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Abstract: Glioblastoma multiforme (GBM) is the most aggressive and lethal primary brain tumor
whose median survival is less than 15 months. The current treatment regimen comprising surgical
resectioning, chemotherapy with Temozolomide (TMZ), and adjuvant radiotherapy does not achieve
total patient cure. Stem cells’ presence and GBM tumor heterogeneity increase their resistance to
TMZ, hence the poor overall survival of patients. A dysregulated cell cycle in glioblastoma enhances
the rapid progression of GBM by evading senescence or apoptosis through an over-expression of
cyclin-dependent kinases and other protein kinases that are the cell cycle’s main regulatory proteins.
Herein, we identified and validated the biomarker and predictive properties of a chemoradio-resistant
oncogenic signature in GBM comprising CDK1, PBK, and CHEK1 through our comprehensive in
silico analysis. We found that CDK1/PBK/CHEK1 overexpression drives the cell cycle, subsequently
promoting GBM tumor progression. In addition, our Kaplan–Meier survival estimates validated
the poor patient survival associated with an overexpression of these genes in GBM. We used in
silico molecular docking to analyze and validate our objective to repurpose Dapagliflozin against
CDK1/PBK/CHEK1. Our results showed that Dapagliflozin forms putative conventional hydrogen
bonds with CDK1, PBK, and CHEK1 and arrests the cell cycle with the lowest energies as Abemaciclib.

Keywords: glioblastoma multiforme; cyclin-dependent kinase 1; PDZ binding kinase; checkpoint
kinase 1; cell cycle; drug repurposing; Temozolomide; Dapagliflozin; Abemaciclib; molecular docking
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1. Introduction

Glioblastoma Multiforme (GBM) remains the most aggressive primary brain tumor,
with a poor response to aggressive management comprising surgical resection, chemother-
apy, and radiotherapy with Temozolomide [1–5]. Despite this aggressive management
approach, tumor progression and recurrence are almost inevitable in over 75% of the
treated patients [6–8]. Tumor heterogeneity and stem cells’ presence enhance the ther-
apy resistance and the consequential poor overall survival of GBM patients, averaging
15 months [1,2,9–12]. In addition, therapy combination only achieves a 10% five-year
survival rate, prompting an urgent need to identify and validate theragnostic markers that
will necessitate effective treatment strategies to improve glioblastoma patients’ quality of
life and survival rate [7,13,14].

An aberrant cell cycle is a crucial cancer characteristic in which malignant cells de-
velop and progress through uncontrolled cell proliferation and programmed cell death
evasion [15–18]. Cyclin-dependent kinases (CDKs) and protein kinases are the main regula-
tory proteins for the cell cycle whose expression reflects the proliferative state of the tumor
and correlates negatively with patient survival [9,19–21]. An in-depth understanding of the
mechanisms with which these protein kinases promote cancer development and progres-
sion through the cell cycle is vital in precision oncology. We envisage that targeting these
protein kinases, specifically CDK1/PBK/CHEK1 oncogenic signature, which we identified
through in silico analysis, promotes the Gap 2 to mitosis (G2-M) phase cell cycle arrest,
apoptosis, and therapy-induced senescence, hence inhibiting GBM progression [20,22–24].
Moreover, this will enhance therapy-induced and host immune system-mediated GBM
senolyses before their eventual senescence-associated secretory phenotype (SASP) [22–24].

CDK1 is a central regulator of cell cycle progression, specifically the transition from
the G2 to the M phases [19,25,26]. The activation of CDK1 by cyclins A and B1 (CCNB1)
promotes M phase entry from the G2 phase [26,27]. CDK1 remains active until CCNB
is degraded in the late M phase in readiness for cytokinesis [26,27]. However, CDK1′s
dysregulated activation and high expression confer resistance to chemo and radiation
therapy and correlate positively with poor patient prognosis in breast, liver, colorectal,
prostate, and other cancers [18,20,25,28]. The CCNB1/CDK1 complex phosphorylates
PDZ binding Kinase (PBK) in the late M phase before the complex is neutralized [29–33].
Activated PBK is required for the proper separation of chromosomes, completion of mitosis,
and cytokinesis [29–33]. Its over-expression in cancer promotes cancer progression by
enabling the successful completion of cytokinesis and tumor proliferation. PBK is over-
expressed in GBM stem cells compared to normal neural stem cells, and its targeting
suppresses proliferation and promotes apoptosis [1]. DNA damage enhances Checkpoint
Kinase 1 (CHK1/CHEK1) activation and the subsequent arrest of cell cycle transition
from the G2 to the M phases by directly phosphorylating WEE1 G2 Checkpoint Kinase
(WEE1) [20,27,34]. WEE1 phosphorylates and inhibits CDK1′s activity in the G2 phase,
blocking the cycle’s progression to the M phase [20,27]. This blockage results in DNA
damage repair, cellular quiescence, senescence, or apoptosis should the DNA damage
repair fail [20,27]. CHK1 enhances DNA repair in tumors, especially those with a defective
p53, enhancing cancer cell survival and proliferation [27]. CHEK1 inhibition results in
premature progression into the M phase of cells with an accumulation of DNA damages
leading to M phase arrest and apoptosis [27]. There is, therefore, crosstalk amongst our
chemo- and radio-resistant oncogenic signature comprising CDK1, PBK, and CHEK1 in the
G2/M phase of the cell cycle.

