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Abstract: The synthesis of the new energetic material 4-amino-3-hydrazino-5-methyl-1,2,4-triazole,
which shows excellent performance and reliable safety, has drawn attention recently. To fully charac-
terize this material, a comprehensive analysis was performed using various techniques, including
differential scanning calorimetry (DSC), infrared spectroscopy (IR), elemental analysis, and 1H and
13C NMR spectroscopy. Additionally, three compounds, 3, 5 and 9, were further characterized using
single X-ray diffraction. The X-ray data suggested that extensive hydrogen bonds affect molecular
structure by means of intermolecular interactions. In order to evaluate the explosive properties of
these synthesized compounds, detonation pressures and velocities were calculated using EXPLO5
(V6.01). These calculations were carried out utilizing experimental data, including density and heat
of formation. Among the explosives tested, compounds 7 and 8 exhibited zero oxygen balance
and demonstrated exceptional detonation properties. Compound 7 achieved the highest recorded
detonation pressure, at 34.2 GPa, while compound 8 displayed the highest detonation velocity, at
8887 m s−1.

Keywords: energetic salts; triazole; methyl; thermostability; detonation performance

1. Introduction

The synthesis and design of new energetic materials has been ongoing since the dis-
covery of 2,4,6-trinitrotoluene (TNT) in 1863 [1]. Accompanying their growing demand
in military and civilian applications, researchers have made significant progress by de-
veloping compounds such as Hexogeon (RDX) [2], Cyclotetramethylene tetranitramine
(HMX) [2], and Hexanitrohexaazaisowurtzitane (CL-20) [3]. However, these explosives
still face several limitations that hinder their widespread use. In recent decades, many
researchers have directed their efforts towards the development of nitrogen-rich energetic
materials. Because of the existence of large numbers of C-N and N-N bonds, nitrogen-rich
energetic materials have a higher heat of formation [4]. Molecular structures with high
nitrogen and low carbon content can enable energetic materials to have a higher density,
which is also beneficial for achieving oxygen balance [5]. Triazole is the representative of
high nitrogen-containing compounds and increasingly attracts considerable interest. In
energetic skeletons such as those of imidazole [6], triazole [7], tetrazole [8], triazine [9], and
tetrazine [10], 1,2,4-triazole shows unique advantages.

In order to achieve a balance between detonation performance and safety in energetic
materials, researchers have employed various methods, including the synthesis of dense
ring compounds, the development of eutectic materials, and the preparation of energetic
ionic salts. In recent years, energetic salts have drawn widespread attention as a new type
of energetic material [11]. Compared to similar molecular compounds, these synthetic
products possess more advantages in terms of their basic properties. Energetic salts com-
posed of anions and cations exhibit the characteristics of ionic compounds. These include a

Int. J. Mol. Sci. 2023, 24, 13136. https://doi.org/10.3390/ijms241713136 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms241713136
https://doi.org/10.3390/ijms241713136
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms241713136
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms241713136?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 13136 2 of 11

low vapor pressure, excellent thermal stability, a high density, and minimal environmental
impacts, therefore representing extensive application potential [12]. The studies available
in the literature have revealed that the incorporation of methyl groups into the molecular
structure of these salts can prove effective in reducing sensitivity and enhancing safety, as
well as elevating the decomposition temperature of energetic materials [13,14].

As a nitrogen-rich compound, 4-amino-3-hydrazino-5-methyl-1,2,4-triazole, which
brings methyl and 1,2,4-triazole into a single material, has multiple modification sites.
This compound can be chemically modified with different groups, leading to enhanced
physical and chemical properties when incorporated into ionic salts. Furthermore, the
triazole framework allows for the selection of various anions, including those containing
nitro groups, which can improve oxygen balance. In contrast to the precursors reported
in the literature, which usually have one monovalent anion, the 4-amino-3-hydrazino-
5-methyl-1,2,4-triazole described in this article serves as a precursor for polyvalent ion
salts, and can be paired with multiple-ion ligands. Polyvalent ions have higher formation
heat compared to those of monovalent ion salts with a similar structure. Therefore, the
polyvalent state of this invention is related to significant detonation. Taking into consider-
ation the aforementioned advantages, energetic salts with good explosive performances
based on 3-hydrazino-4-amino-5-methyl-1,2,4-triazole are reported and comprehensively
characterized.

