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Abstract: Anticancer peptides (ACPs) have been proven to possess potent anticancer activities.
Although computational methods have emerged for rapid ACPs identification, their accuracy still
needs improvement. In this study, we propose a model called ACP-BC, a three-channel end-to-end
model that utilizes various combinations of data augmentation techniques. In the first channel,
features are extracted from the raw sequence using a bidirectional long short-term memory network.
In the second channel, the entire sequence is converted into a chemical molecular formula, which
is further simplified using Simplified Molecular Input Line Entry System notation to obtain deep
abstract features through a bidirectional encoder representation transformer (BERT). In the third
channel, we manually selected four effective features according to dipeptide composition, binary
profile feature, k-mer sparse matrix, and pseudo amino acid composition. Notably, the application of
chemical BERT in predicting ACPs is novel and successfully integrated into our model. To validate
the performance of our model, we selected two benchmark datasets, ACPs740 and ACPs240. ACP-BC
achieved prediction accuracy with 87% and 90% on these two datasets, respectively, representing
improvements of 1.3% and 7% compared to existing state-of-the-art methods on these datasets.
Therefore, systematic comparative experiments have shown that the ACP-BC can effectively identify
anticancer peptides.

Keywords: anticancer peptides; bidirectional long short-term memory; chemical information

1. Introduction

Cancer is a severe disease causing a considerable number of deaths globally [1]. It is
characterized by uncontrolled and aberrant cell growth, rapid proliferation, or invasion
into the human body, constituting formidable illnesses [2]. According to diagnostic and
reporting data from international cancer research institutions [3], there have been over
19.3 million new cases of cancer worldwide, resulting in approximately 10 million deaths by
the year 2020. The global cancer burden is expected to be 28.4 million cases in 2040. Conven-
tional cancer treatment methods include radiation therapy, chemotherapy, surgery, as well
as targeted drugs and immunotherapy [4]. However, commonly employed techniques such
as radiation therapy and chemotherapy have detrimental effects on healthy cells, exhibiting
noticeable side effects, low success rates, and carrying the risk of relapse. Additionally,
these methods are financially burdensome [5]. Although targeted drug therapies do not
harm normal cells, they may still induce certain side effects such as skin inflammation,
fatigue, nausea, and vomiting [6]. Furthermore, traditional drug treatments often lead to
the development of drug resistance in cancer cells [7]. Therefore, there is an urgent need
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to develop novel anticancer drugs that can effectively inhibit the rapid proliferation of
cancer cells.

The emergence of anticancer peptides has opened up new avenues for cancer treat-
ments. Anticancer peptides are naturally occurring small-molecule peptides composed
of 5–40 amino acids, known for their high biocompatibility and low toxicity [8]. The
identification and characterization of these peptides in tumor biology experiments are
time-consuming, labor-intensive, costly, and challenging. Therefore, there is an urgent
need to seek rapid and accurate methods for identifying anticancer peptides. Anticancer
peptides have demonstrated promising therapeutic effects in cancer treatments and have
been recognized as potential anticancer agents [9–11]. Currently, a growing number of
anticancer peptides have been identified and validated from protein sequences through
clinical experiments. Peelle et al. [12] showcased the effectiveness of intracellular protein
scaffold-mediated random peptide libraries using mammalian cell phenotypic screening
methods. Norman et al. [13], on the other hand, employed genetic approaches to select
and inhibit bio-pathway peptides. However, the use of these identification methods is
time-consuming, labor-intensive, costly, and challenging. Hence, there is an urgent need to
explore rapid and accurate methods for identifying anticancer peptides [14].

Many computational techniques have been widely applied in the field of bioinfor-
matics to solve various problems [14]. In the recognition of anticancer peptides (ACPs),
machine learning has demonstrated absolute advantages and prospects [15–19]. Over the
past few years, a series of traditional machine learning methods have been proposed for
ACPs identification. These traditional methods require manual design of features to classify
protein sequences. As a result, various methods for extracting effective features have
emerged, among which the support vector machine (SVM) model is the most commonly
used method. Tyagi et al. [9] first proposed the use of machine learning models for ACPs
identification. They developed the AntiCP model, which selected amino acid composition
(AAC) [20], split AAC (using N-terminal and C-terminal residues), dipeptide composition
(DPC) [21,22], and binary profiles feature (BPF) [22] as features of peptide sequences. These
features were used as inputs to an SVM classifier to distinguish ACPs from non-ACPs
sequences. Hajisharifi et al. [23] proposed two SVM-based methods for ACPs identification.
The first method employed pseudo-amino acid composition (PAAC) [24–28] to extract
combination features of six physicochemical properties of amino acids. The second method
extracted features from peptide sequences using the core local alignment technique and
utilized SVM for binary classification. Vijayakumar et al. [29] developed the ACPP model,
which selected amino acid distribution measurement-based features and centroid com-
position information as features, combined with an SVM model for ACPs identification.
Chen et al. [30] developed the iACP model, which utilized g-gap dipeptide composition
(g-gap DPC) for feature extraction of peptide sequences and employed radial basis function
(RBF) kernel supported SVM for classification. The Random Forest (RF) [31] model is also a
commonly used method for identifying ACPs. Manavalan et al. [2] developed the MLACP
model, which selected AAC, DPC, ATC, and physicochemical properties of residues for fea-
ture extraction, and utilized SVM and RF classifiers for ACPs recognition. Akbar et al. [32]
proposed the iACP-GAEnsc model, which selected g-gap DPC, reduced amino acid alpha-
bet composition (RAAAC), and PAAC based on amino acid hydrophobicity for feature
extraction, and applied a combination of SVM, RF, probability neural network (PNN), gen-
eralized regression neural network (GRNN), and k-nearest neighbors (KNN) classification
models for ACPs identification. Wei et al. [33] proposed a PEPred-Suite model based on RF,
which further improves the feature representation of ACPs to predict anticancer peptides.
Boopathi et al. [34] proposed an mACPpred model, which uses seven specific types of
encoding features, including AAC, DPC, composition-transition-distribution (CTD), quasi-
sequence-order (QSO), amino acid index (AAIF), binary profile (NC5), and conjoint triad
(CTF) to represent a peptide sequence and cooperate with an SVM model to predict ACPs.
Li et al. [35] selected AAC, PAAC, and grouped amino acid composition (GAAC) features
to construct a low dimensional feature model to identify anticancer peptides. Xu et al. [36]
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proposed a sequence-based hybrid model that transformed polypeptides into feature vec-
tors using g-gap DPC and employed SVM and RF as classifiers. Schaduangrat et al. [37]
introduced the ACPred model, which selected AAC, DPC, PAAC, amphiphilic pseudo
amino acid composition (Am-PAAC), and physicochemical properties as features of pep-
tide sequences, and used SVM and RF for ACPs identification. Meanwhile, Wei et al. [38]
developed a sequence-based anticancer predictor called ACPred-FL, which employed a
two-step feature selection technique and selected peptide length, BPF, overlap property
feature (OPF), twenty-one-bit feature (TOBF), CTD, AAC, g-gap DPC, and adaptive skip
dipeptide composition (AKDC) as seven representation methods of features.

