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Abstract: Facile and sensitive methods for detecting neonicotinoids (NEOs) in aquatic environments
are crucial because they are found in extremely low concentrations in complex matrices. Herein,
nitrogen-based magnetic conjugated microporous polymers (Fe3O4@N-CMP) with quaternary ammo-
nium groups were synthesized for efficient magnetic solid-phase extraction (MSPE) of NEOs from tap
water, rainwater, and lake water. Fe3O4@N-CMP possessed a suitable specific surface area, extended
π-conjugated system, and numerous cationic groups. These properties endow Fe3O4@N-CMP with
superior extraction efficiency toward NEOs. The excellent adsorption capacity of Fe3O4@N-CMP
toward NEOs was attributed to its π–π stacking, Lewis acid–base, and electrostatic interactions.
The proposed MSPE-HPLC-DAD approach based on Fe3O4@N-CMP exhibited a wide linear range
(0.1–200 µg/L), low detection limits (0.3–0.5 µg/L), satisfactory precision, and acceptable repro-
ducibility under optimal conditions. In addition, the established method was effectively utilized for
the analysis of NEOs in tap water, rainwater, and lake water. Excellent recoveries of NEOs at three
spiked levels were in the range of 70.4 to 122.7%, with RSDs less than 10%. This study provides a
reliable pretreatment method for monitoring NEOs in environmental water samples.

Keywords: conjugated microporous polymers; magnetic solid-phase extraction; neonicotinoids;
water sample

1. Introduction

Neonicotinoids (NEOs) are a class of synthetic insecticides that have been extensively
utilized for pest control [1,2]. Their high efficiency at low doses, broad insecticidal spectrum,
and low cost have made them ideal candidates to replace traditional organophosphate and
pyrethroid insecticides [3,4]. However, their excessive use has led to their release into the
environment [5,6]. NEOs are highly water-soluble, and thus they spread rapidly in natural
surface waters. As such, they are inevitably detected in natural waters [7,8]. In addition,
NEO residues have been found in food samples [9]. Therefore, NEOs may pose health risks
to humans because they bioaccumulate and end up in drinking water and food [10,11].
Many countries and organizations have imposed strict regulations on the amount of NEO
residues in food. For example, the Chinese National Standard (GB 2763-2021) [12] specifies
the maximum residue limit of seven NEOs in food (cereals, fruits, vegetables, and vegetable
oils). However, restrictions on the amount of NEOs in drinking water are rarely listed in
Chinese national standards (GB 5749-2022) [13]. Thus, it is necessary to establish an efficient
and reliable analytical method to determine the quantity of NEOs in water samples.

Combined with various detection methods, such as ultraviolet (UV) light, diode array
detectors (DADs), and mass spectrometry (MS), high-performance liquid chromatography
(HPLC) is still used for the quantitative analysis of NEOs [14–16]. The direct determination
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of NEOs is extremely difficult because of their low concentration in complex matrices.
Appropriate sample pretreatment methods such as solid-phase extraction (SPE) [14], solid-
phase microextraction (SPME) [17], dispersed solid-phase extraction (DSPE) [4,18,19], and
magnetic solid-phase extraction (MSPE) [20] are necessary prior to chromatographic analy-
sis. Among those methods, MSPE has generated widespread attention in the sample pre-
treatment field owing to its inherent advantages, including efficient extraction phenomenon,
rapid separation, low consumption of organic solvents, and appropriate recycling of sor-
bents [21,22]. In recent years, the number of porous materials has increased significantly,
and several of them have been coupled with magnetic cores. These materials have been
employed as adsorbents for MSPE to facilitate adsorption capacity towards diverse analytes.
Magnetic porous materials have also been successfully applied in the extraction of NEOs.
These include magnetic graphene oxide (GO) [23], magnetic nanocellulose (MNC) [24],
magnetic metal-organic frameworks (MOFs) [18,25], magnetic porphyrin organic poly-
mer [26,27], magnetic hyper-crosslinked polymer (MHCPs) [28], and magnetic covalent
organic frameworks [29,30]. However, magnetic graphene oxide, magnetic nanocellulose,
and magnetic hyper-crosslinked polymer exhibited a poorly selective extraction capacity
towards NEOs, and magnetic MOFs displayed weak stability under acidic and alkaline
conditions. A small variety of functional groups was embedded in magnetic porphyrin
organic polymers and magnetic covalent organic frameworks. Thus, the development of
magnetic porous materials with abundant functional groups and remarkable stability for
highly efficient and selective extraction of NEOs is highly desirable.