The crosstalk among CDK1, PBK, and CHEK1 in the G2/M phase of the cell cycle is
a potential therapeutic target and prognostic marker in GBM. Studies have shown that
the selective inhibition of CDK1, PBK, and CHEK1 arrests tumor progression in sarcomas,
GBM, prostate, endometrial, and breast cancers by blocking the G2-M phase transition
and promoting apoptosis [1,9,35–41]. However, the simultaneous inhibition of the chemo
radio-resistant CDK1/PBK/CHEK1 oncogenic signature in glioblastoma has never been
explored despite the existing cell cycle crosstalk amongst these genes. This study discusses
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our assessment of CDK1/PBK/CHEK1′s potential as theragnostic and prognostic markers
in glioblastoma. We further analyzed the interaction of Dapagliflozin, an FDA-approved
type 2 diabetic drug, and our identified oncogenic signature in silico to ascertain the
anti-tumor effect of this drug compared to Temozolomide.

2. Results
2.1. DEG Identification and Analysis in GBM

We generated volcano plots and a list of DEGs on GEO2R by analyzing GSE108474,
GSE50161, and GSE4290 comprising gene expression profiles of GBM patients’ samples.
The samples were pre-classified as tumor and normal with the significant level cut-off value
set at <0.05 (adj p-value), -10 log, and -2-fold change. We further analyzed the resultant
DEGs from GSE108474, GSE50161, and GSE4290 in BEG to identify overlapping genes. In
total, 188 upregulated-overlapping genes and 16,625 downregulated overlapping genes
were obtained from the analysis, as shown in the Venn diagrams labeled Figure 1D,E below.
Only the overlapping overexpressed genes’ list was sorted and used in Python to generate
the gene list in Figure 1F below.
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Figure 1. Differentially expressed genes (DEGs) from GSE108474, GSE50161, and GSE4290 comprise
gene expression profiles of GBM. (A–C) Depict the DEGs from GSE108474, GSE50161, and GSE4290
GBM samples with a p-value set at <0.05. The red and blue dots represent up and downregulated
genes, respectively. (D) A Venn diagram with 188 overlapping overexpressed genes while (E) com-
prises 16,625 overlapping-downregulated genes analyzed in BEG. (F) is a list of the 188 overlapping
overexpressed genes.
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2.2. PPI Network Construction and Associated Functional Enrichment

A PPI network analysis on the STRING database revealed a high-confidence network
comprising CDK1, PBK, and CHEK1, with a minimum interaction score significance > 0.700.
The network had 10 nodes and 22 edges within its cluster, with an average local clustering
coefficient of 0.82 and a PPI enrichment p-value of 2.11 × 10−15. We constructed the PPI
network shown in Figure 2A based on protein co-expression, text mining, databases, exper-
iments, co-occurrence, neighborhood, and gene fusion. We also extracted the functional
enrichments under the Gene Ontology (GO) biological processes, Kyoto Encyclopedia of
Genes and Genomes (KEGG), and Reactome pathways available upon analysis of the PPI
network, as shown in Figure 2B,C below. The FDR for all pathways was <0.05, with most
being <0.01, signifying their significance. We further analyzed the PPI network on Network
Analyst for better visualization and functional enrichments.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 18 
 

 

2.2. PPI Network Construction and Associated Functional Enrichment 
A PPI network analysis on the STRING database revealed a high-confidence network 

comprising CDK1, PBK, and CHEK1, with a minimum interaction score significance > 
0.700. The network had 10 nodes and 22 edges within its cluster, with an average local 
clustering coefficient of 0.82 and a PPI enrichment p-value of 2.11 × 10−15. We constructed 
the PPI network shown in Figure 2A based on protein co-expression, text mining, data-
bases, experiments, co-occurrence, neighborhood, and gene fusion. We also extracted the 
functional enrichments under the Gene Ontology (GO) biological processes, Kyoto Ency-
clopedia of Genes and Genomes (KEGG), and Reactome pathways available upon analysis 
of the PPI network, as shown in Figure 2B,C below. The FDR for all pathways was <0.05, 
with most being <0.01, signifying their significance. We further analyzed the PPI network 
on Network Analyst for better visualization and functional enrichments. 