However, with the rapid development of the big data era in recent years, there has
been an explosive increase in biological big data, making traditional machine learning
algorithms inadequate for handling complex and diverse data. Deep learning methods,
known for their ability to efficiently process unstructured data, have been widely applied
in the field of bioinformatics. An increasing number of deep neural network models have
been employed for ACPs recognition [19,39,40]. Wu et al. [41] developed PTPD, which
utilized word2vec to represent k-mer sparse matrixers [42] and employed convolutional
neural networks (CNN) for ACPs recognition. Yi et al. [43] proposed ACP-DL, which
selected BPF, a reduced amino acid alphabet, and the k-mer sparse matrix as features,
and applied long short-term memory (LSTM) models for ACPs prediction. Cao et al. [44]
presented the DLFF-ACP model, using AAC, DPC, k-spaced amino acid group pairs
(CKSAAGP), and Geary as features, and integrating deep learning and multi-view feature
fusion for ACPs identification. Ahmed et al. [40] recently developed APC-MHCNN, a
computational model for predicting anticancer peptides that utilizes a multi-headed deep
CNN. In their study, they selected sequence, physicochemical, and evolutionary features
as inputs to the model. By employing a deep learning approach, the ACP-MHCNN
demonstrated promising performance in peptide prediction. Similarly, Sun et al. [45]
introduced ACPNet, a novel framework for identifying anticancer peptides. ACPNet
incorporates peptide sequence information, physicochemical properties, and self-encoding
features into its architecture. The model employs fully connected networks and recurrent
neural networks to achieve accurate ACPs classification. Wang et al. [46] proposed CL-
ACP, which introduces the anticancer peptides secondary structures as additional features
and uses a combined network and attention mechanism to predict anticancer peptides.
Chen et al. [47] proposed ACP-DA, which integrates BPF and k-mer sparse matrix features
to represent peptide sequences and uses data augmentation to improve the predictive
performance of anticancer peptides. Rao et al. [48] proposed the ACP-GCN model, which
leverages one-hot encoding and graph convolutional networks (GCN) to predict anticancer
peptides. By utilizing the unique characteristics of peptide sequences and considering their
structural relationships through GCN, the ACP-GCN model achieves high accuracy in
ACPs identification. Zhu et al. [49] developed the ACP-check model, which uses LSTM
networks to extract time-dependent information from peptide sequences for anticancer
peptides to be identified effectively. You et al. [50] fused the sparse matrix features of BPF
and the k-mer sparse matrix to construct a new bidirectional short-term memory network,
which achieves the prediction of anticancer peptides through two sets of dense network
layers. The aforementioned studies demonstrate significant advancements in the field of
computational peptide-based cancer research. The development of these computational
models provides valuable tools for predicting and identifying potential anticancer peptides,
thereby facilitating the discovery of novel therapeutic agents for combating cancer.

Although the above studies have made some progress, there is still room for improve-
ment. For instance, the above methods only consider the information derived from the
amino acid primary sequence and do not take into account the spatial structural infor-
mation of amino acids. In this study, we propose a novel deep learning model for ACPs
prediction called ACP-BC, which is an end-to-end model that combines sequence and chem-
ical information to predict whether a protein sequence is an ACP. The features extracted
by ACP-BC are divided into three channels. The first channel extracts features through a
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three-layer bidirectional long short-term memory (Bi-LSTM) [51,52]. The original sequence
is first mapped to a 256-dimensional vector through an embedding layer fused within
the model, and then input into the Bi-LSTM for feature extraction. The second channel
utilizes information from the chemical bidirectional encoder representation transformer
(BERT) [53,54]. We convert the entire sequence into the form of a chemical molecular
formula and then use the Simplified Molecular Input Line Entry System (SMILES) [55–57]
to further simplify it. This SMILES-encoded sequence is input into a pre-trained BERT
model for fine-tuning, resulting in abstract features at a deeper level. The third channel
consists of manually crafted features known to be effective, including BPF, DPC, PAAC, and
k-mer sparse matrix features. These four types of features are fused together to collectively
extract features at different levels of an amino acid sequence.

Our proposed method can be divided into three steps, as shown in Figure 1. Firstly,
data collection is conducted by inputting the given peptide sequences and expanding
the data using two combination methods. Then, feature construction is carried out, and
peptide sequences are processed by the previously mentioned Bi-LSTM, pre-trained BERT,
and feature engineering methods, respectively, to extract features from the three channels.
Finally, feature classification connects the features of these three channels and uses a fully
connected layer to classify peptide sequences, train the model, and evaluate the trained
model. The experimental results indicate that our designed model can better extract deep
features, utilizing better representation of peptide sequences and a reasonable model
structure. ACP-BC can achieve high accuracy and can be more effectively applied to
ACPs prediction.
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Figure 1. An overview of the proposed ACP-BC model. Input the original peptide sequence,
perform data augmentation, followed by feature extraction from three channels: Bi-LSTM, pre-
trained BERT, and handcrafted features. The features from these channels are concatenated and used
for classification via a fully connected layer. The trained model is then evaluated.

2. Results
2.1. Analysis of Amino Acid Composition

Anticancer peptides (ACPs) are small peptides typically composed of 5–40 amino
acids [8]. To investigate the positional preference of amino acid residues in ACPs and
non-ACPs, we extracted the first 15 N-terminal residues from two benchmark datasets,
ACP740 and ACP240 [43], and created probability logo plots [58], as shown in Figure 2.
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In the plots, larger letters indicate that the amino acid is more frequently present at that
position. Preliminary observation shows that the letter F represents that Phenylalanine
exists more frequently at the N-terminal of ACPs, while the letters G, A, and D represent
glycine, alanine, and Aspartic acid, respectively, which also occupy the majority of the
N-terminal, but their physical and chemical properties are very different. At the second
position, the letter L stands for Leucine and the letter F is the most common. They have
similar properties. At other positions, the letter K represents lysine and the letter L is
frequently present, but also appears in non-ACPs. Although there are differences between
ACPs and non-ACPs, there is also great variability among ACPs. Therefore, distinguishing
ACPs from non-ACPs through the positional preference of amino acid residues remains a
challenging issue.
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Figure 2. Anticancer peptides probability logo graph. In the ACP740, non-ACP740, ACP240, and
non-ACP240 datasets, the positional preference of amino acid residues in anticancer peptides and
non-anticancer peptides.