2. Results and Discussion
2.1. X-ray Crystallography

The crystal structure of compound 3 reveals that it belongs to the space group Pbca,
with a crystal density of 1.435 g cm−3 at 296 K. It can be seen from Figure 1a that one unit of
compound 3 consists of two chloridions and one hetercocylic cation, with two protonating
hydrogen atoms on N1 and N5. There is one intramolecular interaction between the cation
and chloridion (N1-H1A. . .Cl1), with a distance of 3.066(2) Å and an angle of 177(3)◦.
Notably, it can surprisingly be found that all of the atoms except the H of the cation are in
nearly the same plane, which can be verified by the torsion angles N6-N3-C1-N4 = 5.866◦,
C3-C2-N3-C1 = 178.976◦, and N3-C1-N2-N1 = −0.149◦. However, there is a slight devia-
tion in the torsion angle of the hydrazine moiety, with the angle of N5-N4-C1-N3 being
−165.121◦. In terms of bond lengths, the distance of N3-NH2 (1.4013 Å) is shorter than
that of N4-NH2 (1.4145 Å), and the distance of C2-CH3 is the longest among those of
all of the bonds in compound 3, at 1.4639 Å. Additionally, the packing diagram of com-
pound 3 is shown in Figure 1b, from which it can be found that the stacked structures are
symmetrical and the different molecules are connected by multiple hydrogen bonds (N4-
H4A. . .Cl2, N5-H5A. . .Cl2, N5-H5B. . .Cl1, N5-H5C. . .Cl1, N6-H6A. . .Cl1, N6-H6B. . .Cl2,
and N6-H6C. . .Cl2) to form a stable network structure [15].
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The crystal structure of 4-amino-3-acethydrazino-5-melthy-1,2,4-triazole nitrate en-
ergetic compound 5 is depicted in Figure 2. Briefly, 5 belongs to the space group P2 (1)/c
with a crystal density of 1.513 g cm−3 at 296 K. Each lattice cell contains four molecules
(Z = 4) and the molar ratio of the compound 5 is 1:1. The protonating hydrogen atom is on
N3. There are three intramolecular interactions in the cation with a distance from 2.5858 Å
to 3.1800 Å which can be seen in Figure 2a. The planarity of 5 is close to that of com-
pound 3, as is evident from the corresponding torsion angles: N5-C1-N3-N2 = 176.068◦,
N7-N4-C2-N2 = −176.188◦, and N4-C2-N2-N3 = −0.109◦. However, some torsion an-
gles deviate from the plane, such as O4-C3-N6-N5 = 7.352◦, N6-N5-C1-N3 = 15.253◦ and
C3-N6-N5-C1 = −96.923◦. For the electron absorption effect of nitrate, we can find that the
distance of N4-NH2 (1.3993 Å) and the distance of N5-N6 (1.3892 Å) are shorter than those
of the compound 3. Additionally, the distance of C3-CH3 (1.4855 Å) is longer than that
of C2-CH3 (1.4772 Å). Figure 2b displays the combined action of several hydrogen bonds
(N3-H3. . .O1, N5-H5. . .O1, N6-H6. . .O2, N7-H7A. . .O4, N7-H7B. . .O4, and C4-H4A. . .O2).
All hydrogen bonds consist of cations and oxygen atoms in nitrate ions, and they combine
the different molecules tightly, adopting a firm wavelike stacking arrangement.
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Figure 2. (a) The molecular structure and intramolecular hydrogen bonds of 5; (b) The packing
diagram and intermolecular weak interactions of 5 (green lines represent hydrogen bonds).

