, compression and storage of captured CO2
greatly limit the large-scale application of CCS. CCU can achieve efficient CO2 recovery and
bring certain economic benefits, and it is considered a promising technology to reduce CO2
emissions. As a raw material, CO2 can be converted to fuel and value-added chemicals [4,5].
On the one hand, it can reduce the pressure of the fossil resource shortage; on the other
hand, it can bring huge economic benefits. Therefore, the chemical utilization of CO2
to produce value-added chemicals has become one of the hot topics for using a non-
toxic, inexpensive, abundant and renewable source of carbon [6–9]. Among the CO2
utilization routes, synthesizing methanol has received extensive attention [10,11]. Methanol
is water-soluble, non-toxic, harmless and easy to store and transport, and it is known as
the simplest ‘alcohol’, so it has become one of the most important platform compounds in
the chemical industry [12]. Methanol can be miscible with water and a variety of organic
matter, serving as an alternative clean fuel, liquid organic hydrogen carrier and common
organic solvent [12–14]. It can also be used to produce olefins, aromatic hydrocarbons,
alkanes and other bulk chemicals [15,16]. At present, the global production of methanol is
110 million metric tons [17].

For the hydrogenation of CO2 to methanol, the utilization of copper-based catalysts has
garnered significant interest. The main active substances of copper-based catalysts in over
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60% of related reports are Cu-ZnO composite materials [18]. However, two disadvantages
hinder the widespread use of copper-based catalysts. One is that the generation of water
in the reaction aggravates the sintering of the active phase, resulting in poor stability
of the catalyst, and the other is that the selectivity of methanol is limited due to the
reverse water gas reaction [19,20]. Compared with copper-based catalysts, noble metal-
based catalysts exhibit excellent stability, anti-sintering and anti-poisoning properties and
can be used as an effective alternative to copper-based catalysts. Although noble metal
catalysts show a high ability to activate hydrogen and promote hydrogenation, the low
selectivity of methanol is yielded due to its weak interaction with CO2 in the reaction
process. Meanwhile, its low abundance and high cost also limit its large-scale application in
CO2 hydrogenation to methanol. Recently, metal oxide catalysts such as In2O3 and Zn-Zr
solid solutions have attracted attention [21]. Due to the formation of oxygen vacancies
under reaction conditions of 330 ◦C and 5 MPa, In2O3 provided 100% methanol selectivity
in CO2 hydrogenation, but it could be reduced to In0 metal, which caused the deactivation
during the reaction [22]. Under industrial conditions, the ZnO-ZrO2 solid solution catalyst
demonstrated the capability to facilitate the hydrogenation of CO2 to methanol [23]. The
space–time yield of methanol was as high as 7.75 mol·kg−1·h−1 with an 87.0% selectivity
of methanol, and excellent stability was shown in the presence of SO2 and H2S. However,
shortcomings are shown in the harsh reaction conditions, poor activity and high energy
consumption. Therefore, it is still a challenge to develop highly effective non-precious
metal catalysts for CO2 hydrogenation to form methanol under relatively mild conditions.

