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Abstract: The disease of SARS-CoV-2 has caused considerable morbidity and mortality globally.
Spike proteins on the surface of SARS-CoV-2 allow it to bind with human cells, leading to infection.
Fullerenes and their derivatives are promising SARS-CoV-2 inhibitors and drug-delivery vehicles. In
this study, Gaussian accelerated molecular dynamics simulations and the Markov state model were
employed to delve into the inhibitory mechanism of Fullerene–linear-polyglycerol-b-amine sulfate
(F–LGPS) on spike proteins. During the study, it was discovered that fullerene derivatives can operate
at the interface of the receptor-binding domain (RBD) and the N-terminal domain (NTD), keeping
structural domains in a downward conformation. It was also observed that F-LGPS demonstrated
superior inhibitory effects on the XBB variant in comparison to the wild-type variant. This study
yielded invaluable insights for the potential development of efficient therapeutics targeting the spike
protein of SARS-CoV-2.

Keywords: molecular dynamics simulation; SARS-CoV-2; sulfated polysaccharide; functionalized
fullerene; Markov state model

1. Introduction

The disease of COVID-19 has had a significant impact on the economy and society
globally, resulting in deaths, healthcare shortages, reduced economic activity, social isola-
tion, and mental-health deterioration. It is caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) [1–3]. The XBB strain is a highly transmissible and immune-
escaping variant of the Omicron variant, which requires attention to vulnerable populations
and close monitoring [4].

According to previous research, the first step in infection is the binding of the spike
(S) protein to ACE2 [5]. The homotrimeric S protein is located on the surface of the viral
membrane, and each monomer consists of two domains, S1 and S2, which are responsible
for receptor binding and membrane fusion, respectively. The S1 domain is composed of
the receptor-binding domain (RBD) and the N-terminal domain (NTD) [6]. The binding
affinity of ACE2 varies, depending on the orientation of the RBD. The closed state in which
all RBDs are downward is inaccessible to ACE2 and, thus, it is inactive, while an open state
with RBDs flipped upward can bind to the receptor [7,8].

Specific sulfated polysaccharides, including fucoidans and heparin, can bind tightly
to the S protein of SARS-CoV-2 in vitro, which suggests that they can act as decoys to
interfere with S-protein binding to the heparan-sulfate co-receptor in host tissues, inhibiting
viral infection [9]. Functionalized fullerene can be used as a drug-delivery agent with
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inhibitory activity [10,11], and animal experiments have also proven the good pulmonary-
drug-delivery effect of fullerenes [12]. Fullerene-linear polyglycerol b-amine sulfate (F–
LPGS) is a kind of functionalized fullerene that can inhibit SARS-CoV-2. It displayed an
IC50 of 0.32 × 10−3 M against the wild-type variant, and IC50 between 2.02 × 10−3 and
0.20 × 10−3 M against the SARS-CoV-2 Omicron BA.5 variant. Fullerene derivatives have
shown potential in inhibiting SARS-CoV-2 [13].

The Gaussian accelerated molecular dynamics simulation (GaMD) [14] is a useful
method to investigate the conformational changes of proteins, protein folding, protein–
ligand binding, etc. [15–19]. In the GaMD approach, the harmonic boost potential was
added so that the energy barrier could be reduced by smoothing the potential surface
and, thus, accelerating the transition between different conformational states for the pur-
pose of enhanced sampling. Here, the increased lifting potential followed the Gaussian
distribution, allowing the original potential surface to be easily recovered. Thus, this
enhanced simulation approach is very suitable for studying the dynamics of complex
biological systems.

Markov state models [20] can cluster protein conformations in molecular dynamics
trajectories and separate them into classes called microstates. Each microstate corresponds
to a state in the Markov model state’s space, and there is a transition probability between
each state, forming a transition-probability matrix. By using the transfer-probability matrix
and flux-analysis methods, the dynamic relationships between various microstates can
be analyzed.

In this study, we employed Gaussian accelerated molecular dynamics (GaMD) simula-
tions and the Markov state model to investigate the inhibitory mechanism of F-LGPS on
the spike protein, especially towards RBD and NTD, in both the wild-type variant and the
Omicron variant of SARS-CoV-2.