Crystal 9 is presented as (AHMT)+ (NT)−, with a molar ratio of 1:2. Compound 9
belongs to the triclinic crystal system with the P-1 space group and a crystal density of
1.621g·cm−3 at 296K. Each lattice cell contains two molecules (Z = 2). The protonating hydro-
gen atoms are locked on N11 and N15. One intramolecular interaction (N8-H15A) is shown
in Figure 3a with a distance of 1.9045 Å which is shorter than those observed in crystal 3
and 5. Similarly, the planarity of the cation of compound 9 is similar to those of compounds
3 and 5, indicating a coplanar structure. This can be confirmed by the torsion angles of
C5-C4-N11-N12 = −179.696◦, N16-N13-C3-N12 = 177.788◦, N15-N14-C3-N12 = −13.543◦,
and C4-N11-N12-C3 = 0.620◦. However, the anion NT is not in the same plane as the
cation, with an angle between them of N14-N15-N8 = 100.263◦. The distance of N13-NH2
(1.3993 Å) is shorter than that of N14-NH2 (1.4160 Å), and the distance of C4-CH3 is 1.4754
Å. It is can be seen from Figure 3b that there are many intermolecular hydrogen bonds
(N11-H11A. . .N4, N14-H14A. . .N6, N15-H15B. . .N7, N15-H15C. . .N1, N16-H16A. . .N9,
and N16-H16B. . .N3, C5-H5C. . .N2) in the packing diagram, and the molecule adopts a
face-to-face stacking arrangement.

2.2. Physicochemical and Energetic Properties

The thermal stabilities of the above energetic salts were determined using DSC mea-
surements with a scanning rate of 5 ◦C min−1. As shown in Table 1, most of new materials
decompose at temperatures below 200 ◦C varying in the range between 126.8 and 213.7 ◦C.
Among these energetic salts, compound 3 exhibits the highest thermal stability, with a
decomposition temperature of 213.7 ◦C. Compounds 5 and 9 also show high thermal
decomposition temperatures of 145.7 ◦C and 173.4 ◦C, respectively. The observed high
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thermal stability can be attributed to the extensive hydrogen bonding interactions between
the amino groups of the cation and the oxygen atoms of the anion within these compounds.
These strong intermolecular interactions contribute to the overall stability of the materials.
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Table 1. The physicochemical properties of related energetic salts compared to those of TNT and RDX.

Salt Td
a Tsd

b dc
c/dm

d OB e ∆Ho
f

f/∆Ho
m

g P h D i IS j

3 213.7 - 1.445/1.435 −64 246.79/1.23 17.0 6600 >40
5 145.7 232.9 1.521/1.513 −44.61 374.59/1.61 25.1 7705 31.6
6 163.8 302.6 1.69/1.679 −12.6 −280.5/−1.10 25.6 8170 16.3
7 126.8 266.5 2.01/1.989 0.0 −291.1/−0.88 34.2 8528 28.9
8 164.6 231.1 1.78/1.791 0.0 177.4/0.52 33.9 8887 10.7
9 173.4 233.2 1.69/1.621 −26.8 697.8/1.95 23.6 8031 7.1

10 183.2 234.8 1.73/1.712 −16.4 676.4/1.73 28.6 8524 6.1
11 173.9 - 1.65/1.652 −43.4 354.4/1.37 22.6 8039 >40

TNT 295.0 - 1.65 −24.7 −67/−0.295 19.5 6881 15
RDX 230 - 1.82 −21.6 83.8/0.38 35.2 8977 7.4

a Decomposition temperature (◦C). b Secondary decomposition temperature (◦C). c Calculated density (g·cm−3).
d Measured density (g·cm−3). Use of ULTRAPYC 1200. e CO2 oxygen balance (OB) is an index of the deficiency
or excess of oxygen in a compound required to convert all C atoms into CO and all H atoms into H2O. For a
compound with the molecular formula of CaHbNcOd (without crystal water), OB (%) = 1600[(d-a-b/2)/MW],
where MW is the molecular weight of salt. f Molar enthalpy of the formation of salt (kJ·mol−1). g Enthalpy of
the formation of ionic salts in per gram (kJ·g−1). h Detonation pressure (GPa). i Detonation (m·s−1). j Impact
sensitivity (J).

Density is one of the most important evaluation parameters used to measure the
performance of energetic materials, because it has a huge effect on their detonation perfor-
mances [16]. The densities of these salts were measured using Automatic Density Analyzer.
The densities of the synthesized salts 3–11 are in the range of 1.435–1.989 g cm−3, that most
of them are higher than that of TNT (1.65 g cm−3).

Oxygen balance is a measure of the degree of oxidation in an explosive. Currently,
most common explosives have a negative oxygen balance, which means they do not have
enough oxidizing agents to completely oxidize the combustible elements. As a result, their
detonation performances do not reach their maximum potential [17]. The CO oxygen
balance of the energetic salts that were synthesized are listed in Table 1. The oxygen
balance of salts 6 (−12.6%), 7 (0%), 8 (0%) and 10 (−16.4%) are much better than that of
TNT (−24.7%) and RDX (−21.6%). Compound 7 and 8 are the best in these salts, where
the oxygen balance approaches zero, which means that the combustible element of the
energetic materials 7 and 8 can be completely oxidized and release maximum heat.