Because of their large surface area and large amounts of coordination-unsaturated
surface atoms, two-dimensional layered Mo-based catalysts have attracted widespread
attention [24,25]. Due to its similar electronic structure to the noble metal Pt, molybdenum
carbide displays excellent catalytic performance for hydrogenation and has been applied
in hydrodeoxygenation [26,27] and hydrodenitrogenation [28]. In 1992, molybdenum
carbide was used as a catalyst for the hydrogenation of CO2, resulting in a methanol
selectivity of only 17%, with methane and CO being the predominant byproducts [29].
DFT results suggested that enhancing the adsorption of CO2 on the catalyst surface was
beneficial for inhibiting the complete decomposition of CO2, thus improving the selectivity
of methanol [30]. In our previous work, N,S-doped carbon-confined molybdenum carbide
catalysts were synthesized by in situ pyrolysis carbonization [31]. The basic sites generated
from N and S in the in situ pyrolysis carbonization increased the adsorption amount of CO2.
The selectivity of methanol yielded 90% with a CO2 conversion of 20%. In this catalyst,
nano-sized MoS2 was also generated in the pyrolysis process, which was a key factor in
its excellent catalytic performance. On the one hand, in the presence of MoS2, CO2 was
adsorbed and dissociated at sulfur vacancies; on the other hand, in-plane sulfur vacancies
could inhibit the deep hydrogenation of CO2 to methane and promote the formation of
methanol at low temperatures. More recently, Deng [32] et al. constructed a surface-rich
sulfur-vacancy MoS2 catalyst and applied it for the hydrogenation of CO2 to form methanol,
with the methanol selectivity reaching 94.3% with a CO2 conversion of 12.5% at 180 ◦C.
MoSe2, as a two-dimensional layered material, has stronger metallicity and lower Gibbs
free energy than molybdenum sulfide [33], which is more conducive to the adsorption and
activation of hydrogen molecules [34]. More importantly, the adsorption capacity of CO2 is
also better than that of MoS2 [35]. However, MoSe2 is mainly involved in photocatalysis and
electrocatalysis for the hydrogenation of CO2, and the main reduction products are methane,
carbon monoxide and so on [35]. Qu et al. incorporated K into MoSe2 and constructed a
K-Mo-Se active phase for catalytic syngas conversion to ethanol. By regulating the K/Mo
ratio, the proportion of ethanol in the total alcohol reached 58.7% under optimal reaction
conditions [36]. To our best knowledge, there is no report on the use of MoSe2 as a catalyst
in the thermocatalytic hydrogenation of CO2 to produce methanol [37,38]. Therefore, the
study of the catalytic behavior of MoSe2 is significant for the development of non-noble
metal catalysts for CO2 hydrogenation to methanol.



Molecules 2024, 29, 2186 3 of 16

It is well known that, as a typical two-dimensional material, the active sites of MoSe2
are also mainly located at its edges and defect sites. Therefore, reducing the layer num-
ber and particle size of MoSe2 is an effective route to enhance its catalytic performance.
Confined MoSe2 in carbon materials can effectively prevent the aggregation of MoSe2 and
improve its catalytic performance [39–41]. In this work, MoSe2 confined by in situ-formed
carbon material (MoSe2@C) was prepared by introducing glucose as a carbon source into
the precursors using the pyrolysis method and applied to CO2 hydrogenation to form
methanol in a fixed-bed reactor. The influences of the preparation conditions and the C/Mo
ratio in the precursors on the catalytic performance of MoSe2@C were investigated, and the
reaction conditions were optimized. Under optimal reaction conditions, a high methanol
selectivity of 93.7% was reached. MoSe2@C also showed excellent catalytic stability during
performance evaluation and could be used for at least 100 h without deactivation.