Conjugated microporous polymers (CMPs), a class of amorphous microporous organic
polymers, have low density, extended π-conjugation, large specific surface area, rigid micro-
porous networks, outstanding stability, diverse structural designs, and abundant functional
groups [31,32]. These features make CMPs promising candidates as photocatalysts [33],
luminescent materials [34], supercapacitors [35], metal ion rechargeable batteries [36], CO2
capture and conversion materials [37,38], energy storage [39], fuel cells [40], and flame-
retardant materials [41], among others. CMPs exhibit exceptional adsorption performance
toward diverse contaminants [42,43]. Because of the introduction of functional groups into
the skeleton of CMPs, their adsorption selectivity towards contaminants was remarkably
enhanced, which is beneficial in sample pretreatment [44,45]. Ionic CMPs, containing
ionic sites in their frameworks, provide efficient and selective adsorption capacity for ionic
targets with opposite charges. Considering the polar nature of NEOs, we speculated that
introducing quaternary ammonium groups as cationic sites into CMPs could be considered
as a prospective platform for the extraction of NEOs, owing to the electrostatic interactions
between quaternary ammonium groups and the negative electrostatic potential regions of
NEOs. Moreover, the integration of magnetic nanoparticles within CMPs for the fabrication
of magnetic CMP as MSPE sorbents has attracted considerable attention [46,47]. However,
pretreatment approaches based on magnetic CMPs with quaternary ammonium groups for
the detection of NEOs have rarely been reported.

Herein, we report the synthesis of a novel nitrogen-based magnetic CMP (Fe3O4@N-
CMP) with quaternary ammonium groups for the efficient MSPE of NEOs in water samples
prior to chromatographic analysis (Scheme 1). Fe3O4@N-CMP was assembled via the
Sonogashira—Hagihara coupling method using Fe3O4 as the magnetic particle and 1,3,5-
triethynylbenzene and 1,4-dibromo-2,5-bis(bromomethyl)benzene as the building units.
In the synthesis of Fe3O4@N-CMP, quaternary ammonium groups were embedded in the
CMP skeleton through quaternization between triethylamine and benzyl bromide. This
reaction rendered the Fe3O4@N-CMP positively charged [48]. The infinite π-skeleton, large
specific surface area, good chemical stability, and numerous ionic groups endow Fe3O4@N-
CMP an exceptional adsorption capacity toward NEOs. The factors influencing the MSPE
performance of Fe3O4@N-CMP toward the adsorption of NEOs were investigated. A
possible adsorption mechanism was discussed. Finally, the developed MSPE approach was
combined with HPLC-DAD to measure NEOs in environmental water samples.
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Scheme 1. Illustration of the synthesis of Fe3O4@N-CMP and its MSPE procedure.

2. Results and Discussion
2.1. Characterization of Fe3O4@N-CMP

The morphologies of the bare Fe3O4 nanoparticles and Fe3O4@N-CMP were analyzed
by SEM and TEM. As shown in Figure 1A,C, bare Fe3O4 appeared nearly spherical with
a diameter of approximately 200 nm. The Fe3O4 nanoparticles tended to aggregate. The
SEM image (Figure 1B) shows that the surface of Fe3O4@N-CMP was rough, confirming
the formation of a CMP layer. Compared with the TEM image of bare Fe3O4 (Figure 1C),
the TEM image of Fe3O4@N-CMP (Figure 1D) confirmed that Fe3O4@N-CMP comprised
Fe3O4 nanoparticles and a CMP layer. Fe3O4@N-CMP had an irregular lumpy shape, and
multiple Fe3O4 nanoparticles were wrapped in a block of Fe3O4@N-CMP nanocomposite.
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Figure 1. SEM images of Fe3O4 (A), Fe3O4@N-CMP (B); TEM images of Fe3O4 (C), and Fe3O4@N-
CMP (D).