The impact sensitivities of the synthesized energetic salts were measured by using
a BAM drop hammer [18]. Compound 3 exhibited excellent sensitivity parameters, with
an impact sensitivity (IS) exceeding 40 J, meaning it can be classified as an insensitive
energetic material. On the other hand, 5-nitrotetrazolate-2N-oxide salt 10 demonstrated
high sensitivity to impact, with a recorded value of 6.1 J. In comparison to RDX, it was
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found that all the salts, except for 5-nitrotetrazolate salt 9 and 5-nitrotetrazolate-2N-oxide
salt 10, displayed lower sensitivities. This suggests that the majority of the synthesized salts
possess reduced sensitivity to impact when compared to that of RDX, which is a desirable
characteristic in terms of safety and stability.

EXPLO5 V6.01 was used to calculate the detonation velocities and pressures with
the data of heats of formation, formula and density [19,20]. The detonation velocities
fall in the range of 6600–8887 m s−1 and the detonation pressures are in the range of
17.0–34.2 GPa. These values indicate significantly improved performance compared to that
of TNT (6881 m s−1, 19.5 GPa) with the exception of compound 3. The oxygen-balanced
explosives 7 and 8 show the best performance; 7 has the highest detonation pressure
(34.2 GPa) and 8 has the highest detonation velocity (8887 m s−1), which is comparable to
that of RDX.

2.3. 2D Fingerprints and Hirshfeld Surface Analysis

To investigate the relationship between the molecular structure of the compounds and
their sensitivity, Hirschfeld surfaces and 2D fingerprint plots are used to analyze the intra-
and intermolecular interactions of compounds 5 and 9 [21,22]. There are some red dots
observed in the Hirshfeld surfaces that can be seen from Figure 4a,b indicating the presence
of intermolecular hydrogen bonding. These hydrogen bonding interactions include H. . .O
and O. . .H, and N. . .H and H. . .N interactions. Additionally, it is easy to observe from the
2D fingerprint plots that there are two spikes on the left of the picture which represent
the hydrogen bonds of compounds 5 and 9, but the types of the hydrogen bonds of the
spikes of the two plots are different, being H. . .O and O. . .H interactions in Figure 4a
and N. . .H and H. . .N interactions in Figure 4b. The bule aspects represent the weaker
connection of the compound compared to that in the red regions. The 2D fingerprint plots
provide information about the distributions of the different intermolecular interactions
in these compounds which are shown in Figure 4c. Compounds 5 and 9 have 60.5% and
68.1% hydrogen bonds, respectively. Additionally, we can find that the percentage of π–π
interactions (C. . .N and N. . .C; N. . .O, O. . .N and N. . .N) of compounds 5 and 9 are 4.7%
and 20.3%, respectively. We can find that hydrogen bonds play the dominant role. Because
hydrogen bonds stabilize the compound under external stimuli, it is easy to understand
why compounds 5 and 9 are stable.

2.4. Noncovalent Interaction (NCI) Analysis

The noncovalent interactions result of the compounds 3, 5 and 9 are presented in
Figure 5 [23–25]. In the figure, we can see that there are three different colors; blue
represents a strong interaction, green represents a weak interaction and red represents
strong repulsion. It is easy to see the blue round ellipsoids presented in Figure 5a–c which
mean that 3, 5 and 9 have the hydrogen bonds, and which is consistent with the results
of the 2D fingerprints and Hirshfeld surface analysis. Additionally, we find that there are
many green planes in the figure, that means the compounds have π–π interactions. Notably,
we find that there are more green planes representing π–π accumulations in Figure 5c than
in Figure 5b, which corresponds with the results of the percentage contribution of the single
atom making contact with the Hirshfeld surfaces in Figure 4c. In addition, we find a few
red ellipsoids near 1,2,4-triazole and C-CH3.