2. Results and Discussion
2.1. Catalyst Characterization
2.1.1. Structural Characterizations

Firstly, X-ray powder diffraction was employed to detect the crystal structure of the
prepared samples, and the results are shown in Figure 1. The characteristic diffraction
peaks of the three samples appeared at 2θ = 13.7◦, 31.4◦, 37.9◦, 47.5◦, 55.9◦, 66.5◦ and 69.5◦,
corresponding to the (002), (100), (103), (105), (110), (108) and (203) crystal planes of MoSe2
(PDF 29-0914) [42], and no other diffraction peaks were found. These results indicate
that the MoSe2 crystal phase was prepared. In addition, a slight shift of the (002) crystal
plane could be observed, which was attributed to thermal-induced phase segregation [43].
Compared with MoSe2, the intensity of the diffraction peaks was weakened, and the
half-peak width of the corresponding diffraction peaks increased in the XRD patterns of
the MoSe2/C sample, indicating that the introduction of a carbon carrier could improve
the dispersion of MoSe2 and inhibit the growth of MoSe2 particles. Additionally, the
characteristic diffraction peaks corresponding to the (002) crystal plane of graphite carbon
were also found at 2θ = 26◦. Compared with the XRD patterns of MoSe2 and MoSe2/C, the
diffraction peak intensity of MoSe2@C-55 was the weakest, the half-peak width was the
widest, and the characteristic diffraction peak (2θ = 13.7◦) corresponding to the (002) crystal
plane of MoSe2 almost disappeared. These results suggested that the grain size of MoSe2
was the smallest and the layer number of MoSe2 was the lowest in MoSe2@C-55 compared
with MoSe2 and MoSe2/C [44,45]. As a consequence, introducing glucose to the precursor
could suppress the growth of MoSe2 through the confinement of the in situ generation
of carbon material in the pyrolysis process. When the C/Mo ratio in the precursor was
raised from 15 to 75, MoSe2@C-15, MoSe2@C-35 and MoSe2@C-75 were prepared. Their
XRD patterns are shown in Figure S1. The intensity of the diffraction peak corresponding
to MoSe2 gradually declined with the enhancement of the carbon content in the precursor,
which means that the confinement of the in situ carbon material improved with the increase
in carbon content, and the growth of MoSe2 particles was repressed, which was beneficial
to the dispersion of MoSe2 in the carbon material.

In order to observe the microstructure and morphology, MoSe2/C and MoSe2@C-55
were characterized by TEM and HRTEM (Figure 2). The image in Figure 2a shows that
MoSe2 dispersed on the coconut shell carbon, which resulted in the low intensity of the
XRD diffraction peak. However, its distribution was not uniform, and agglomeration was
observed, which caused MoSe2 to show larger particles and more layers. In Figure 2b
(HRTEM), lattice fringes of 0.28 nm can be observed, which is consistent with the interplanar
spacing of the (100) of MoSe2 [46,47]. Observing the image of MoSe2@C-55, as shown in
Figure 2c, the agglomeration and accumulation of MoSe2 particles were effectively inhibited
when glucose was introduced to the precursor. This took place because the carbon materials
formed from the in situ pyrolysis of glucose showed an inhibitory effect on the growth
of MoSe2 particles, which ensured the high dispersion of MoSe2. As a result of it, more
active sites were exposed, and its catalytic performance improved. As can also be seen
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from the HRTEM image (Figure 2d), a lattice fringe spacing of 0.35 nm was also observed,
which belonged to the (004) of MoSe2. In addition, a lattice fringe with a spacing of 0.21 nm
was also observed (Figure 2d), which was attributed to the (112) of Mo2C [48], indicating
that Mo2C particles were generated during the preparation of MoSe2@C-55. Combined
with the fact that the corresponding diffraction peaks of Mo2C were not observed in the
XRD pattern, it can be inferred that the content of Mo2C was low and highly dispersed. In
addition, the HRTEM images in Figure 2d show that the presence of Mo2C interrupted the
continuity of MoSe2, causing more edge sites of MoSe2 to expose more active sites [49]. This
phenomenon indicated that a MoSe2-Mo2C heterojunction was generated, which would
benefit the synergistic effect of MoSe2 and Mo2C in the catalytic process and improve its
catalytic performance [50]. The results in Figure S2a–d show that increasing the content of
glucose in the precursor was favorable to improving the dispersion of MoSe2, resulting in
a gradual decrease in the particle size and layer number of MoSe2, which coincided with
the characterization results of XRD. The content of glucose in the precursor also affected
the exposed crystal planes of MoSe2 and Mo2C. Setting the C/Mo ratio in the precursor at
15 and 35, lattice fringes of 0.28 nm and 0.23 nm (Figure S2e,f) could be observed in the
HRTEM images, which were attributed to the (100) of MoSe2 and the (121) of Mo2C [46,47].
However, lattice fringes of 0.26 nm and 0.21 nm assigned to the (102) of MoSe2 and the (112)
of Mo2C were observed (Figure S2h) when the C/Mo ratio in the precursor rose to 75 [48].
Owing to the different crystal faces that would display different catalytic performance [49],
it can be inferred that there will be a large difference in the catalytic performance of CO2
hydrogenation to form methanol.
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2.1.2. XPS Analysis of Catalysts

The surface chemical state of the catalyst was further analyzed by XPS. The XPS survey
spectra shown in Figure S3 suggest that the surface elements of the samples were Mo, Se, C
and O.