2. Results
2.1. Structural Stability and Dynamics Properties of the Four Systems

The AMBER 16 software was used to perform 2000 ns GaMD simulations at 300 K for
WT, WTF(WT–F–LPGS), XBB, and XBBF(XBB–F–LPGS) systems, respectively. To evaluate
the stability of the simulations, the root-mean-square deviation (RMSD) of the Cα atoms
was calculated; the RMSD values of the NTD and RBD are shown in Figure 1a,b, respectively.
The RMSD of NTD in both WT and WTF groups was higher compared to XBB and XBBF,
indicating a slightly lower stability compared to the XBB and more conformational changes.
The RMSD values of the RBD in all four groups were similar. Overall, the RMSD of all four
systems was within 4 Å, suggesting the good overall stability of the simulation systems
and their suitability for further analysis.

The radius-of-gyration value is shown in Figure 1c, and the mean value is presented
in Figure 1d. After binding with F–LPGS, the overall Rg of both the WTF and the XBBF
decreased, indicating a closed conformation after binding, and the protein was not in an
extended conformation. The SASA of the RBD also decreased, as shown in Figure 1e,f,
indicating a smaller hydrophilic area, which suggested that the protein was in a closed
conformation, with a reduced surface area. We then calculated the RMSF values of the Cα

atoms for the four systems to define stable residues. By selecting the centroid of the most
stable residues with the lowest RMSF value located on the axis of RBD and NTD domains,
we defined dihedral angles that described the relative motion of the RBD and NTD. The
results of the RMSF and the chosen residues are shown in Figure 2.

The defined dihedral angles were Q226-F42-Y383-P494 for WT and WTF, and T226-
L41-D375-L493 for XBB and XBBF. Frontal views and side views of the selection of residues
and their dihedral angles in the WT and XBB systems are displayed in Figure 3.
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Figure 1. (a) The temporal evolution of the RMSDs of NTD. (b) The temporal evolution of the RMSDs
of RBD. (c) The temporal evolution of the Rg values. (d) Average Rg values. (e) The temporal
evolution of the SASA values of RBD. (f) Average SASA values.
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Figure 2. (a) A simplified representation of the residues along the central axis of the N-terminal
domain (NTD) and receptor-binding domain (RBD). (b) The RMSFs of the Cα atoms in the WT and
WTF systems. (c) The RMSFs of Cα atoms in the XBB and XBBF systems (by Figdraw).

We analyzed the changes in the dihedral angle over 2000 ns. The changes in the
dihedral angles are shown in Figure 4, and the frequency distribution is presented in
Figure 5. When combined with the F–LPGS, the fluctuations in the angle changes were
smaller, the angle distribution became more concentrated, and the RBD and NTD planes
maintained near-vertical positions, resulting in a more stable closed conformation. These
results were observed in both the WTF and the XBBF system.
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2.2. Principle Component Analysis and Markov State Model

A PCA analysis of all the Cα atoms, performed for the four systems, is shown in
Figure 6. The PC1 and PC2 accounted for more than 70%, as shown in Table 1, reflecting
the reliability of the results. The free-energy landscape was constructed using the PCA for
four systems, identifying low-energy stable representative conformations. In the WTF and
XBBF systems, the conformations in the energy wells were all downward conformations,
while the low-energy conformations obtained from the energy wells of the apo protein
were extended upward conformations, along with a small number of metastable states
between the upward and downward conformations.
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Table 1. The proportions of the first two principal components in the four systems.

Systems PC1 PC2

WT 54.81% 25.36%
WTF 63.58% 20.72%
XBB 65.13% 13.32%

XBBF 65.45% 7.83%

To construct a Markov state model (MSM), performed simulations to generate a trajec-
tory of conformations over time. Next, the backbone-torsion angles were extracted from
the trajectories to characterize the conformational space. To simplify the conformational
space, a time-lagged independent component analysis (TICA) was applied to reduce the
dimensions. Subsequently, the reduced-dimension data were clustered into discrete states
using k-means clustering algorithms. The VAMP2 scores for different numbers of cluster
centers are shown in Figure S1, and the results of the clustering are shown in Figure S2. The
lag time was determined to be 0.8 ns, as shown in Figure S3. The transition probabilities
between the states were estimated by constructing a transition matrix, which captured the
dynamics of the system. The MSM was then validated by Chapman–Kolmogorov tests
(Figure S4), ensuring its reliability. The MSM described the transition of the states, as shown
in Figure 7. The total flux from the initial state (SA) to the target state (SB) was decomposed
into pathways, which can be seen in Table 2.
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In the systems without F–LPGS, the protein tended to stabilize in a relatively open
conformation after the RBD wobble compared to the systems with F–LPGS. Th WT was
stable in a semi-open conformation, while the XBB was more open in a stable conforma-
tion than the WT, and the RBD was more flexible and easier to bind to the ACE2. This
partly explained its high infectivity. In the WTF and XBBF systems, the protein directly
entered the closed conformation at a high flux from the initial state, and a small portion
transitioned to the closed conformation after undergoing swinging and a small number of
open conformations.
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Table 2. The pathways obtained from TPT (transition-path theory)-based analysis of the four systems.