2.5. Electrostatic Potential Surface (ESP) Analysis

To gain further insights into the relationship between different substituents and molec-
ular sensitivity, the electrostatic potential surface analysis (ESP) of compounds 3, 5 and 9
were conducted [24–26]. In ESP analysis, the minimum and maximum values are repre-
sented by blue and red points, respectively. The red and blue areas indicate electropositive
and electronegative regions. As shown in the following Figure 6a, the minimum value
(−77.98 kcal/mol) of 3 arises from the atom of Cl and the maximum value (95.77 kcal/mol)
of 3 arises from hydrazine. Moving on to compound 5, we can find that the minimum
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value (−96.81 kcal/mol) is attributed to the nitrate group and the maximum value of it
arises from triazole which is 88.30 kcal/mol. We find that the electrostatic value of C=O in
the cation is negative at −26.69 kcal/mol, as shown in Figure 6b. In contrast, the values
for compound 9 are much smaller than those of compounds 3 and 5, with a minimum
value of −4.43 kcal/mol and a maximum value of 5.57 kcal/mol. As commonly known,
the lower the maximum ESP values and the greater the negative charge accumulation in
the nitro-substituent, the more stable the compound.
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3. Materials and Methods

The synthesis route for 4-amino-3-hydrazino-5-methyl-1,2,4-triazole and its salts, those
described in this study, is illustrated in Scheme 1. Guanidine hydrochloride was added into
3 equivalents of hydrazine hydrate, refluxing at 110 ◦C for 2 h, yielding triaminoguanidine
hydrochloride 1 (TAG·HCl). After reacting with acetic acid, the solvent was removed and
produced a viscous, resinous residue. The reaction mixture was then treated with acetic
acid, and the solvent was evaporated to yield a viscous, resinous residue. From this residue,
a moderate yield of 4-acetamido-3-acethydrazino-5-methyl-1,2,4-triazole hydrochloride 2
was isolated.
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As depicted in Scheme 1, the combination of the nitrogen-rich divalent cation (AHMT2+)
with nitrogen-rich anions forms a class of energetic materials, whose energy is derived
from their positive heats of formation as well as the combustion of the carbon atoms.
Compounds 6–11 were readily synthesized via anion exchange with silver nitrate, silver
perchlorate, silver dinitramide, silver 5-nitrotetrazolate, silver 5-nitrotetrazolate-2N-oxide,
and silver 5-nitroiminotetrazolate, respectively, with 3 in methanol or water. 4-amino-
3-hydrazino-5-methyl-1,2,4-triazolium 4 was isolated by treating 3 with stoichiometric
amounts of NaHCO3. Additionally, salt 6 could be synthesized by refluxing TAG·HNO3 in
acetic acid, followed by hydrolysis with dilute nitric acid.
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3.1. Experimental Section

The instruments and setting parameters used in the preparation and analysis are
available in the general methods included in the Supporting Information.

3.1.1. Caution

Although we did not meet any danger in the process of these experiments, some
necessary safeguard procedures were carried out such as the use of a hood, a pair of goggle
and leather gloves. The risk of making contact with any of these materials directly should
be avoided. Due to the positive heats of formation, extreme caution should be exercised in
the performance of synthesis and characterization.

3.1.2. Synthesis

For 4-Amino-3-hydrazino-5-methyl-1,2,4-triazolium hydrochloride (3), Triaminoguani-
dine hydrochloride (TAG·HCl) (2.81 g, 20 mmol) was added to 15 mL of acetic acid. The
mixture was stirred and refluxed at 100–110 ◦C for 2 h. The excess volatile acetic acid
was removed under a partial vacuum to recover a viscous, resinous residue. From this
residue, 4-acetamido-3-acethydrazino-5-methyl-1,2,4-triazole hydrochloride (2) was iso-
lated in a moderate yield. The viscous residue was dissolved and stirred vigorously in
diluted hydrochloric acid at 80 ◦C. As the reaction progressed, white crystals of 4-Amino-
3-hydrazino-5-methyl-1,2,4-triazolium hydrochloride (3) precipitated. The product was
filtered and washed with several aliquots (50 mL total) of ice water. The product was dried
under high vacuum, resulting in a good yield (2.13 g, 53%) of 3. MS m/z (ESI+): 129.08
[C3H9N6

+]; elemental analysis (%) Calc. for C3H10N6Cl2 (MW = 201.06 g·mol−1): C, 17.91;
H, 4.98; N, 41.79; found C, 17.85; H, 5.05; N, 41.27; IR (KBr): 3182, 2836, 2659, 1943, 1704,
1609, 1569, 1541, 1484, 1423, 1377, 1322, 1263, 1228, 1165, 1141, 1092, 1046, 995, 966, 822, 750,
711, 616, 553 cm−1; 1H NMR (DMSO) δ: 9.92, 9.31; 13C NMR (DMSO) δ: 156.95, 153.45 ppm.