FT-IR spectroscopy was used to identify the functional groups of Fe3O4@N-CMP.
As indicated in Figure 2A, the characteristic peak at 578 cm−1 belonged to the Fe-O-Fe
stretching vibration of Fe3O4, which was present as bare Fe3O4 and Fe3O4@N-CMP. The
peaks at 1580 and 1440 cm−1 were assigned to aromatic C=C stretching vibrations, and
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that at 2209 cm−1 to C≡C stretching vibrations. C–N stretching vibration at 1057 cm−1 and
aliphatic C-H stretching vibration at 2935–2960 cm−1 were observed. This confirmed that
the quaternary ammonium salt was successfully loaded on Fe3O4@N-CMP. XPS analysis
was employed to evaluate the elemental compositions of Fe3O4 and Fe3O4@N-CMP. As
shown in Figure 2B, the spectrum of bare Fe3O4 hardly shows characteristic N1s peaks.
In contrast, the spectrum of the Fe3O4@N-CMP showed a new N1s peak at 401.2 eV,
ascribed to the quaternary ammonium salt [49], demonstrating the existence of a quaternary
ammonium group in the Fe3O4@N-CMP. The content of carbon, hydrogen, and nitrogen
in Fe3O4@N-CMP from element analysis was 20.38%, 1.83%, and 0.89%, respectively.
The 50% quaternization percentage of Ph-CH2Br groups with Et3N was calculated based
on the above elemental analysis data of Fe3O4@N-CMP. The magnetic hysteresis curves
in Figure 2C suggest that Fe3O4@N-CMP possessed superparamagnetic characteristic
with the saturated magnetization value of 51.5 emu/g, just a little less than the bare
Fe3O4 (86.3 emu/g). Nevertheless, the separation and recovery of Fe3O4@N-CMP were
easily completed within 10 s using an external magnet. This revealed that Fe3O4@N-CMP
is an appropriate MSPE adsorbent, owing to its satisfactory magnetic separation. The
specific surface area and pore size distribution of Fe3O4@N-CMP were obtained using
N2 adsorption–desorption isotherms. As shown in Figure 2D, the Brunauer–Emmett–
Teller (BET) surface and pore diameter of Fe3O4@N-CMP are 90.5 m2/g and 1.2 nm,
respectively, which is in agreement with the microporous features of the bulk CMPs
prepared using 1,3,5-triethynylbenzene and 1,4-dibromo-2,5-bis(bromomethyl)benzene.
The large external surface area and microporous structure facilitated the adsorption of
Fe3O4@CMP toward contaminants.
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2.2. Optimization of MSPE Conditions

The parameters that influenced the MSPE performance included the adsorbent amount,
extraction time, NaCl concentration, pH, type of elution solvent, and elution time. These
parameters were systematically optimized using 30 mL of a NEO-spiked aqueous solution
(25 µg/L). Five NEOs were selected to evaluate the adsorption efficiency of Fe3O4@N-CMP.
Each experiment was performed in triplicate.

2.2.1. Effect of Adsorbent Amount

The amount of Fe3O4@N-CMP is a critical parameter in the MSPE assay. The amount
of adsorbent was varied from 5 to 20 mg to study its effect on the extraction of NEOs. As
shown in Figure 3A, the recoveries of the five NEOs increased rapidly when the adsorbent
amount increased from 5 to 10 mg, but the change was small at higher amounts. Therefore,
10 mg was used in subsequent experiments.

2.2.2. Effect of Extraction Time

Extraction times ranging from 10 to 30 min were used to assess the extraction efficiency
of the MSPE procedure. As shown in Figure 3B, the maximum recovery for the five NEOs
was obtained at 20 min. Additionally, a remarkable decrease in recovery was observed
with longer extraction times. Therefore, 20 min was selected as the optimal extraction time.

2.2.3. Effect of Ionic Strength

Salt addition may be unfavorable for the adsorption of analytes because it increases
the viscosity of aqueous solutions. To evaluate the influence of ionic strength towards
extraction, the concentration of NaCl in the aqueous solutions was varied in the range
of 0% to 10% (m/v). Figure 3C indicates that the recoveries of the five NEOs decreased
with increasing ionic strength. Excessive salinity diminished the transfer of NEOs to the
adsorbent material. Therefore, NaCl was not used to optimize the extraction.

2.2.4. Effect of pH

The pH of the sample solution can affect the adsorption efficiency of the NEOs by
determining their speciation. The influence of pH was systematically studied by varying
the pH from 3 to 11. The pH of the sample solution was adjusted by 1.0 mol/L NaOH
or 1.0 mol/L HCl. As shown in Figure 3D, the highest recoveries of the five NEOs were
achieved at pH 7. A slight decrease in recovery was observed under acidic conditions,
owing to the electrostatic repulsion between the protonated NEOs and Fe3O4@N-CMP
containing quaternary ammonium groups. In alkaline conditions, the ability was attenuated
adsorption due to the hydrolysis of the NEOs. Therefore, subsequent experiments were
conducted under neutral conditions.