The XPS spectra of the Mo 3d of the three samples (Figure 3a and Table S1) showed
that characteristic peaks were observed at 229.1–229.3 eV and 232.1–232.3 eV, which were
attributed to Mo4+ 3d5/2 and 3d3/2 in MoSe2 [48,50]. In addition, fitting peaks at 228.6 eV
and 231.6 eV were also found in the Mo 3d of MoSe2@C-55, which corresponded to Mo2+

3d5/2 and 3d3/2, indicating that Mo2C was generated during the preparation of MoSe2@C-
55 [51,52], suggesting that a strong interaction between the carbon formed by the in situ
carbonization of glucose and the Mo atoms was formed. The specific binding energy data
in Table S1 show that the binding energy of Mo4+ 3d5/2 and 3d3/2 in MoSe2@C-55 was
0.2 eV lower than that of MoSe2 and MoSe2/C, which was caused by the electron transfer
between MoSe2 and Mo2C [53], and a strong interaction was formed. In addition, peaks
at binding energies of 232.5–232.7 eV and 235.4–235.7 eV, corresponding to Mo-O, were
observed due to the surface oxidation that took place when MoSe2@C-55 and MoSe2/C
were exposed to air [47–52], but the binding energy of MoSe2@C-55 was lower than that of
MoSe2/C, which may be due to the protective effect of in situ-formed carbon on the surface
of MoSe2@C-55, resulting in a reduction in the oxidation degree. This result demonstrates
once again the robust interaction between carbon and Mo in MoSe2@C-55.

The Se 3d XPS spectra are displayed in Figure 3b, and two peaks at 54.7–54.8 eV
and 55.7–55.8 eV (Table S2) were assigned to the Se2- 3d5/2 and 3d3/2 of MoSe2 [42,46].
Moreover, MoSe2/C also showed a characteristic peak at about 59.1 eV, assigned to Se oxide
(SeOx) [54]. In addition, as shown in Figure 3c and Table S3, the peaks at 284.8 eV and about
286.1 eV in the C 1s spectrum of all samples indicate the formation of a C-C bond and a C-O
bond, respectively [55]. The high-resolution XPS spectra of O 1s are shown in Figure 3d
and Table S4. The peaks at 530.4 eV, 531.8 eV and 532.8 eV indicate the formation of lattice



Molecules 2024, 29, 2186 6 of 16

oxygen (Olat), deficient oxygen (Odef) and adsorbed oxygen (Oads), respectively [56,57].
The proportion of each oxygen species in all oxygen species is shown in Table S4. The
proportion of Odef is the highest in the MoSe2@C-55 catalyst. The oxygen vacancies on the
surface improved the dissociation of CO2 and tended to produce the desired methanol [57].
Moreover, only the MoSe2@C-55 sample showed a peak at 282.6 eV, which corresponded
to a C-Mo bond [53,54]. The data listed in Figure S5 also show that the binding energy of
Mo 3d showed a negative shift with the increase in the C/Mo ratio in the precursor, and
the Mo2+/Mo4+ ratio on the surface of the catalyst displayed a positive correlation with the
carbon content in the precursor (Table S5), suggesting that a higher carbon content in the
precursor was beneficial to generating Mo2C.
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2.1.3. Characterization of CO2 Adsorption Capacity