4-Amino-3-hydrazino-5-methyl-1,2,4-triazolium (4): Compound 3 (2.01 g, 10 mmol)
was dissolved in 30 mL of distilled water. While stirring, 16.8 mL of sodium bicarbonate
(10 wt%) was added dropwise. The colorless solutions turned purple. The mixture was
stirred for 30 min and evacuated under vacuum to produce a purple mixture. The mixture
was dissolved in 25 mL of absolute methanol and the inorganic salt was removed via
filtration. After filtering, the solvent was removed under reduced pressure to produce
a purple solid of 4 at a 73% (0.934 g) yield. MS m/z (ESI+): 129.1 [C3H9N6

+]; elemental
analysis (%) calcd. for C3H8N6 (MW = 128.14 g·mol−1): C 28.13, H 6.25, N 65.63; found C
28.07, H 6.37, N 64.73; IR (KBr): 3344, 3215, 3026, 2843, 2661, 1965, 1620, 1585, 1526, 1486,
1254, 1232, 1091, 1051, 997, 835, 742, 654 cm−1; 1H NMR (DMSO) δ: 9.62, 9.15, 8.26 ppm;
13C NMR (DMSO) δ: 174.35, 152.25, 20.0 ppm.

General procedure for the preparation of energetic salts 6–11.
A solution of silver nitrate, silver perchlorate, silver dinitramide, silver 5-nitrotetrazolate,

and silver 5-nitrotetrazolate-2N-oxide (10 mmol) in distilled water (20 mL), or silver
5-nitroiminotetrazolate (5 mmol) in distilled water (10 mL) was added dropwise to the
solution of compound 11 (1.005 g, 5 mmol) in distilled water (20 mL). After stirring at room
temperature for 1 h, the precipitate was filtered and rinsed with 10 mL of distilled water.
The solvent was evaporated in vacuum and the residue was recrystallized from methanol
and dried in air to obtain the target product.

4-Amino-3-hydrazino-5-methyl-1,2,4-triazolium nitrate (6): Yield: 96%, white crys-
tals. MS m/z (ESI+): 129.1 [C3H9N6

+]; elemental analysis (%) calcd for C3H10N8O6
(MW = 254.16 g·mol−1): C 14.17, H 3.94, N 44.09; found C 14.21, H 4.15, N 43.38; IR
(KBr): 3319, 2847, 2724,1643, 1614, 1558, 1418, 1293, 1234,1159, 1077, 1051, 1036, 966, 947,
867, 815, 720, 702, 637, 618, 566 cm−1; 1H NMR(DMSO) δ: 10.30, 9.77, 6.08 ppm; 13C NMR
(DMSO) δ: 169.99, 152.89 ppm.

4-Amino-3-hydrazino-5-methyl-1,2,4-triazolium perchlorate (7): Yield: 90%, colorless
transparent crystals. MS m/z (ESI+): 129.1 [C3H9N6

+]; elemental analysis (%) calcd for
C3H10N6Cl2O8 (MW = 329.05 g·mol−1): C 10.94, H 3.04, N 25.53; found C 10.89, H 3.12,
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N 26.27; IR (KBr): 3327, 3131, 2989, 2695, 1645, 1536, 1455, 1421, 1320, 1235, 1185, 1039,
946, 835, 712, 668, 555 cm−1; 1H NMR(DMSO) δ: 10.41, 9.55 8.43 ppm; 13C NMR (DMSO)
δ: 152.53, 142.34 ppm.

4-Amino-3-hydrazino-5-methyl-1,2,4-triazolium dinitramide (8): Yield: 88%, white
solid. Elemental analysis (%) calcd for C3H10N12O8 (MW = 342.19 g·mol−1): C 10.53, H
2.92, N 49.12; found C 10.61, H 3.09, N 48.82; IR (KBr): 3326, 3162, 3148, 2412, 1932, 1774,
1565, 1412, 1393, 1318, 1285, 1261, 1219, 1086, 1048, 1005, 929, 885, 848, 757, 731, 671, 639,
557 cm−1; 1H NMR(MeOD) δ: 10.82, 9.87, 6.79 ppm; 13C NMR (CD4O) δ: 153.33, 144.34,
143.33 ppm.