2.2.5. Effect of Elution Solvent

Four organic solvents (methanol, acetonitrile, methylene chloride, and ethyl acetate)
were evaluated as eluents. Figure 3E shows that acetonitrile and methanol exhibited
better elution abilities towards the five NEOs than methylene chloride and ethyl acetate.
Considering the polarity of NEOs, acetonitrile and methanol, which are strong polar
solvents, were favorable for the desorption efficiency toward NEOs. Acetonitrile was
used as the mobile phase for HPLC analysis and was selected as the preferred eluent for
subsequent experiments to avoid solvent replacement.

2.2.6. Effect of Elution Time

The desorption performance of the MSPE is associated with the desorption time.
Herein, 6 mL of acetonitrile (6 mL) was used to optimize the elution time in the range
of 2 to 10 min. As shown in Figure 3F, the recoveries of the five NEOs remained almost
unchanged with longer desorption times, revealing that the NEOs were eluted in a shorter
time. Hence, the optimal desorption time was 2 min.
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2.3. Reusability of the Fe3O4@N-CMP

Reusability is a crucial parameter in MSPE assays, considering the lifespan and cost of
the magnetic nanocomposites. The reusability of Fe3O4@N-CMP was assessed. Figure 4
shows that the adsorption capacity of Fe3O4@N-CMP is still maintained above 95% after
10 adsorption-regeneration cycles, proving the excellent reusability of Fe3O4@N-CMP. The
MSPE approach based on Fe3O4@N-CMP was fitting for the analysis of NEOs because of
its advantages, such as being rapid, easy, and having good material recoverability.
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2.4. Possible Extraction Mechanism

The presence of many alkynyl groups and benzene rings in Fe3O4@N-CMP results in
multiple π–π stacking interactions that play an essential role in the adsorption of NEOs.
Moreover, electron-withdrawing groups in NEOs, such as nitro or cyano groups, endow
NEOs with Lewis acidity. This facilitates Lewis acid-base interactions between NEOs
and the benzene rings (as Lewis bases of Fe3O4@N-CMP) [50]. The negative electrostatic
potential regions in NEOs, which can serve as nucleophilic sites, are concentrated in
these nitro or cyano groups of the neonicotinoid. Electrostatic interactions between the
nucleophilic sites of NEOs and quaternary ammonium groups in Fe3O4@N-CMP may
enhance the adsorption efficiency towards NEOs [51]. Therefore, the proposed adsorption
mechanism was ascribed to π–π stacking, Lewis acid-base, and electrostatic interactions.

2.5. Method Validation

To validate the MSPE-HPLC-DAD method based on Fe3O4@N-CMP, the linear range,
limit of detection (LOD), limit of quantification (LOQ), and precision were determined
under the optimal conditions described above. Ultrapure water was spiked with five NEOs
to obtain concentrations in the range of 0.1 to 200 µg/L. This solution was utilized to
determine linearity. Calibration curves were plotted using the areas of the chromatographic
peaks measured at the spiked concentrations of each analyte. As presented in Table 1, good
linearity was obtained in the range of 1.0 to 200 µg/L for ACE, and 1.5 to 200 µg/L for
TMX, CLO, IMI, and THI, with the coefficient of determination (R2) ranging from 0.998 to
0.999. In accordance with the signal-to-noise ratios of 3 and 10, the LODs of the five NEOs
ranged from 0.3 to 0.5 µg/L, and the LOQs ranged from 1.0 to 1.5 µg/L. Intra- and inter-day
precisions, represented as RSDs, ranged from 2.2% to 4.2% and 1.4% to 3.6%, respectively.
Five batches of Fe3O4@N-CMP were synthesized to evaluate reproducibility. The RSDs
ranged from 3.7% to 6.0%, revealing the remarkable reproducibility of the fabrication
of Fe3O4@N-CMP. The above results suggest that the established approach possesses
good linearity, super-sensitivity, and outstanding precision, and can monitor NEOs in
water samples.