 
Figure 2. Clustered PPI networks comprising CDK1/PBK/CHEK1 oncogenes in GBM and their func-
tional enrichments. (A) A PPI cluster with a minimum interaction score significance > 0.700, 10 
nodes, and 22 edges with an average local clustering coefficient of 0.82 and a PPI enrichment p-value 
of 2.11 × 10−15. The PPI network is from co-expression, text mining, databases, experiments, co-oc-
currence, neighborhood, and gene fusion. (B,C) show functional enrichments under the Gene On-
tology (GO) biological processes, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reac-
tome pathways that were available upon an analysis of the PPI network in the STRING database. 
(D) A signaling network cluster of KEGG enrichment analysis revealing CDK1/PBK/CHEK1 co-ex-
pression in the cell cycle analyzed in Network Analyst. 

2.3. CDK1/PBK/CHEK1 Are Overexpressed and Highly Correlated in GBM 
We used TIMER2.0 and CGGA for a comprehensive and systematic 

CDK1/PBK/CHEK1 oncogenic signature analysis for their differential expression in pan 
cancers and their correlation in GBM. These genes were highly expressed in 153 GBM 
samples compared to five adjacent tissues, as evaluated by the Wilcoxon test on TIMER2.0 
and expressed as transcripts per million (TPM) with a p-value significant code of 0 ≤ *** < 
0.001. The gene expression data were transformed and normalized through log transfor-
mation. A correlation analysis on CGGA predicted a positive correlation of the genes in 

Figure 2. Clustered PPI networks comprising CDK1/PBK/CHEK1 oncogenes in GBM and their
functional enrichments. (A) A PPI cluster with a minimum interaction score significance > 0.700,
10 nodes, and 22 edges with an average local clustering coefficient of 0.82 and a PPI enrichment
p-value of 2.11 × 10−15. The PPI network is from co-expression, text mining, databases, experiments,
co-occurrence, neighborhood, and gene fusion. (B,C) show functional enrichments under the Gene
Ontology (GO) biological processes, Kyoto Encyclopedia of Genes and Genomes (KEGG), and
Reactome pathways that were available upon an analysis of the PPI network in the STRING database.
(D) A signaling network cluster of KEGG enrichment analysis revealing CDK1/PBK/CHEK1 co-
expression in the cell cycle analyzed in Network Analyst.

2.3. CDK1/PBK/CHEK1 Are Overexpressed and Highly Correlated in GBM

We used TIMER2.0 and CGGA for a comprehensive and systematic CDK1/PBK/CHEK1
oncogenic signature analysis for their differential expression in pan cancers and their cor-
relation in GBM. These genes were highly expressed in 153 GBM samples compared to
five adjacent tissues, as evaluated by the Wilcoxon test on TIMER2.0 and expressed as
transcripts per million (TPM) with a p-value significant code of 0 ≤ *** < 0.001. The gene
expression data were transformed and normalized through log transformation. A correla-
tion analysis on CGGA predicted a positive correlation of the genes in GBM with Pearson
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correlation coefficients (R) of 0.702, 0.717, and 0.813 among them and a p-value < 0.05, signi-
fying a statistically significant relationship. This strong positive correlation could enhance
and promote tumor aggressiveness, growth, metastasis, survival, and drug resistance in
GBM whose understanding could potentially help develop targeted therapy and serve
as prognostic markers. Figure 3 below shows the differential expression and correlation
relationship obtained from TIMER2.0 and CGGA.
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Figure 3. CDK1/PBK/CHEK1 expression and correlation profiling in GBM. (A–C) CDK1/PBK/CHEK1
is overexpressed in GBM and other cancer types from the TCGA and was analyzed on TIMER2.0.
Their mRNA expression levels are expressed as TPM and were normalized and transformed using
log transformation with a p-value significance code of 0 ≤ *** < 0.001 ≤ ** < 0.01 ≤ * < 0.05 ≤ . < 0.1.
(D–F) represent the positive correlation of CDK1/PBK/CHEK1 in WHO grade IV primary glioma
(GBM), with R ranging from 0.702 to 0.813 and a p-value < 0.05 affirming the statistical significance of
the association of the CDK1/PBK/CHEK1 oncogenic signature in GBM.