System Pathways Percentage of Total Coarse Flux (%)

WT
SA→S1→S3→SB 0.69

SA→S3→SB 98.92
SA→S2→S3→SB 0.39

WTF

SA→S3→SB 0.30
SA→SB 99.01

SA→S2→SB 0.59
SA→S1→SB 0.10

XBB
SA→S3→SB 91.75

SA→S1→S2→S3→SB 8.25

XBBF
SA→S1→S2→SB 3.23

SA→S2→SB 96.77

2.3. Analysis of the Interaction between Protein and Ligand

The results of the MM-PBSA are shown in Table 3. The binding free energy of the WT–
F–LPGS was −41.05 ± 0.59 KJ/mol, while the binding free energy of the XBB–F–LPGS was
−45.37 ± 1.36 KJ/mol; the binding free energy was lower in the XBB–F–LPGS, indicating a
better affinity. Figure 8 shows the binding-energy contributions of the 20 highest-ranked
residues in the WTF and XBBF systems. The residues in the XBB provided greater binding
energy than those in the WT.

Table 3. The results of MM-PBSA.

System WTF XBBF

∆EvdW −85.67 ± 0.57 −85.04 ± 1.71
∆Eele −73.14 ± 1.73 −61.45 ± 3.36
∆Ggas −158.81 ± 1.88 −146.48 ± 3.16
∆Gsolv 117.75 ± 1.89 101.11 ± 3.58
∆Gtotal −41.05 ± 0.59 −45.37 ± 1.36
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We also calculated the RMSD of the ligands and performed clustering and hydrogen-
bond analyses, as shown in Figure 9. The analysis of the ligand showed that the binding
position of the ligand in the XBB system was more stable, and more hydrogen bonds were
formed in the XBBF system during the 2000-nanosecond simulation. The F–LPGS showed
better inhibition of the XBB variant than the WT.
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3. Discussion

In our study, we employed Gaussian accelerated molecular dynamics (GaMD) simula-
tions and Markov state models to investigate the inhibitory mechanism of F-LGPS on the
spike protein, particularly for the RBD and NTD domains, in both the wild-type variant and
the Omicron (XBB) variant of SARS-CoV-2. Our findings reveal that fullerene derivatives,
such as F-LGPS, can effectively bind at the RBD–NTD interface, maintain the structural
domains in a closed conformation, and reduce the likelihood of transitioning to an open
or upward conformation. This action inhibits SARS-CoV-2 infection, providing valuable
insights for the development of novel SARS-CoV-2 inhibitors.

Our study also demonstrates that these fullerene derivatives exhibit a stronger in-
hibitory effect on the XBB (Omicron) variant compared to the wild-type. This observa-
tion suggests the potential applicability of these derivatives in suppressing the spread
of emerging SARS-CoV-2 variants, such as the highly infectious Omicron variant. The
binding-free-energy analysis and hydrogen-bond analysis further support the enhanced
inhibitory effect of F-LGPS on the XBB variant.

The results of the Markov state model reveal the protein’s dynamic behavior and
conformational changes in the presence and absence of F-LGPS. In systems without F-
LGPS, the protein tends to stabilize in a relatively open conformation after RBD wobbling
compared to systems with F-LGPS. In the presence of F-LGPS, the protein directly enters
the closed conformation at a high level of flux from the initial state, and a small portion
transitions into a closed conformation after undergoing swinging and a small number of
open conformations.
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These findings have important implications for the ongoing battle against the COVID-19
pandemic and its evolving variants. By understanding the inhibitory mechanism of fullerene
derivatives on the spike protein, we can contribute to the development of novel SARS-CoV-2
inhibitors with enhanced efficacy and safety profiles. Future studies should focus on the
experimental validation of these findings and the optimization of fullerene derivatives for
improved efficacy and safety in clinical applications. Additionally, further research into the
inhibitory effects of fullerene derivatives on other emerging SARS-CoV-2 variants will be
crucial in addressing the ongoing challenges posed by the COVID-19 pandemic.