2.6. Real Sample Analysis

Based on these positive results, the proposed MSPE-HPLC-DAD approach based on
Fe3O4@N-CMP was used to quantify the levels of NEOs in tap water, rainwater, and lake
water. As shown in Table 2, no NEO residues were detected in any of the three water
samples. To appraise the accuracy of the current approach, recovery experiments were
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conducted using spiked water samples with NEO concentrations of 5, 50, and 100 µg/L.
As shown in Table 2, the recoveries at the three spiked levels were 71.8–107.2% for tap
water, 70.4–122.7% for rainwater, and 71.3–98.9% for Rainbow Lake water. The RSD values
were less than 10%, confirming the reliability of our method. Typical chromatogram of the
spiked NEOs in rainwater are shown in Figure 5. These results indicate that the established
MSPE-HPLC-DAD method can be used to detect NEOs in environmental water samples.

Table 1. Analytical performances of Fe3O4@N-CMP for HPLC-DAD determination of NEOs.

Analytes Linear Range
(µg/L) R2 LODs

(µg/L)
LOQs
(µg/L)

RSDs (%)

Repeatability
(RSD%, n = 5)

Inter-Day

Repeatability
(RSD%, n = 5)

Intra-Day

Repeatability
(RSD%, n = 5)
Batch to Batch

TMX 1.5–200 0.998 0.5 1.5 2.5 4.2 6.0
CLO 1.5–200 0.999 0.5 1.5 1.4 3.7 5.6
IMI 1.5–200 0.999 0.5 1.5 1.5 2.2 6.0
ACE 1.0–200 0.999 0.3 1.0 3.0 3.1 3.7
THI 1.5–200 0.999 0.5 1.5 3.6 2.7 3.8

Table 2. Analytical results of NEOs in real water samples.

Analytes Linear Range
(µg/L)

RSDs (%)

TMX CLO IMI ACE THI

Tap water

0 ND ND ND ND ND
5 89.9 ± 6.5 86.2 ± 3.1 94.2 ± 4.4 96.5 ± 1.3 107.2 ± 3.7
50 80.4 ± 7.1 87.0 ± 6.0 91.5 + 5.6 94.4 ± 5.4 96.9 ± 6.5

100 71.8 ± 1.6 78.4 ± 1.9 84.4 ± 1.6 86.8 ± 3.1 90.7 ± 2.5

Rain water

0 ND ND ND ND ND
5 93.1 ± 4.2 104.8 ± 4.4 106.3 ± 2.3 110.0 ± 0.9 122.7 ± 4.2
50 70.4 ± 1.0 79.7 ± 0.6 83.1 ± 1.1 85.1 ± 0.4 87.3 ± 0.1

100 73.1 ± 2.6 77.5 ± 3.2 81.2 ± 2.6 83.6 ± 2.3 87.2 ± 1.8

Lake water

0 ND ND ND ND ND
5 79.9 ± 1.0 92.0 ± 1.0 98.6 ± 3.5 98.9 ± 3.2 94.8 ± 0.5
50 71.3 ± 2.5 82.0 ± 2.2 88.6 ± 1.5 88.8 ± 2.1 94.6 ± 0.3

100 72.9 ± 5.9 78.0 ± 3.1 84.8 ± 2.5 85.3 ± 2.6 91.4 ± 0.5

ND: not detected.

2.7. Comparison with Other Methods

For a further evaluation of the analytical performance of the proposed method, it was
compared with other methods reported in the literature (Table 3). Compared with SPME-
UPLC-MS/MS [17], DSPE-UPLC-MS/MS [18,19], and MSPE-HPLC-MS [25,52], the current
MSPE-HPLC-DAD method displayed higher LODs, because the MS detection promoted
higher sensitivity towards NEOs than DAD detection. However, MS detection is more ex-
pensive than DAD detection. In addition, among the analytical methods using DAD [14,20],
the TAPA-BPDA-COF-1-based SPE method exhibited lower LODs than the MSPE method;
however, lesser amounts of adsorbents were used in the MSPE method. Moreover, among
the MSPE methods, the established MSPE method possessed smaller adsorbent dosage,
acceptable extraction time, and adequate LODs. Overall, the developed method is sen-
sitive, economical, and practical, and can fulfill the demand for pre-concentration and
determination of NEOs in environmental water samples.
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Table 3. Comparison with other analytical methods for the determination of neonicotinoids.

Matrix Method Analytes Adsorbent Dosage
(mg)

Extraction
Time

(t)

LODs
(µg/L) Ref.