The adsorptive capacity of a catalyst for CO2 is an important factor in its catalytic per-
formance in CO2 hydrogenation. Therefore, CO2-TPD was carried out, and the desorption
curves are displayed in Figure 4. According to the characterization results, all the CO2
desorption peaks of the prepared MoSe2, MoSe2/C and MoSe2@C-55 catalysts appeared at
low temperatures, which corresponded to the presence of weak basic sites on the catalyst
surface [58,59]. Compared with MoSe2 and MoSe2/C, MoSe2@C-55 showed the highest
desorption temperature of CO2, which means that the activation degree of CO2 on the
surface of MoSe2@C-55 was the highest, which would be beneficial to the hydrogenation
of CO2. Because the magnitude of the peak area corresponds to the quantity of activated
CO2 present on the catalyst surface, the relative desorbed amount of CO2 was calculated
by calculating the area of these peaks, and the results are also inset in Figure 4. Based
on the desorption amounts of CO2 from MoSe2@C-55 (the relative value is 100%), the
desorption amounts of CO2 from the surface of MoSe2 and MoSe2/C were 45% and 54%
(by calculating the area of the CO2 desorption peak). These results suggest that the order
of CO2 adsorption amounts on the catalyst surface and the ability to activate CO2 were
MoSe2@C-55>MoSe2/C>MoSe2.
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2.2. Catalytic Performance in CO2 Hydrogenation to Yield Methanol

In a fixed-bed reactor at 180 ◦C, 3MPa and a Gas Hourly Space Velocity (GHSV) of
3000 mL·gcat

−1·h−1, the catalytic performance of MoSe2, MoSe2/C and MoSe2@C-55 was
evaluated for CO2 hydrogenation to yield methanol (Table 1). In the presence of the MoSe2
catalyst, the conversion of CO2 was as low as 2.4%, and only a moderate selectivity (52.5%)
of methanol was observed in the hydrogenation process, while CO was yielded with a
selectivity of 33.1%. In this process, CO was generated from the reverse water gas shift
(RWGS) reaction of CO2 on the surface of MoSe2, which was an important intermediate
for synthesizing methanol. However, the insufficient active sites were exposed and could
not achieve further efficient CO conversion, resulting in high CO selectivity [60]. At the
same time, the CH3O* intermediate generated by CO hydrogenation was more likely to
undergo C-O cleavage to generate CH3

* and OH* at the active sites, resulting in a high CH4
selectivity (10.2%) [32]. In addition, a small amount of dimethyl ether was generated by
further dehydration of methanol, which was due to the weak acidity generated from the
oxidation of the surface of MoSe2 [61]. The selectivity of methanol increased to 89.9% at a
CO2 conversion of 4.3% over the MoSe2/C catalyst, prepared by using coconut shell carbon
as support. This was attributed to an increase in the dispersion of MoSe2 on the support,
which was beneficial for exposing more edge sites and surface defects due to the reduction
in the particle size and layer number of MoSe2 [32]. The conversion of CO2 increased
to 9.7% by employing MoSe2@C-55 as a catalyst prepared by using glucose as a carbon
source with a C/Mo ratio of 55, while the selectivity of methanol further increased to 93.7%
and the selectivity of CH4 decreased to 6.3%, which can be explained by the following
reasons: On the one hand, the in situ-formed carbon gave a strong confinement to MoSe2,
resulting in a decreasing layer number, which could expose more surface defects conducive
to methanol generation. Moreover, the highest amount of deficient oxygen was detected
by XPS, and the oxygen vacancies on the surface improved the dissociation of CO2 and
tended to produce the desired methanol [57]. On the other hand, in situ-generated Mo2C
interrupted the continuity of MoSe2, and the MoSe2-Mo2C heterojunction was formed,
which was beneficial for exposing more active sites and activating H2 (Figure S5). The
above factors all led to improved CO2 conversion and selectivity of methanol in CO2
hydrogenation. Moreover, the high desorption capacity and the high CO2 activation ability
of MoSe2@C-55 were also important factors for increasing CO2 conversion. Based on the
above research results, the catalytic performances of a series of MoSe2@C-x (x = 15, 35 and
75) catalysts with different C/Mo ratios in the precursors were also evaluated (Table 1). It
can be seen that the selectivity of methanol gradually increased with the increase in C/Mo
ratios. When MoSe2@C-75 was used as the catalyst, the selectivity of methanol reached
a maximum of 94.3%. This was due to the fact that the number of layers of MoSe2 was
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reduced as the carbon content in the precursors increased, which was favorable for the
exposure of surface defects and conducive to the formation of methanol. The conversion of
CO2 reached its maximum when MoSe2@C-55 was used as the catalyst. This took place
because MoSe2@C-55 had a stronger ability to adsorb and activate CO2 (Figure S6), causing
an acceleration of CO2 conversion.