2.2. Parameters of ACP-BC

In the experiment, numerous hyperparameters require manual configuration. We
conducted experiments to determine the optimal selection of several key hyperparameters,
which have a significant impact on the results. These hyperparameters include the data
augmentation factor R (1.0, 2.0), parameter C (128, 256, and 512) for the number of neurons
in the LSTM hidden layer, and parameter D (128, 256, and 512) for the number of neurons
in the embedded layer. R represents the multiplier for data augmentation, where R = 1.0
means that the training dataset is augmented once and added to our training set. In terms
of quantity, the entire training set is expanded to twice the original size. The number of
neurons D in the embedding layer is also a parameter that significantly influences the
results, as it represents the length of the vector encoding for each amino acid residue in
the original peptide chain. To explore the best effect of key hyperparameter combinations,
the performance of seven combination methods was compared on ACPs740 (as training
datasets), and ACPs164 (as an independent validation dataset).

Table 1 shows the impact of different combinations of hyperparameters on the indepen-
dent validation dataset ACPs164, and we first determine the parameter combination based
on accuracy, and then select the final hyperparameters based on the values of Matthews
correlation coefficient (MCC), Sensitivity (SE), and Specificity (SP). As shown in Table 1,
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the best metric values are highlighted in bold. It is observed that R generally performs
optimally when set to 1.0, and the number of neurons in the hidden layer is typically chosen
as 256 or 512. Based on comprehensive metrics such as accuracy (ACC) and MCC, we
selected the hyperparameter combination c3 that yielded the best overall performance,
namely R = 1.0, C = 256, and D = 512.

Table 1. Selection of hyperparameters on independent validation ACP164 datasets.

Combination R C D ACC MCC SE SP

c1 1.0 128 256 0.72 0.44 0.75 0.70
c2 1.0 256 256 0.80 0.62 0.88 0.73
c3 1.0 256 512 0.81 0.62 0.84 0.78
c4 1.0 512 512 0.80 0.59 0.79 0.80
c5 2.0 128 256 0.76 0.52 0.77 0.79
c6 2.0 256 512 0.80 0.60 0.83 0.76
c7 2.0 512 512 0.75 0.50 0.76 0.74

Note: The maximum value is marked in bold. ACC: accuracy. MCC: Matthews correlation coefficients. SE:
sensitivity. SP: specificity.

The selection of a suitable pre-trained BERT model is crucial in the feature channel of
chemical Bert. We compared two different BERT models, namely chemBERTa [59] based on
the robustly optimized BERT pre-training approach (RoBerta) [60] and BERT-base [53,54],
for feature extraction of our SMILES-formatted data. chemBERTa was pre-trained on a large
amount of SMILES-formatted data, while BERT-base was pre-trained on human natural
language text. For chemBERTa, we also compared two different tokenization methods,
namely SMILES-tokenizer (ST) and BPE’s tokenizer (BT) [61]. Table 2 shows the results of
our model validation on independent validation dataset ACPs164. The experimental results
show that these BERT models exhibit trivial performance differences, but the chemBERTa
model based on the SMILES tokenizer achieves better results.

Table 2. Performance comparison of BERT on ACP740 and ACP240 datasets.

Dataset BERT ACC MCC SE SP

ACP740
ChemBerta + ST 0.87 0.75 0.87 0.88
ChemBerta + BT 0.85 0.69 0.85 0.85

BERT-base 0.86 0.70 0.85 0.86

ACP240
ChemBerta + ST 0.90 0.90 0.90 0.89
ChemBerta + BT 0.86 0.72 0.87 0.85

BERT-base 0.89 0.76 0.88 0.88
Note: The maximum value is marked in bold. ACC: accuracy. MCC: Matthews correlation coefficients. SE:
sensitivity. SP: specificity.

2.3. Comparison of Fused Features

The third channel of the ACP-BC model consists of four manually selected features. These
four features include composition information [34,38,43,47,49], local information [41,43,47],
long-range relational information [23], and locally calculated information based on protein
physicochemical properties [35,45]. To investigate the impact of these features, we con-
ducted a series of ablation experiments on the ACP740 and ACP240 datasets to evaluate the
integration effect. Firstly, we conducted individual experiments for each feature representa-
tion method, and the results are shown in Figure 3. PAAC outperformed other features,
but as the other features are extracted from different perspectives, their quality cannot be
simply evaluated. Therefore, we designed experiments combining BERT + LSTM with
other features. Specifically, we designed the following experiments: BERT + LSTM + DPC,
BERT + LSTM + BPF,BERT + LSTM + DPC + BPF, BERT + LSTM + BPF + DPC + KMER, and
BERT + LSTM + DPC + BPF + KMER + PAAC. From Figure 3, it can be observed that these
features represent different levels of information, and thus achieve better results when
fused together.
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2.4. Comparison of Existing Methods

To demonstrate the effectiveness of our designed model, we compared ACP-BC with
other state-of-the-art methods. We evaluated the performance of ACP-DA [47], ACP-
DL [43], GRCI-Net [50], DeepACPpred [51], ACP-MHCNN [40], ACP-check [49], and other
methods using the same ACP740 and ACP240 datasets for a fair comparison. Compared
to ACP-DA, our model achieved better results with the combined use of two feature
enhancement methods. In terms of feature engineering, the features we selected were
more representative and capable of extracting amino acid sequence features from multiple
perspectives. Additionally, compared to other studies, we proposed the novel application
of SMILES sequences and the BERT model for ACPs recognition. Our experimental results
showed promising outcomes. As shown in Table 3, our proposed method outperformed
ACP-DA, ACP-DL, DeepACPpred, and other models in terms of performance on the
ACP740 and ACP240 datasets. We achieved an accuracy of 0.87 and 0.90, respectively,
surpassing other models. In terms of the MCC metric, our model surpassed most methods
on the ACP740 dataset, while obtaining the best results on the ACP240 dataset. These initial
results provide preliminary evidence of the effectiveness of our data augmentation methods.
Specifically, on the ACP240 dataset, our method demonstrated improvements of 1.3% on
ACC, 0.01 on MCC, and 0.01 on AUC compared to ACP-Check. This indicates that our
model performs better on small datasets. For the ACP740 dataset, the performance of ACP-
BC (SE, 0.87. SP, 0.88) is better than the ACP-DA, ACP-DL, GRCI-NET, and DeepACPpred,
except ACP-MHCNN and ACP-CHECK. For the ACP240 dataset, the performance of ACP-
BC (SE, 0.90. SP, 0.89) is better than the ACP-DA, ACP-DL, GRCI-NET, and DeepACPpred,
except ACP-CHECK and ACP-DA. Overall, our designed model successfully extracted
features at different levels and exhibited stronger compatibility with small datasets. Thus,
our model possesses great potential for the prediction of ACPs and non-ACPs.