4. Materials and Methods
4.1. System Preparation

The 2D structure of fullerene–linear-polyglycerol-b-amine-sulfate (F–LPGS) is shown
in Figure 10a, its 3D structure was built using Avogadro software [21], and we retained
five structural units for it. Gaussian 09 [22] was used to optimize the structure at the level
of B3LYP/6-31G* to obtain the optimal conformation of F–LPGS for molecular docking.
The NTD and RBD of wild-type variant (WT) consisted of residues 14–526 in chain A of
the SARS-CoV-2 spike protein (PDB code: 6VXX) [23]; since several fragments were not
resolved in these Cryo-EM structures, SWISS-MODEL [24–26] was employed to replenish
the missing atoms. Next, we constructed the 3D structure of NTD and RBD (residues
14–525) of XBB.1.5 [27] using Alphafold2 Colab [28,29]. The sequences of WT 1-526 and
XBB 1-525 are shown in Figure 10b.

Int. J. Mol. Sci. 2023, 24, x  11 of 16 
 

 

 
Figure 10. (a) The structure of F–LPGS. (b) The sequences of 1-526 in spike for WT and XBB 1.5. 

The F–LPGS was docked into the position between the RBD and NTD domains with 
Autodock Vina 1.2.0 [30,31] to form the WT–F–LPGS (WTF) and XBB–F–LPGS (XBBF) sys-
tems, respectively. The size of the docking box was set to x = 70, y = 70, and z = 70, and the 
spacing between grid points was set to 0.375 Å. The lowest-energy structures were se-
lected from docking results as the initial structures for the MD simulations. Binding poses 
obtained from docking are illustrated in Figure 11. 

Figure 10. (a) The structure of F–LPGS. (b) The sequences of 1-526 in spike for WT and XBB 1.5.



Int. J. Mol. Sci. 2023, 24, 14471 11 of 15

The F–LPGS was docked into the position between the RBD and NTD domains with
Autodock Vina 1.2.0 [30,31] to form the WT–F–LPGS (WTF) and XBB–F–LPGS (XBBF)
systems, respectively. The size of the docking box was set to x = 70, y = 70, and z = 70,
and the spacing between grid points was set to 0.375 Å. The lowest-energy structures were
selected from docking results as the initial structures for the MD simulations. Binding
poses obtained from docking are illustrated in Figure 11.
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4.2. Molecular Dynamics Simulations

Systems under study were designated as follows: WT for NTD and RBD of wild-
type variant, WTF for WT–F–LPGS, XBB for NTD and RBD of XBB.1.5, and XBBF for
XBB–F–LPGS. The protein residues in the systems were renumbered, with 14–526 in WT
renumbered as 1–513, and 14–525 in XBB renumbered as 1–512.

The pmemd. cuda module in AMBER 16 (University of California, San Francisco,
CA, USA) [32] was used to perform conventional MD simulations for four model systems.
The force fields ff14SB [33], GAFF2 [34], and TIP3P [35] in Amber16 were employed in
Leap module to parameterize the proteins, F–LPGS, and water molecules, respectively.
Subsequently, each system was dissolved in an octahedral box using the TIP3P water model.
The distance between the solute surface and the box was set to 12 Å. To prevent edge effects,
periodic boundary conditions (PBCs) were applied to the three systems. Appropriate
amounts of Na+ ions were added to neutralize the system. All bonds involving hydrogen
atoms were constrained using the SHAKE algorithm [36]. The particle-mesh Ewald (PME)
algorithm [37] was used to handle non-bonded electrostatic interactions, and the cut-off
was set to 8 Å. Before the production simulation, energy minimization was executed for
the four systems to eliminate atomic collisions in the initial structure. In the minimization
phase, the steepest-descent algorithm and conjugate-gradient algorithm were performed
for 500 steps each. Next, the four systems were gradually heated from 0 K to 300 K in NVT
ensemble at 50 ps. Finally, 50 ns simulations were carried out for the equilibrium of the
systems under the NPT ensemble. The entire simulation used a time step of 2 fs, and a
Langevin thermostat [38] with a collision frequency of 1 ps.

The initial structures used by the GaMD simulations were obtained from the well-
balanced structure of the cMD simulations. In this study, we applied the dual-potential
boost to the GaMD simulations. Boosting was applied to both the total and dihedral poten-
tial energy (igamd = 3). The dual-potential-boost parameters were defined by the previous
50 ns cMD simulations. Subsequently, multiple replicates of GaMD simulations were car-
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ried out for four systems, with coordinates saved every 10 ps, and the total simulation time
for each system was 2000 ns. The GaMD trajectories were used for subsequent analysis.