Table 1. Results of CO2 hydrogenation to methanol over different catalysts a.

Catalyst Conversion (%)
Selectivity (%)

CH3OH CH4 CO CH3OCH3

MoSe2 2.4 52.5 10.2 33.1 4.2
MoSe2/C 4.3 89.9 10.1 - -

MoSe2@C-55 9.7 93.7 6.3 - -
MoSe2@C-15 2.8 72.3 27.7 - -
MoSe2@C-35 3.3 89.5 10.5 - -
MoSe2@C-75 4.4 94.3 5.7 - -

a Reaction conditions: 180 ◦C, 3 MPa, GHSV 3000 mL·gcat
−1·h−1, H2:CO2 = 3.

Compared with the Cu/In2O3-, CuZnAl- and MoS2-based catalysts in the literature,
MoSe2@C-55 showed better selectivity for methanol under low reaction temperatures, as
shown in Table S7.

In CO2 hydrogenation, CO2 conversion and methanol selectivity were sensitive to the
reaction temperature. Using MoSe2@C-55 as a catalyst, the effect of the reaction temperature
was investigated under conditions of 3 MPa and a GHSV of 3000 mL·gcat

−1·h−1 (Figure 5a).
The results in Figure 5a show that the conversion of CO2 increased from 7.1% to 13.5% as
the reaction temperature rose from 160 ◦C to 240 ◦C, suggesting that high temperatures
are beneficial for CO2 to overcome the limitation of its thermodynamic stability, which
accelerated the conversion rate of CO2 [62,63]. Setting the reaction temperature at 180 ◦C,
the selectivity of methanol reached a maximum of 93.7% and gradually decreased as the
reaction temperature increased. This took place because the reaction of CO2 hydrogenation
to methanol was an exothermic reaction, and a higher temperature was not conducive to the
formation of methanol. Since the reverse water gas reaction is an endothermic reaction [60],
high temperatures are beneficial to its occurrence. Therefore, CO was not detected as a
byproduct when the reaction temperature was not higher than 220 ◦C. But 1.5% of CO and
33.6% of CH4 were generated by raising the reaction temperature to 240 ◦C. As shown
in Figure 5b, the influence of reaction pressure on the hydrogenation of CO2 was also
investigated. The conversion of CO2 and the selectivity of methanol were all preferential
to enhancing reaction pressure. When the reaction pressure was 2 MPa, CO2 conversion
and methanol selectivity were both at a low level (5.6% and 90.6%, respectively). Moreover,
the selectivity of methanol improved from 90.6 to 93.7% by changing the reaction pressure
from 2 MPa to 3 MPa. When the reaction pressure was further increased, the selectivity
of methanol did not change significantly. Finally, the effects of the space–time rate were
also investigated (Figure 5c). With the increase in the space–time rate, the residence time
of the feed gas on the surface of MoSe2@C-55 was shortened, resulting in a reduction
in the conversion of CO2. When the space velocity was 3000 mL·gcat

−1·h−1, the highest
methanol selectivity at a moderate CO2 conversion was obtained. Under optimized reaction
conditions, the test of the catalytic stability of the MoSe2@C-55 catalyst was performed,
and the results are shown in Figure 5d. It indicated that the MoSe2@C-55 catalyst could
be used continuously for at least 100 h without reducing catalytic activity and showing
excellent catalytic stability. The selectivity of methanol was maintained at about 93.7% at a
CO2 conversion of approximately 9.7%.
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2.3. Reaction Mechanism