In addition, to provide more insight into our achieved results, we also plotted receiver
operating characteristic (ROC) curves to further demonstrate the performance of ACP-BC,
as shown in Figure 4. The horizontal axis of the ROC curve is False Positive Rate, and
the vertical axis is True Positive Rate. We constantly achieved high Area Under the Curve
(AUC) values on ACP740 and ACP240 datasets, and they were both 0.93. The ROC of AUC
is steeper than other compared models, encompassing other comparison methods such as
ACP-DA, ACP-DL, GRCI-Net, etc., indicating that our model ACP-BC is superior to other
models and has better stability. Although the AUC of ACP-Check on the ACP740 dataset
is 0.93, which is the same as our ACP-BC, on the ACP240 dataset, the AUC of ACP-BC is
higher than ACP-Check by 1%. This further indicates that our model performs better on
small datasets after data augmentation. The improvement of AUC metrics on two datasets
demonstrates the generality and effectiveness of our proposed method. Figure 4 shows
that the ACP-BC outperformed the existing predictors on ACP740 and ACP240 datasets.
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Table 3. Comparison of existing methods on ACP740 and ACP240 datasets.

Dataset Methods ACC MCC SE SP AUC

ACP740

ACP-DA 0.81 0.58 0.80 0.82 0.74
ACP-DL 0.81 0.62 0.81 0.80 0.89

GRCI-Net 0.82 0.65 0.84 0.82 0.88
DeepACPpred 0.85 0.71 0.85 0.85 0.80
ACP-MHCNN 0.86 0.72 0.89 0.83 0.90

ACPCheck 0.87 0.75 0.86 0.88 0.93
ACP-BC (ours) 0.87 0.75 0.87 0.88 0.93

ACP240

ACP-DA 0.89 0.78 0.88 0.89 0.90
ACP-DL 0.84 0.68 0.88 0.78 0.90

GRCI-Net 0.88 0.75 0.89 0.88 0.88
DeepACPpred 0.86 0.72 0.88 0.84 0.80
ACP-MHCNN 0.83 0.67 0.90 0.76 0.90

ACPCheck 0.89 0.77 0.91 0.85 0.92
ACP-BC (ours) 0.90 0.78 0.90 0.89 0.93

Note: The maximum value is marked in bold. ACC: accuracy. MCC: Matthews correlation coefficients. SE:
sensitivity. SP: specificity. AUC: area under curve.
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2.5. Independent Validation

To further validate the performance of the ACP-BC model, we conducted independent
validations on the ACPred-Fuse dataset [62] and ACP20, respectively.

2.5.1. Independently Validating on the ACPred-Fuse Dataset

To further validate the generality and feature mining capabilities of our proposed
approach, based on feature fusion and ChemBERT, we applied this method to the ACPred-
Fuse dataset. This dataset contains a substantial number of non-ACP compounds without
anticancer activity, simulating real-world positive-to-negative sample ratios. Addition-
ally, we compared our ACP-BC model with three machine learning models AntiCP [22],
iACP [30], ACPred-FL [38] and two deep learning models (DLFF-ACP [44], DeepACP [52].
Detailed data is presented in Table 4, revealing that the ACP-BC model’s performance
stands out with an ACC of 0.91, MCC of 0.40, specificity of 0.91, and an AUC of 0.92. In
comparison to other methods, ACP-BC demonstrated improvements in ACC, MCC, speci-
ficity, and AUC ranging from 3% to 9%, 8% to 18%, 2% to 8%, and 2% to 16%, respectively.
Its comprehensive performance clearly surpasses that of the other five models, further
affirming the potential of our method in mining deep features from ACP sequences for
accurate ACP identification. Figure 5 provides a more intuitive comparison.
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Table 4. Comparison of different methods on ACPred-Fuse dataset.

Dataset Methods ACC MCC SE SP AUC

AntiCP_ACC 0.88 0.29 0.68 0.89 0.85
AntiCP_DC 0.82 0.22 0.68 0.83 0.83

iACP 0.88 0.23 0.55 0.89 0.76
ACPred-Fuse ACPred-FL 0.85 0.26 0.70 0.86 0.85

DeepACP 0.86 0.31 0.78 0.86 0.88
DLFF-ACP 0.86 0.32 0.83 0.86 0.90

ACP-BC (ours) 0.91 0.40 0.81 0.91 0.92
Note: The maximum value is marked in bold. ACC: accuracy. MCC: Matthews correlation coefficients. SE:
sensitivity. SP: specificity. AUC: area under curve.
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2.5.2. Independently Validating on the ACP20 Dataset

To further validate the effectiveness and robustness of the ACP-BC model, we con-
ducted independent validation using the ACP20 dataset, which consists of 10 ACPs and
10 non-ACPs samples. Our model was not trained on this dataset, allowing us to better
evaluate the model’s robustness. Through experiments, we found that when applying
the model trained on the ACP740 dataset to the ACP20 dataset, all ACPs and non-ACPs
samples were accurately identified. The independent validation results are shown in
Table 5. The “Score” column represents the scores output by the model for the given pro-
tein sequences. Most ACPs samples obtained high scores, greater than 0.7. If the predicted
score is greater than 0.5, the corresponding peptide is considered as ACPs, and if not, it is
considered as non-ACPs. The independent validation results demonstrate that ACP-BC
exhibits strong robustness and generalization, making it applicable for the identification of
unknown protein sequences.

Table 5. The results on independent validation datasets.

Sequence Score Lable

KLWKKIEKLIKKLLTSIR 0.85 ACPs
YIWARAERVWLWWGKFLSL 0.88 ACPs
DLFKQLQRLFLGILYCLYKIW 0.82 ACPs

AIKKFGPLAKIVAKV 0.68 ACPs
RWNGRIIKGFYNLVKIWKDLKG 0.93 ACPs
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Table 5. Cont.