4-Amino-3-hydrazino-5-methyl-1,2,4-triazolium 5-nitrotetra-zolate (9): Yield: 93%,
pale yellow solid. MS m/z (ESI+): 129.1 [C3H9N6

+]; m/z (ESI−): 114.0 [CN5O2
−]; elemental

analysis (%) calcd for C5H10N16O4 (MW = 358.24 g·mol−1): C 16.76, H 2.79, N 62.57; found
C 17.01, H 3.82, N 61.30; IR(KBr): 3355, 2935, 2692, 2100, 1736, 1667, 1608, 1504, 1450, 1320,
1269, 1228, 1187, 1170, 1148, 1106, 1069, 1056, 1039, 772, 746, 710, 615, 557 cm−1; 1H NMR
(DMSO) δ: 9.91, 9.38 ppm; 13C NMR (DMSO) δ: 169.33, 157,28, 153.63, 151.31 ppm.

4-Amino-3-hydrazino-5-methyl-1,2,4-triazolium 5-nitrotetra-zolate-2N-oxide (10): Yield:
86%, pale yellow solid. MS m/z (ESI+): 129.1 [C3H9N6

+]; elemental analysis (%) calcd for
C5H10N16O6 (MW = 390.24 g·mol−1): C 15.38, H 2.56, N 57.44; found C 15.89, H 2.61, N
56.91; IR(KBr) ν: 3347, 3256, 3121, 3071, 2932, 2789, 1855, 1692, 1585, 1541, 1437, 1406, 1309,
1249, 1197, 1141, 1082, 1057, 996, 965, 934, 837, 775, 709, 638, 553 cm−1; 1H NMR(DMSO)
δ: 10.83, 9.97, 8.28 ppm; 13C NMR(DMSO) δ: 161.63, 156.25, 155.13 ppm.

4-Amino-3-hydrazino-5-methyl-1,2,4-triazolium 5-nitroimino-tetrazolate (11): Yield:
83%, white solid. MS m/z (ESI+): 129.0 [C3H9N6

+]; m/z (ESI−): 127.98 [CN6O2
−]; elemental

analysis (%) calcd for C4H10N12O2 (MW = 258.2 g·mol−1): C 18.60, H 3.88, N 65.12; found
C 18.48, H 3.81, N 64.28; M.p. 164.5 ◦C; IR(KBr): 3440, 3348, 3277, 3090, 2978, 2901, 2733,
2679, 1709, 1651, 1599, 1540, 1441, 1328, 1268, 1234, 1158, 1063, 1033, 999, 869, 836, 685,
504, 425 cm−1; 1H NMR(DMSO) δ: 10.33, 9.13, 7.83, 7.68 ppm; 13C NMR(DMSO) δ: 157.32,
156.35, 150.37, 25.37 ppm.

4. Conclusions

In this study, we successfully synthesized a new precursor, 4-amino-3-hydrazino-5-
methyl-1,2,4- triazolium hydrochloride 3 (AHMT·2HCl). The nitrogen-rich compound 3
was synthesized via the reaction of triaminoguanidine hydrochloride and acetic acid and
then hydrolyzed with diluted hydrochloric acid. Via Brønsted acid–base reactions, a series
of energetic salts based on compound 3 were synthesized and fully characterized. The
structures of 3, 5 and 9 were confirmed via X-ray single-crystal diffraction. Cations can be
either polyvalent, monovalent or bivalent. Among all energetic salts based on 4-amino-3-
hydrazino-5-methyl-1,2,4-triazole, compound 3 shows the best stability, and dinitramide
salt 8 shows excellent properties with a detonation pressure of 33.9 GPa, a detonation
velocity of 8887 m s−1 and an optimal oxygen-balance state. Therefore, considering its
excellent performance and desirable properties, compound 8 holds great potential for
utilization in various areas within the energetic materials field.
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//www.mdpi.com/article/10.3390/ijms241713136/s1. References [19–26] are cited in there.
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