4.3. Trajectory Analysis

Trajectory analyses, including the root-mean-square deviations (RMSD), radius of gy-
ration (Rg), solvent-accessible surface area (SASA), root-mean-square fluctuations (RMSF),
and dihedral angle, were computed using Amber16’s Cpptraj module [39]. Principal
component analysis (PCA) [40] is a widely used dimensionality-reduction method that
describes the coordinated motions of entire proteins, which were also calculated using
Cpptraj in this study. The free-energy landscapes (FELs) are often used to find the dominant
conformation and its corresponding potential barrier. Here, we used the ddtpd software by
Tian Lu to construct the FEL.

4.4. MSM Analysis

The use of MSM analysis is a powerful tool for transforming groups of short trajectories
into scientifically meaningful dynamic models. In this study, PyEMMA 2.5.7 [41] was
utilized to construct MSM through the following workflows.

First, the backbone-torsion angles were extracted from each frame in the MD tra-
jectories to discriminate different conformations. Next, the dimension of the space was
reduced to two collective coordinates using time-lagged independent component analysis
(TICA) [42]. This technique retains 95% of the dynamic variance of the original data and
identifies the slowest modes in a feature space by maximizing the autocorrelation of re-
duced coordinates. The TICA method is preferred for MSM construction over principal
component analysis (PCA), since it takes into account kinetic information.

We then used VAMP-2 scores, where VAMP stands for variational approach for Markov
process, to ascertain the number of cluster centers [43]. Next, the conformations for each
system were clustered into microstates using the k-means algorithm. A transition-count ma-
trix was constructed by counting the number of transitions between each pair of microstates
at an appropriate lag time using the sliding-window approach. The transition-probability
matrix was then obtained using the Bayesian MSM estimator [44]. Timescales were exam-
ined to determine when the system becomes Markovian [45]. As shown in Figure S3, a lag
time of 0.8 ns was chosen.

The Chapman–Kolmogorov test [46] was employed to evaluate the validity of the
Bayesian Markov model, revealing a nearly perfect agreement between the estimated
transition probabilities calculated from the MD data and the predictions of the MSMs, sug-
gesting the validity of the MSMs. Subsequently, these microstates were further divided into
macrostates using the PCCA algorithm [47]. Finally, the TPT was used to elucidate the tran-
sitions between these macrostates and the highest-flux pathway [48]. The conformations
presented in Figure 9 are representative of each macrostate.

4.5. MM-PBSA Calculations

The accurate calculation of protein–protein binding free energy is of great importance
in biological and medical science. This work used the molecular mechanics/Poisson–
Boltzmann surface area (MM/PBSA) method to explore the proteins’ binding affinity to
F–LPGS [49–51].

The binding free energy (∆Gbind) can be expressed by the following Equation.

∆Gbind = ∆H − T∆S (1)

The changes in the protein and ligand upon binding were similar in all systems, with
very small entropy differences; therefore, the calculation of the solvate entropy term is
omitted. The enthalpy change (∆H) was computed as the sum of changes in the gas-phase
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energy (∆EMM) and the solvation-free energy (∆Gsol), averaged over a conformational
ensemble generated by MD simulations:

∆H = ∆EMM + ∆Gsol (2)

The ∆EMM was estimated using the following equation:

∆EMM = ∆Eele + ∆EvdW + ∆Eint (3)

where ∆Eele, ∆EvdW, and ∆Eint represent the electrostatic, vdW, and internal energies,
corresponding to the bond, angle, and dihedral energies, respectively.

In this study, the conformational structures of the protein–ligand complex, protein,
and ligand are regarded as a rigid body. Thus, the ∆Eint between the complex and the
isolated components can offset each other, because this energy term was calculated from
the same MD simulated trajectory. The ∆Gsol was used to indicate the sum of the polar
solvation-free energy (∆Gpb) and non-polar solvation-free energy (∆Gnp).

∆Gsol = ∆Gpb + ∆Gnp (4)

The ∆Gpb was determined by solving the linearized Poisson–Boltzmann equation
using the PBSA program in the AMBER 16 suite. Next, 500 snapshots were extracted from
the final trajectory for MM/PBSA calculation.

5. Conclusions

In conclusion, our study has two main findings. First, fullerene derivatives can
function at the RBD–NTD interface, maintain structural domains in a closed conformation,
reduce the transition to an open or upward conformation, and thus inhibit SARS-CoV-2
infection. Second, these derivatives exhibited better inhibitory effects on the XBB variant,
suggesting their potential applicability in suppressing the Omicron variant. Our research
may provide theoretical support for the development of novel SARS-CoV-2 inhibitors.
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