Sequence Score Lable

KVWKIKKNIRRLLHGIKRGWKG 0.73 ACPs
GFWARIGKVFAAVKNL 0.78 ACPs

AFLYRLTRQIRPWWRWLYKW 0.78 ACPs
RIWGKHSRYIKIVKRLIQ 0.92 ACPs
QIWHKIRKLWQIIKDGF 0.67 ACPs

CGESCVWIPCVTSIFNCKCKENKVCYHDKIP 0.16 non-ACPs
SDEKASPDKHHRFSLSRYAKLANRLANPKLLETFLSKWIGDRGNRSV 0.18 non-ACPs

DVKGMKKAIKGILDCVIEKGYDKLAAKLKKVIQQLWE 0.10 non-ACPs
AGWGSIFKHIFKAGKFIHGAIQAHND 0.03 non-ACPs

ATCDLASGFGVGSSLCAAHCIARRYRGGYCNSKAVCVCRN 0.05 non-ACPs
GWKIGKKLEHHGQNIRDGLISAGPAVFAVGQAATIYAAAK 0.36 non-ACPs

FLGALIKGAIHGGRFIHGMIQNHH 0.25 non-ACPs
FLPAIAGILSQLF 0.40 non-ACPs

ALWMTLLKKVLKAAAKALNAVLVGANA 0.12 non-ACPs
EGGGPQWAVGHFM 0.29 non-ACPs

3. Discussion

Cancer is a prevalent and deadly disease, and its treatment has always been a long-
standing challenge. Anticancer peptides have demonstrated potent anticancer activity, and
distinguishing between anticancer and non-anticancer peptides is a crucial step in anti-
cancer peptide research. In this study, we propose a novel anticancer peptide identification
model called ACP-BC, which integrates multiple features including sequence information
and chemical information. Extensive experiments have shown that our method achieves
high accuracy and robustness, making it suitable for anticancer peptide identification.
In the following sections, we analyze the reasons behind the improved performance of
our model.

Firstly, we employ an enhanced data augmentation method to preprocess the dataset,
randomly replacing, shuffling, reversing, or subsampling each amino acid residue in each
sequence with a probability of p. Experimental results demonstrate that using p = 0.01
to augment the entire ACPs dataset effectively enhances the model’s performance and
generalization by doubling the amount of data.

For feature extraction from protein sequence information, we utilize BI-LSTM, BERT,
and manually selected features as three channels to effectively capture different hierarchi-
cal features of amino acid sequences. In the first channel, the entire protein sequence is
encoded through an embedding layer, which is trained together with the entire model. The
resulting embedded representation of the original sequence is then input into a three-layer
bidirectional LSTM, and the output of the Bi-LSTM serves as the information for the first
channel. Experimental findings suggest that setting the embedding layer and LSTM’s
hidden neuron counts to 256 and 512, respectively, yields optimal results. In the second
channel, we introduce the structural information of amino acids in an innovative way. We
employ a BERT model pre-trained on SMILES sequences to extract deep abstract features.
Initially, the original sequence is converted into a molecular structure representation, and
then SMILES, a structured symbolic language, is utilized to simplify chemical molecu-
lar formulas. Subsequently, the obtained SMILES-formatted data is input into the BERT
model for fine-tuning, resulting in chemical molecular formula features related to protein
sequences. In the process of selecting detailed parameters for the BERT model, a series of
experiments are conducted, ultimately choosing ChemBERTa with a SMILES tokenizer as
the feature extractor. In the third channel, we optimize the feature engineering methods
used in other studies. We combine BPF, DPC, and PAAC features as manually selected
features, which extract positional information, compositional information, and local infor-
mation of the protein sequences, respectively. Through a series of ablation experiments,
we demonstrate the effectiveness of these manually selected features in capturing diverse
aspects of the sequences. The three channels of feature information complement each other,
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and their fusion enables better extraction of various hidden layers of information in protein
sequences. To better fine-tune the BERT model, we employ multiple fully connected layers
to integrate, abstract, and predict the extracted features. In the entire model, we assign a
smaller learning rate to the BERT model than other layers by an order of magnitude, which
is more suitable for fine-tuning training. In evaluating the effectiveness of our approach, we
train and test our model on ACP740 and ACP240 datasets, and validate it on an indepen-
dent ACP20 dataset [19,45,62]. Experimental results demonstrate that our designed model
achieves excellent performance, surpassing other models in multiple metrics such as ACC
and MCC. It also performs exceptionally well on the independent dataset. In summary,
our model exhibits great effectiveness, robustness, and generalization ability, and it can be
readily applied to the identification of ACPs.

4. Materials and Methods
4.1. Dataset

An excellent dataset is crucial for establishing a reliable ACPs prediction model. In
recent years, several excellent datasets have been established [19,30,38,43,45,62]. In this
study, we utilized two benchmark datasets with large samples, ACP740 [30,36,43] and
ACP240 [43], along with three independent validation datasets, ACP164 [38], ACPred-
Fuse [62] and ACP20 [19,45,62]. The similarities between the four datasets are as follows:
the ACPs verified in the experiment are used as positive samples, CD-HIT [63] is used to
remove the peptide sequences with a similarity of more than 90%, and the antimicrobial
peptides (AMPs) that do not have anticancer function are used as negative samples. These
datasets are non-redundant and do not overlap, ensuring a solid foundation for our research.
These datasets can be publicly accessed through the https://github.com/haichengyi/ACP-
DL, http://server.malab.cn/ACPred-FL/, http://server.malab.cn/ACPred-Fuse and https:
//github.com/abcair/ACPNet, (accessed on 7 March 2023, China) Dataset Repository.

4.1.1. Dataset ACP740

The ACP740 dataset was constructed by Yi et al. [43] from Chinese Academy of
Sciences, Beijing, China; Chinese Academy of Sciences Xinjiang Technical Institute of
Physics and Chemistry, Urumqi, Xinjiang, China. It consists of 364 positive samples
(peptides with anticancer activity). Initially, 138 positive samples were collected from
the study by Chen et al. [30], and 250 positive samples were collected from the study by
Wei et al. The non-ACPs dataset, which contains 376 negative samples (peptides without
anticancer activity), originally included 206 samples from Chen et al.’s study [30] and
170 samples from Wei et al.’s study [38]. To avoid dataset bias, we used the commonly
used tool CD-HIT to remove 12 positive samples and 12 negative samples with a similarity
exceeding 90%. As a result, we obtained the ACP740 dataset, which includes a total of
740 samples.