Environmental
water

MSPE-HPLC-
UV

TMX, IMI,
ACE, THI MOPC-ZSM-5 10 20 0.1–0.2 [20]

Environmental
water

MSPE-HPLC-
MS IMI, ACE, THI MOF-199/Fe3O4 50 20 0.3–1.5 [52]

Environmental
water

MSPE-HPLC-
MS

TMX, CLO,
IMI, ACE, THI Fe3O4/GO/ZIF-67 40 50 0.06–1.0 [25]

Lettuce SPME-UPLC-
MS/MS

TMX, CLO,
IMI, ACE,
THI, NIT,

DIN

The water-swelling
fiber - 10 0.03–0.11 [17]

Fruit juices and
tea beverages

DSPE-UPLC-
MS/MS IMI, ACE, THI MIL-101(Cr) 20 5 0.0019–0.02 [19]

Lake water SPE-HPLC-
DAD

IMI, ACE,
THI, TMX TAPA-BPDA-COF-1 30 25 0.08–0.12 [14]

Medicine and
food homology

products

DSPE-UPLC-
MS/MS

IMI, ACE, THI,
NIT, DIN

MWCNTs/NH2-
MIL-101(Fe) 30 6 0.01–0.07

µg/kg [18]

Environmental
water

MSPE-HPLC-
DAD

TMX, CLO,
IMI, ACE, THI Fe3O4@N-CMP 10 20 0.3–0.5 This

work

3. Materials and Methods
3.1. Chemicals and Reagents

The five NEOs, including thiamethoxam (TMX), imidacloprid (IMI), acetamiprid
(ACE), thiacloprid (THI), and clothianidin (CLO), were from Beijing Bailing Wei Technology
Co., Ltd. (Beijing, China). The 1,3,5-triethynylbenzene (98% purity) and tetrakis(triphenylp-
hosphine)palladium (Pd(PPh3)4; 99.4% purity) were from Bidepharm Technology Co., Ltd.
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(Shanghai, China). Anhydrous N, N-Dimethylformamide (DMF; 99.8% purity), triethy-
lamine (Et3N; 99.5% purity), and copper(I) iodide (CuI; 98% purity) were from Energy
Chemical Co., Ltd. (Huangshan, China). Methylene dichloride, methanol, acetonitrile
(ACN), and ethyl acetate (all analytic grade) were purchased from Fuyu Fine Chemical
Co., Ltd. (Tianjin, China). Other analytically pure chemicals Including sodium hydroxide
and sodium chloride were obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China). HPLC-grade acetonitrile (ACN) was purchased from Jianqiang Weiye Technology
Co., Ltd. (Beijing, China). Hydrochloric acid (superior grade) was obtained from Far-East
Fine Chemical Co., Ltd. (Yantai, China). Formic acid (FA) was obtained from Guangu
Technology Co., Ltd. (Tianjin, China). Drinking water was from Wahaha Co., Ltd. (Jinan,
China). Pure water was provided by the Ecology Institute of the Shandong Academy
of Sciences, and the actual water samples were collected from tap water, rainwater and
Rainbow Lake water (Jinan, China). The 1,4-dibromo-2,5-bis(bromomethyl)benzene and
Fe3O4 were synthesized according to the reported procedures [53,54].

3.2. Instruments for Characterization

Scanning electron microscopy (SEM) was performed with a regulus 8100 SEM (Hi-
tachi, Tokyo, Japan). Transmission electron microscopy (TEM) images were obtained with
a JEM 2100 PLUS TEM (JEOL, Tokyo, Japan). Brunauer-Emmett-Teller (BET) surface areas
were measured by a Micromeritics ASAP 2460 machine (Micromeritics Corporate, Norcross,
GA, USA). Fourier-transform infrared (FT-IR) spectra were measured using a Nocolet
Nexus 710 (Bruker, Rheinstetten, Germany). The composition and chemical and electronic
states of the elements in the Fe3O4@N-CMP were measured using an Escalab 250 Xi X-ray
photoelectron spectroscope (XPS) (Thermo Scientific, Waltham, MA, USA). Magnetization
curves were calculated by a vibrating sample magnetometer (Mpms Squid Vsm, Quantum
Design, San Diego, CA, USA).