2.4. CDK1/PBK/CHEK1 Overexpression Is Associated with the Late-Stage GBM

We further validated the differential expression of CDK1, PBK, and CHEK1 in GBM
using the CGGA database and GlioVis (http://gliovis.bioinfo.cnio.es/), an online appli-
cation for the expression of genes in glioblastoma. The analytical results in Figure 4A–C
below from GlioVis show an overexpression of CDK1, PBK, and CHEK1 in GBM than in
nontumor. We used log2 transformation to normalize, stabilize, and interpret the differ-
ential expression of the mRNAs in nontumor and GBM on GlioVis. Using the analysis of
variance (ANOVA) and the p-value < 0.05, we validated that CDK1, PBK, and CHEK1 are
all overexpressed in WHO glioma grades II-IV as illustrated in Figure 4D–F below, obtained
from the analysis of the genes on the CGGA.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 3. CDK1/PBK/CHEK1 expression and correlation profiling in GBM. (A–C) 
CDK1/PBK/CHEK1 is overexpressed in GBM and other cancer types from the TCGA and was ana-
lyzed on TIMER2.0. Their mRNA expression levels are expressed as TPM and were normalized and 
transformed using log transformation with a p-value significance code of 0 ≤ *** < 0.001 ≤ ** < 0.01 ≤ 
* < 0.05 ≤ . < 0.1. (D–F) represent the positive correlation of CDK1/PBK/CHEK1 in WHO grade IV 
primary glioma (GBM), with R ranging from 0.702 to 0.813 and a p-value < 0.05 affirming the statis-
tical significance of the association of the CDK1/PBK/CHEK1 oncogenic signature in GBM. 

2.4. CDK1/PBK/CHEK1 Overexpression Is Associated with the Late-Stage GBM 
We further validated the differential expression of CDK1, PBK, and CHEK1 in GBM 

using the CGGA database and GlioVis (http://gliovis.bioinfo.cnio.es/), an online applica-
tion for the expression of genes in glioblastoma. The analytical results in Figure 4A–C 
below from GlioVis show an overexpression of CDK1, PBK, and CHEK1 in GBM than in 
nontumor. We used log2 transformation to normalize, stabilize, and interpret the differ-
ential expression of the mRNAs in nontumor and GBM on GlioVis. Using the analysis of 
variance (ANOVA) and the p-value < 0.05, we validated that CDK1, PBK, and CHEK1 are 
all overexpressed in WHO glioma grades II-IV as illustrated in Figure 4D–F below, ob-
tained from the analysis of the genes on the CGGA. 

 
 

 

Figure 4. Cont.

http://gliovis.bioinfo.cnio.es/


Int. J. Mol. Sci. 2023, 24, 16396 7 of 18Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 7 of 18 
 

 

 

 
Figure 4. CDK1/PBK/CHEK1 overexpression is associated with the late-stage GBM. (A–C) The 
CDK1/PBK/CHEK1 level overexpression was elevated in the GBM samples normalized and trans-
formed using log2 transformation with a p-value < 0.05 considered statistically significant on the 
GlioVis tool. (D–F) Boxplots generated from the CGGA analysis reflecting CDK1/PBK/CHEK1 gene 
overexpression in three WHO glioma grades II, III, and IV with a p-value < 0.05. 

2.5. A High CDK1/PBK/CHEK1 Expression Promotes Immune Evasion and Tumor 
Aggressiveness in GBM 

All the results discussed below had a p-value < 0.05. There was a moderate positive 
correlation between tumor purity and CDK1/PBK/CHEK1 with a Rho of 0.474, 0.459, and 
0.513. These results estimate that CDK1/PBK/CHEK1 overexpression promotes tumor ag-
gressiveness by promoting its growth and GBM tumor cell population within the tumor 
microenvironment [42]. Our analysis also estimated a strong positive correlation between 
CDK1 and PBK expression levels and T Cells CD4+ Th2 infiltration levels with a Rho of 
0.721 and 0.667. The moderate positive correlation between the CHEK1 expression level 
and the T Cells CD4+ Th2 infiltration level had an Rho of 0.433. In addition, a moderate 

Figure 4. CDK1/PBK/CHEK1 overexpression is associated with the late-stage GBM. (A–C) The
CDK1/PBK/CHEK1 level overexpression was elevated in the GBM samples normalized and trans-
formed using log2 transformation with a p-value < 0.05 considered statistically significant on the
GlioVis tool. (D–F) Boxplots generated from the CGGA analysis reflecting CDK1/PBK/CHEK1 gene
overexpression in three WHO glioma grades II, III, and IV with a p-value < 0.05.