4.1.2. Dataset ACP240

ACP240 is another dataset constructed by Yi et al. [43] from Chinese Academy of
Sciences, Beijing, China; Chinese Academy of Sciences Xinjiang Technical Institute of
Physics and Chemistry, Urumqi, Xinjiang, China. It consists of 129 positive samples
(peptides with anticancer activity) and 111 negative samples (peptides without anticancer
activity but with antimicrobial activity). To remove positive and negative samples with a
similarity exceeding 90%, we also used the widely used CD-HIT. As a result, we obtained
the ACP240 dataset, which includes a total of 240 samples.

4.1.3. Independent Validation Dataset ACP164

To verify the generalization ability of the ACP-BC model, we selected the ACP164 [38]
dataset as the independent validation set. The ACP164 dataset was constructed by Wei
et al. from School of Computer Science and Technology, Tianjin University, Tianjin, China;
Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology,

https://github.com/haichengyi/ACP-DL
https://github.com/haichengyi/ACP-DL
http://server.malab.cn/ACPred-FL/
http://server.malab.cn/ACPred-Fuse
https://github.com/abcair/ACPNet
https://github.com/abcair/ACPNet
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Monash Centre for Data Science, Faculty of Information Technology, Monash University,
Clayton, Australia; School of Computer Software, Tianjin University, Tianjin, China; State
Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China. It
includes 82 experimental validated ACPs from the positive dataset, as well as the same
number of non-ACPs from the negative dataset. All peptides did not appear in the training
dataset, ensuring a fair evaluation of model performance.

4.1.4. Independent Validation Dataset ACPred-Fuse

To further validate the generality and feature mining capability of our proposed
method, which is based on feature fusion and ChemBERT, we selected the ACPred-Fuse
dataset for training and testing. The ACPred-Fuse dataset was collected by Rao et al. [62]
from School of Mechanical Electronic & Information Engineering, China University of
Mining & Technology, Beijing, China; School of Software, College of Intelligence and
Computing, Tianjin University, Tianjin, China; School of Software, Shandong University,
Jinan, China. The ACPred-Fuse dataset with positive samples from Chen et al. [30], Tyagi
et al. [9], and the ACP database CancerPPD [64], while negative samples were from Swiss
Prot [65]. To avoid the impact of data bias, we used the CD-HIT tool to exclude peptide
sequences with positive and negative similarities greater than 0.8. The final dataset con-
sisted of 3210 samples, including 332 positive samples and 2878 negative samples. This
dataset contains a large number of negative samples, simulating a real situation where
there are far more negative samples than positive samples. By introducing a large number
of negative samples, we have verified that our method can mine the deep abstract features
of ACP sequences.

4.1.5. Independent Validation DatasetACP20

ACP20 is a dataset constructed by Sun et al. [45] from Key Laboratory of Symbol
Computation and Knowledge Engineering of Ministry of Education, College of Computer
Science and Technology, Jilin University, Changchun, China; School of Computer Science
and Artificial Intelligence Aliyun School of Big Data School of Software, Changzhou
University, Changzhou, China; College of Software, Jilin University, Changchun, China. It
consists of 10 positive samples (active anticancer peptides) labeled as ACPs and 10 negative
samples (non-active peptides) labeled as non-ACPs.

To better train the model, we divided the dataset into training and testing sets. ACP740
and ACPC240 datasets were randomly shuffled and split, with 80% used for training and
20% for testing. ACP164, ACPred-Fuse and ACP20 were used as an independent validation
set to further verify the model’s generalization ability. Notably, all existing methods will be
evaluated on the test set for fair evaluation.

4.2. Data Augmentation

In gene sequences, mutations and alternative splicing are common phenomena. To
improve model performance and robustness, data augmentation methods such as ran-
dom replacement and random insertion are frequently employed in sequence analy-
sis. In this study, we utilized a combination of augmentation techniques, referred to
as Combining Augmentations [66].

4.2.1. Replacement

Randomly replace amino acid residues in the sequence. For a sequence S with a length
of n amino acids, we replace amino acids in the sequence with a probability p, substituting
them with the closest amino acid. Here, p is a hyperparameter designed for this purpose.
The closest amino acids are determined based on the structural and physicochemical
properties, and the pairing scheme used includes ((A,V), (S,T), (F,Y), (K,R), (C,M), (D,E),
(N,Q), (V,I)).
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4.2.2. Local Random Shuffling

Randomly select a subsequence of length t from the sequence and insert it into other
positions. Although this disrupts the sequence structure to a great extent, it allows the
model to focus more on permutation-invariant features.

4.2.3. Sequence Reversion

Reverse the amino acid sequence. For a sequence S [s1, s2, . . ., sn−1, sn] with a length
of n amino acids, we reverse it to obtain S’ [sn, sn−1, . . ., s2, s1]. Protein sequences have
a directional orientation, ranging from the N-terminus to the C-terminus. Reversing the
protein sequence changes the overall structure and function of the protein. However, the
reversed sequence may encourage the model to effectively utilize short-range features,
focus more on local information, and be more suitable for LSTM models.

4.2.4. Combining Augmentations

Two strategies are employed: single augmentation and combined augmentation.
Single augmentation involves selecting one augmentation method, while combined aug-
mentation combines two augmentation methods.

4.3. Encoding and Embedding Representations of Amino Acid Sequences

P = p1 p2 p3 . . . pn (1)

In the equation, P represents a peptide sequence [42], where p1 denotes the first amino
acid of the peptide, p2 denotes the second amino acid, p3 denotes the third amino acid, and
pn represents the nth amino acid in the peptide sequence. Each amino acid corresponds to
a letter in the standard amino acid alphabet. The standard amino acid alphabet consists
of 20 letters: A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y. To encode peptide
sequences into numerical vectors, four different types of features are chosen: BPF, DPC,
PAAC, and the k-mer sparse matrix feature. Each feature is described as follows.

4.3.1. BPF

Binary profiles features [22] can differentiate peptides that are chemically similar but
functionally distinct. However, due to the varying lengths of peptides, it is challenging to
establish a fixed-length pattern. To address this issue and generate fixed-length patterns,
we employ a binary one-hot vector encoding method [38]. Since there are 20 amino acids
in the amino acid alphabet, each amino acid is represented by a binary one-hot vector of
length 20 to ensure consistent feature length. For example, the first letter “A” in the amino
acid alphabet is represented by the numerical vector f(A)= [1, 0, 0, . . . , 0]. The second letter
“C” representing the amino acid is represented by the numerical vector f(C)= [0, 1, 0, . . . , 0],
and so on. Finally, the last letter “Y” representing the amino acid is represented by the
numerical vector f(Y)= [0, 0, 0, . . . , 1]. Therefore, the expression for Binary Profile Feature
(BPF) is given as:

F(BPF[K])= [f(p1), f(p2), f(p3), . . . , f(pK)] (2)

where K represents the length of peptides similar to the N-terminal amino acid. Experi-
mental results indicate that for optimal performance of ACP-DL and ACP-DA, selecting
the first 7 letters to represent BPF (k = 7) yields the best results.