In order to explore the reaction mechanism of the hydrogenation of CO2 to gener-
ate methanol over the MoSe2@C-55 catalyst, the possible intermediates on the surface of
MoSe2@C-55 were detected by in situ diffuse reflectance infrared Fourier transform spec-
troscopy (DRIFTS). Firstly, the catalyst was activated at 400 ◦C for 1 h in a pure H2 atmosphere
and then refrigerated to 180 ◦C. Figure 6 shows the experimental results of the CO2 hydro-
genation reaction stage at atmospheric pressure and a reaction temperature of 180 ◦C.
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From the in situ DRIFTS, two peaks were observed at 1458 and 1522 cm−1, correspond-
ing to carbonate species (CO3

2−) [64,65]. In addition, two peaks at 1498 and 1508 cm−1

were also observed, corresponding to monodentate and bidentate carbonate species [66],
and their intensity gradually increased with the prolongation of the reaction time. As a
result of these, CO2 first adsorbed on the surface of MoSe2@C-55 and then converted into a
carbonate (CO3

2−) species. The C-H bond vibration of the formate species at 1490 cm−1 [67]
and spectral bands at 1560, 1542, 1474 and 2894 cm−1 could be observed, corresponding
to the symmetric OCO stretching vibration and the stretching vibration of the formate
species [68–71]. In addition, the characteristic absorption peak at 2918 cm−1 was attributed
to the vibration of the C-H bond of the CH3O* species [72]. The above results indicated that
there may be a reaction path in the reaction process from CO2 hydrogenation to HCOO*
species and finally to CH3OH. Specifically, the adsorbed CO2 was converted to carbonate,
then HCOO* species were generated from the reaction between carbonate and hydrogen,
and CH3O* was formed from the hydrogenation of the HCOO∗ species. Subsequently,
CH3O* → CH3OH* → CH3OH (g) were performed. At the same time, a characteristic
peak was observed at 2078 cm−1, attributed to CO* [69], which provided evidence for the
dissociation of CO2 when it was adsorbed on the catalyst surface. However, CO was not
detected in the reaction products when the reaction was carried out at 180 ◦C, suggesting
that the hydrogenation of CO occurred. Therefore, there is another reaction path in CO2
hydrogenation over the MoSe2@C-55 catalyst, where the adsorbed CO2 is dissociated to
CO, which is then directly hydrogenated to CH3O* and finally to CH3OH. The detailed
reaction pathway is shown in Scheme 1.
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3. Experiment
3.1. Materials

Ammonium molybdate ((NH4)6Mo7O24·4H2O, AMT) and glucose were obtained
from Tianjin Kemiou Chemical Reagents Co., Ltd. (Tianjin, China). Selenium powder was
purchased from MackLin Chemical Reagents Co., Ltd. (Shanghai, China), and sodium
borohydride was obtained from Tianjin Kemiou Chemical Reagents Co., Ltd. (Tianjin,
China). H2 (99.99%), N2 (99.99%), CO2 (99.99%) and 5% Ar/95% H2 (99.99%) were bought
from Qinghua Gas Co., Ltd. (Harbin, China). Without further purification, all reagents
were used directly.

3.2. Preparation of Catalysts
3.2.1. Preparing the MoSe2@C-55 Catalyst

Ammonium molybdate (0.4022 g) and glucose (4.1381 g) (n(C)/n(Mo) = 55) were
dissolved in deionized water. After removal of the water, the prepared product was dried
at 110 ◦C for 12 h. Subsequently, it was mixed with selenium powder (0.3598 g) and placed
in a tubular furnace. In a N2 atmosphere, the temperature was increased to 700 ◦C at a
rate of 5 ◦C/min for 4 h, and MoSe2 confined in carbon material catalyst (MoSe2@C-55,
where 55 is the carbon–molybdenum ratio (C/Mo) in the precursor) was obtained. When
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the C/Mo ratio in the precursors changed to 15, 35 and 75, they were named MoSe2@-15,
MoSe2@-35 and MoSe2@-75, respectively.