3.3. Synthesis of Fe3O4@N-CMP

A 100 mL three-necked flask was charged with Fe3O4 nanospheres (100 mg), Pd(PPh3)4
(14 mg), CuI (4.6 mg), triethylamine (15 mL), and DMF (15 mL), followed by sonication
for 15 min. Then, the mixture was mechanically stirred under 90 ◦C for 15 min under
a nitrogen atmosphere. Then, 1,3,5-triethynylbenzene (30.1 mg) and 1,4-dibromo-2,5-
bis(bromomethyl)benzene (126.5 mg) were added. After reacting at 90 ◦C for 24 h and
cooling to room temperature, the obtained Fe3O4@N-CMP was collected by a magnet,
washed three times with methanol and dichloromethane, and after being dried under
vacuum at 60 ◦C overnight, 140 mg of Fe3O4@N-CMP was obtained.

3.4. Preparation of Mixed Standard NEOs Solutions and Actual Samples

A mixed standard solution with a concentration of 50.0 ug/mL and a volume of
100 mL was prepared from 5 mg of each of the five NEOs (TMX, IMI, ACE, THI, and CLO)
in purified water and stored in a refrigerator at 4 ◦C. The working solution was obtained
by diluting the mixed standard solution with purified water. In this work, three types of
surface water, including tap water (Jinan, China), rainwater from 23 September 2023 (Jinan,
China), and Rainbow Lake water from 28 September 2023 (Jinan, China) were selected as
real environmental samples. The water samples were first stored in a refrigerator at 4 ◦C
and then analyzed after filtration through a 0.22 µm microporous filtration membrane.

3.5. MSPE Procedure

First, 10 mg of Fe3O4@N-CMP was added to an EPA sample bottle, and then 30 mL of
the sample solution (25 µg/L) was added to the sample bottle. The mixture was shaken in a
constant temperature oscillator 250 times per minute for 20 min at room temperature. Then,
the Fe3O4@N-CMP was collected from the water phase by using an external magnet on the
outside of the sample vial, and the supernatant was also discarded. The adsorbed target
analytes were released from the Fe3O4@N-CMP by HPLC-ACN under ultrasonic shaking
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for 6 min, and the operation was repeated. The eluted solution was dried at 45 ◦C under
N2. Finally, the residue was re-dissolved in 1 mL of HPLC-ACN, and these resolubilized
samples were filtered through a 0.45 µm white organic membrane and then injected into
HPLC-DAD for analysis. In addition, the adsorbent can be recycled. The MSPE procedure
is shown in Scheme 1.

3.6. HPLC-DAD Determination

The HPLC experiments were carried out on an Agilent Technologies 1260 Infinity II
liquid chromatography system consisting of an autosampler, a quaternary pump (Agilent
Technologies, Santa Clara, CA, USA), a thermo-static column chamber, a DAD detector,
and a workstation to deal with the chromatographic data. A Symmetry-C18 column
(250 × 4.6 mm, 5 µm) was used for sample separation at room temperature. The injection
loop volume was 5 µL. Chromatographic separation was performed with a mobile phase
consisting of HPLC acetonitrile (C) and water containing 0.1% FA (D) at a flow rate at
1 mL/min. The UV monitoring wavelength was set at 257 nm. The operation was conducted
in a sequential mode for a total time of 24 min, with the first 12 min being the time for
single sample analysis, and the last 12 min being the equilibrium column pressure time.
The gradient elution conditions were as follows: 0–1 min for 25% acetonitrile, 1–5 min for
25–35% acetonitrile, 5–12 min for 35–45% acetonitrile, 12–15 min for 45–25% acetonitrile,
and 15–24 min for 25% acetonitrile. The five NEOs were separated with the elution order
of TMX, CLO, IMI, ACE, and THI.

4. Conclusions

Fe3O4@N-CMP containing quaternary ammonium groups was successfully constructed
and utilized as a reusable MSPE adsorbent toward NEOs in real water samples. The
Fe3O4@N-CMP exhibited satisfactory adsorption performance for NEOs by virtue of the
synergistic effects of π–π stacking interactions, Lewis acid-base interactions, and electro-
static interactions. In combination with HPLC-DAD, the proposed approach achieved a
wide linearity, low LODs/LOQs, excellent precision, and acceptable reproducibility. Finally,
the Fe3O4@N-CMP-MSPE-HPLC-DAD method was successfully applied to the sensitive
detection of NEOs in tap water, rainwater, and lake water. Adequate recoveries were
obtained in the range of 70.4% to 122.7%. These results indicate that using Fe3O4@N-CMP
as a MSPE sorbent can offer an accurate, practical, and reproducible method to determine
NEOs present in environmental water samples.
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