4.3.2. DPC

Dipeptide Composition (DPC) [21] represents the percentage composition of the
400 possible dipeptides formed by the 20 amino acids. Unlike Amino Acid Composition
(AAC), DPC considers the combinations of adjacent amino acids, thereby capturing addi-
tional information about the local arrangement of peptides/proteins. In biology, statistical
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analysis of dipeptide frequencies is also a common classification method. The expression
for DPC is as follows:

f(a, b) =
Nab

(N − 1)
, a, b ∈ {A, C, D, . . . Y} (3)

where Nab represents the number of dipeptides composed of amino acids of types “a” and
“b”, while N represents the length of the peptide sequence.

4.3.3. PAAC

Pseudo Amino Acid Composition (PAAC) [28] expands the concept of amino acid
composition by combining sequence order information. The feature extraction method
of PAAC generates a feature vector of 20 + λ dimensions, where the first 20 dimensions
represent amino acid composition features, and the additional λ dimensions capture the
sequence order information. Here, λ is a hyperparameter that can be adjusted based on the
input information’s dimensionality. The sequence order effect can be represented by a set
of correlation factors, which θ are defined as follows:

θ1 = 1
L − 1

L − 1

∑
i=1

Θ
(
pi, pi+1

)

θ2 = 1
L − 2

L − 2

∑
i=1

Θ
(
pi, pi+2

)
θ3 = 1

L − 3

L − 3

∑
i=1

Θ
(
pi, pi+3

)
, (λ < L)

. . .

θ3 = 1
L − 3

L − 3

∑
i=1

Θ
(
pi, pi+3

)

(4)

In the above equation, θ1 represents the first-level correlation factor between two
adjacent amino acids, θ2 represents the second-level correlation factor between two amino
acids separated by one position, and so on. The calculation of the correlation function in
the formula is as follows:

Θ
(

pi, pj

)
=

1
3

{[
H1

(
pj

)
−H1(pi)

]2
+
[
H2

(
pj

)
− H2(pi)

]2
}

(5)

In the above equation, H1(pi) and H2(pi) represent the hydrophobicity value and
hydrophilicity value, respectively. In practical applications, additional physicochemical
properties can also be used for calculation. The sequence order effect of a protein can be
reflected to some extent by a set of sequence correlation factors θ1, θ2, θ3. . . Therefore, the
amino acid composition can be expanded to 20 + λ dimensions.

X = [x1, x1, · · · , x20+1, · · · , x20+λ] (6)

Each Xu represents:

xu=


fu

∑20
i=1 fi+w∑λ

j=1 θj
(1 ≤ u ≤ 20)

wθu − 20

∑20
i=1 fi+w∑λ

j=1 θj
(20 + 1 ≤ u ≤ 20 + λ)

(7)

In the above equation, fi represents the normalized occurrence frequency of the
20 amino acids in the X amino acid sequence, and w is the weight factor for the sequence
order effect, with a default value of 0.05. θj is the j-tier sequence correlation factor for the
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amino acid sequence X. The vector of u from 1 to 20 dimensions is mainly determined by
the composition characteristics of amino acids, while the vector of u from 20 + 1 to 20 + λ

dimensions is mainly determined by the values of related factors. The resulting vector of
20 + λ dimensions is referred to as the Pseudo-Amino Acid Composition.

4.3.4. K-mer Sparse Matrix

The k-mer sparse matrix was proposed by You et al. in 2016 [42]. K-mer refers to
scanning a sequence from left to right and extracting K consecutive elements using a sliding
window. In the amino acid sequence, we initially divide the 20 amino acids into 7 groups
based on their dipole moments and side chain volumes: (A, G, V), (I, L, F, P), (Y, M, T, S),
(H, N, Q, W), (R, K), (D, E), and (C). Therefore, the amino acid sequence is transformed into
a sequence composed of 7 letters representing the groups, such as a, b, c, and so on. By
considering not only the properties of a single amino acid and its preceding K− 1 amino
acids, but also treating any K consecutive amino acids as a unit, the sequence is scanned
from left to right, and K-mer words are extracted to represent the characteristics of the
amino acid sequence. If the length of the peptide chain is L, there could be 7k different
K-mers, and a total of L− K + 1 scanning steps are performed, resulting in a generated
two-dimensional matrix. There are a total of L− K + 1 different 7k K-mers, resulting in a
generated two-dimensional matrix through L− K + 1 scanning steps. The values in the
sparse matrix can be summarized as follows:

M =
(
aij
)
7k × (L− K + 1) (8)

aij =

{
1,
0,

if QjQj+1. . . Qj+k−1 = Kmer(i)
else

(9)

where kmer(i) represents the i-th k-mer. Each column of matrix M is a unit vector where
only one element is 1, and the remaining elements are 0.

4.4. Bi-LSTM

The bidirectional long short-term memory network (Bi-LSTM) is a commonly used
type of recurrent neural network (RNN) [51] that has been widely applied in natural
language processing (NLP), speech recognition, and machine translation. Bi-LSTM consists
of two LSTM networks, one processing the input sequence from left to right and the other
processing it from right to left. The outputs of the two networks are concatenated to form
the final output. Since the residues in a peptide sequence are influenced by both preceding
and succeeding residues, similar to how the order of words in a sentence affects its meaning,
we choose Bi-LSTM to capture the bidirectional information in the sequence.

4.5. Chemical BERT

To better distinguish between ACPs and non-ACPs, we introduced the BERT pre-
training model [54] to explore deeper-level features. BERT is a transformer-based contextual
language representation model that has demonstrated outstanding performance in numer-
ous natural language processing (NLP) tasks. It employs a pre-training and fine-tuning
structure, starting with extensive unsupervised training on unlabeled data for general
understanding and then fine-tuning for specific tasks. Using BERT for pre-training along
with task-specific fine-tuning has shown better results compared to previous methods in
many NLP tasks. Over the past two years, BERT has become a widely used approach for
learning text feature representations through self-supervision. Many researchers have uti-
lized BERT to represent biological or biomedical information, such as promoter recognition
prediction [67], among other aspects.

Unidirectionality is a significant issue in sequence processing models as it limits
the flexibility of the entire model structure during training. Due to the limited memory
capacity of Bi-LSTM, it tends to focus more on neighboring information. In contrast, BERT
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effectively utilizes both forward and backward information through contextual pre-training,
enabling better capturing of the global relationships between amino acids. Therefore, we
employ BERT to complement the deep abstract features required for predicting amino
acid sequences.