3.2.2. Preparing the MoSe2/C Catalyst

A total of 0.4022 g ammonium molybdate was impregnated into 1.5036 g coconut
shell carbon by the impregnation method and dried at 110 ◦C overnight. After mixing the
dried solid and 0.3598 g selenium powder, the resulting products were roasted in a tube
furnace. In a H2/N2 atmosphere containing 30% H2, the temperature was raised to 700 ◦C
at 5 ◦C/min for 4 h. The MoSe2/C sample was obtained.

3.2.3. Preparing the MoSe2 Catalyst

An aqueous solution containing sodium borohydride (0.3972 g) was added drop by
drop to 0.5527 g selenium powder, and the mixture was stirred to form a reddish-brown
solution at 70 ◦C. Then, the reddish-brown mixture was added to an aqueous solution
containing ammonium molybdate (0.6180 g). After stirring at ambient temperature for
30 min, the mixture was put into a 50 mL stainless steel autoclave lined with PTFE and
crystallized at 220 ◦C for 24 h, then cooled to ambient temperature. Subsequently, it
was centrifuged, washed, dried and put into a tubular furnace. In a N2 atmosphere, the
temperature of the tubular furnace rose to 550 ◦C at a rate of 5 ◦C/min, and it was held for
2 h. Then, it was refrigerated to ambient temperature, and the MoSe2 sample was obtained.

3.3. Characterization

X-ray powder diffraction (XRD, Bruker D8, Advance, Salbrücken, Germany) of Cu-Kα

radiation diffraction (019B = 1.5406A) was used to characterize the crystal structure of the
samples, and transmission electron microscopy (TEM, JEM-2100, Tokyo, Japan) and high-
resolution transmission electron microscopy (HRTEM, JEM-2100, Tokyo, Japan) were used
to observe their morphology and size. An X-ray photoelectron spectrometer (ESCALAB
250-11 OOV, Thermo Fisher, Waltham, MA, USA) was employed to determine the types
and valence of the elements on their surface. CO2 temperature-programmed desorption
(TPD) was carried out on a chemisorption instrument equipped with a thermal conductivity
detector (TCD). The process was as follows: After pretreatment at 500 ◦C for 60 min in
Ar (40 mL/min), the sample (0.2 g) was exposed to CO2 (40 mL/min) for 60 min while
it was cooled to 50 ◦C. Subsequently, the physically adsorbed CO2 was eliminated in a
pure Ar (40 mL/min) atmosphere for 60 min. Then, the desorption of CO2 was measured
from 50 ◦C to 500 ◦C at a rate of 10 ◦C/min in an Ar (40 mL/min) atmosphere. On a
Perkin Elmer frontier spectrometer (Waltham, MA, USA), in situ diffuse infrared Fourier
transform spectroscopy (DRIFTS) measurements were carried out. Firstly, the sample was
pretreated at 400 ◦C for 60 min with a H2 flow of 30 mL/min and then chilled to 180 ◦C.
Subsequently, gas feed (H2 30 mL/min and CO2 10 mL/min) was introduced after scanning
the background spectrum in the range of 400–4000 cm−1, and the samples were scanned
four times in the first 10 min and twice in 30 min.

3.4. Catalytic Performance Evaluation

The hydrogenation of CO2 to yield methanol was performed in a fixed-bed reactor
(inner diameter of 6 mm). The schematic diagram of the reaction device is shown in Figure 7.
After the catalyst (0.5 g) was pretreated in pure H2 at 400 ◦C for 3 h and chilled to 180 ◦C,
the feed gas (H2/CO2 ratio of 3/1) was introduced into the reactor under 3.0 MPa. The
reaction tail gas was quantitatively analyzed using a gas chromatograph equipped with a
hydrogen flame detector (GC-7900, Tianmei, Shanghai, China) and a thermal conductivity
detector (GC-7890II, Tianmei, Shanghai, China).
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