To better represent the structural information of amino acid sequences, we utilize the
SMILES sequences in practical applications. Firstly, we convert the amino acid sequences
back to molecular structures and then represent these structures using a specific markup
language specification. An example of a simple structure is dinitrogen, with the representa-
tion N ≡ N (N#N). In Figure 6, we illustrate the molecular structures of some amino acids
and their corresponding SMILES representations. For instance, the SMILES sequence for
Alanine is C[C@H](N)C(O)=O, and for Isoleucine, it is CC[C@H](C)[C@H](N)C(O)=O. By
utilizing SMILES sequences to represent amino acid sequences, we can better capture the
structural information of the entire peptide chain. Combining the representation of SMILES
sequences with the powerful capability of BERT in extracting deep abstract information, we
employ ChemBERT [59]. It is a BERT model trained on a large number of molecular SMILE
sequences, which is integrated into our model for fine-tuning to better extract abstract deep
features from ACP sequences.
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4.6. Performance Evaluation

The ultimate goal of the ACP-BC model is to effectively identify ACPs and non-
ACPs, which is a binary classification problem. We selected six commonly used evaluation
metrics for binary classification, including Accuracy (ACC), Sensitivity (SE), Specificity
(SP), Matthews correlation coefficient (MCC), and area under ROC curve (AUC) [40]. The
formulas for these metrics are as follows:

Accuracy(ACC) =
TP + TN

TP + TN + FP + FN
(10)

Sensitivity(SE) =
TP

TP + FN
(11)

Specificity(SP) =
TN

TN + FP
(12)

Matthews correlation coefficient (MCC) =
TP × TN − FP× FN√

(TP + FN) × (TP + FP)× (TN + FP) × (TN + FN)
(13)

where TP represents true positive, indicating the correct prediction of ACPs as ACPs in
the peptide sequence, TN represents true negative, indicating the correct prediction of
non-ACPs as non-ACPs in the peptide sequence, FP represents false positive, indicating
the incorrect prediction of ACPs as non-ACPs in the peptide sequence, and FN represents
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false negative, indicating the incorrect prediction of non-ACPs as ACPs in the peptide
sequence. The precision (P) is calculated as TP/(TP + FP), and the recall (R) is calculated as
TP/(TP + FN).

5. Conclusions

In this study, we proposed a model aimed at accurately identifying anticancer peptides
by Bi-LSTM and chemical information, called ACP-BC, which is a two-class classification
problem. To find useful features, we compare the performance of an autoencoder feature, a
newly proposed chemical molecular feature, and four commonly used feature combinations
on two benchmark datasets. The experimental results demonstrate that the combination of
these six features plays a positive role in ACPs and non-ACPs identification. Finally, we
employ a fully connected network to handle the feature combinations for ACPs recognition.

Comparing with six existing state-of-the-art methods, ACP-BC shows improvements in
various performance metrics, including ACC, MCC, SE, SP, and AUC. ACP-BC also exhibits
improved performance metrics on the ACP740 dataset. When tested on an independent
dataset ACP20, ACP-BC accurately predicts all 10 ACPs samples. Through a series of
experiments, we demonstrate the effective and accurate identification of ACPs and non-
ACPs by ACP-BC. However, our proposed method still has limitations and we are still
unable to accurately identify certain anticancer peptides. There are many reasons for this
phenomenon. On the one hand, this may be a problem with the dataset. Some samples
of anticancer peptides are relatively unique and have significant distribution differences
compared to other samples, making it difficult for the model to identify them based on
experience. On the other hand, it may be that our model itself needs improvement and
fails to accurately extract more effective and recognizable features, resulting in the model
being unable to accurately recognize anticancer peptides. In following research work,
more datasets can be introduced and combined with new machine learning methods,
such as contrastive learning, to reduce the impact of non real negative samples on model
performance. At the same time, we try to gain a deeper understanding of anticancer
peptides and use methods that are more suitable for extracting anticancer peptides features,
in order to identify anticancer peptides more accurately. In future work, we plan to
incorporate more complex and effective features and deploy them on a network to develop
an intelligent system for accurate ACPs identification.

Author Contributions: M.S. conceived the algorithm, developed the program, and wrote the
manuscript. H.H. prepared the datasets, developed the program. W.P. and Y.Z. helped with
manuscript editing and design. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant nos.
62072212, 61972174, 61972175, 12205114), the National Key Research and Development Program of
China (Grant nos. 2021YFF1201200), Jilin Province Department of Science and Technology Project
(Grant nos. 20230201083GX, 20220201145GX, and 20230201065GX), the Education Department of Jilin
Province Project (Grant no. JJKH20230592KJ).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. Codes and
data are available here: https://github.com/shunmengfan/ACP-BC/tree/master (accessed on
1 August 2023).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ACPs Anticancer peptides
non-ACPs Non-Anticancer peptides
AAC amino acid composition

https://github.com/shunmengfan/ACP-BC/tree/master


Int. J. Mol. Sci. 2023, 24, 15447 18 of 21

DPC dipeptide composition
BPF binary profiles feature
PAAC pseudo-amino acid composition
g-gap DPC g-gap dipeptide composition
RBF radial basis function
ATC atomic composition
RAAAC reduced amino acid alphabet composition
CTD composition-transition-distribution
QSO quasi-sequence-order
AAIF amino acid index
GAAC grouped amino acid composition
Am-PAAC amphiphilic pseudo amino acid composition
OPF overlap property feature
TOBF twenty-one-bit feature
AKDC daptive skip dipeptide composition
CNN convolutional neural networks
GCN graph convolutional networks
SVM support vector machine
RF Random Forest
PNN probability neural network
GRNN generalized regression neural network
KNN k-nearest neighbors
RNN recurrent neural network
LSTM long short-term memory
CKSAAGP k-spaced amino acid group pairs
Bi-LSTM bidirectional long short-term memory network
NLP natural language processing
SMILES Simplified Molecular Input Line Entry System
BERT bidirectional encoder representation transformer
RoBerta robustly optimized BERT pre-training approach
BPE byte pair encoding
ChemBerta + ST ChemBERTa with a SMILES tokenizer
ChemBerta + BT ChemBERTa with a BPE’s tokenizer
TP True Positive
FP False Positive
TN True Negative
FN False Negative
ACC accuracy
MCC Matthews correlation
SE sensitivity
SP specificity
AUC area under curve
ROC receiver operating characteristic
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