2.5. A High CDK1/PBK/CHEK1 Expression Promotes Immune Evasion and Tumor Aggressiveness
in GBM

All the results discussed below had a p-value < 0.05. There was a moderate positive
correlation between tumor purity and CDK1/PBK/CHEK1 with a Rho of 0.474, 0.459, and
0.513. These results estimate that CDK1/PBK/CHEK1 overexpression promotes tumor
aggressiveness by promoting its growth and GBM tumor cell population within the tumor
microenvironment [42]. Our analysis also estimated a strong positive correlation between
CDK1 and PBK expression levels and T Cells CD4+ Th2 infiltration levels with a Rho of
0.721 and 0.667. The moderate positive correlation between the CHEK1 expression level
and the T Cells CD4+ Th2 infiltration level had an Rho of 0.433. In addition, a moderate
positive correlation of the CDK1, PBK, and CHEK1 expression levels with the MDSC
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infiltration levels had a Rho of 0.439, 0.525, and 0.448. However, our analytical results had
a weak positive correlation of our oncogenic signature with TAM-M2 with a Rho of 0.297,
0.382, and 0.202. These putative positive correlations show that a high CDK1/PBK/CHEK1
expression promotes tumor growth, aggressiveness, and immune evasion through the
increased recruitment of T Cells CD4+ Th2, MDSCs, and TAM-M2, all of which have
pro-tumor effects. These immune cells promote tumor angiogenesis and suppress other
anti-tumor immune responses resulting in metastasis and poor patient survival [42–46].
The scatter plots in Figure 5 below show these analytical results.
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using the KM survival analysis plotted in GlioVis. Prolonged overall survival in GBM pa-
tients had an inversely proportional relationship with the high expression of CDK1, PBK, 

Figure 5. CDK1/PBK/CHEK1 overexpression promotes tumor aggressiveness and immunosuppres-
sion in GBM. (A–C) depict a moderate positive correlation of CDK1 expression levels with tumor
purity (Rho = 0.474) and a strong, moderate, and weak positive correlation with T Cells CD4+ Th2
(Rho = 0.721), MDSCs (Rho = 0.439), and TAM-M2 (Rho = 0.297) infiltration levels in GBM, analyzed
on TIMER2.0. (D–F) show a moderate positive correlation of PBK expression level with GBM tumor
purity (Rho = 0.459), as well as a strong, moderate, and weak positive correlation with T Cells CD4+
Th2 (Rho = 0.667), MDSCs (Rho = 0.525), and TAM-M2 (Rho = 0.382) infiltration levels. (G–I) show a
moderate positive correlation of CHEK1 expression levels with tumor purity (Rho = 0.513), T Cells
CD4+ Th2 (Rho = 0.433), and MDSCs (Rho = 0.448), and a weak positive correlation with TAM-M2
(Rho = 0.202) infiltration levels in GBM. CDK1/PBK/CHEK1 mRNA expression levels are expressed
as TPM and were normalized and transformed using log2 transformation with a p-value < 0.05.

2.6. CDK1/PBK/CHEK1 Overexpression in GBM Is Associated with Poor Patient Survival

We predicted and validated the prognostic value of CDK1, PBK, and CHEK1 in the
GlioVis database and constructed radiomics signatures whose determined maximally
selected rank statistics cut-off values were 1.55, 0.81, and 1.42. These results mean patients
whose Radscores were low but had a high expression of CDK1, PBK, and CHEK1 had a
poor prognosis, signifying the significance of these oncogenes in the cell cycle and their
potential to be prognostic biomarkers in GBM.

We further validated the prognostic significance of CDK1, PBK, and CHEK1 in GBM
using the KM survival analysis plotted in GlioVis. Prolonged overall survival in GBM
patients had an inversely proportional relationship with the high expression of CDK1, PBK,
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and CHEK1 at a p-value < 0.05 on the KM graphs, validating the potential prognostic value
of the three genes in GBM. The graphs in Figure 6 below show the potential prognostic
value of CDK1/PBK/CHEK1 oncogenic signature in GBM.
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2.7. Molecular Docking Analysis Confirms Dapagliflozin as a Potential Therapeutic Agent for
Targeting CDK1/PBK/CHEK1 in GBM

The molecular docking results confirmed the potential of Dapagliflozin in inducing
apoptosis by arresting the cell cycle by targeting CDK1, PBK, and CHEK1 in glioblastoma.
Dapagliflozin showed lower putative binding energies with CDK1 [−8.4 kcal/mol of
Gibbs free energy (∆G)], PBK [∆G = −7.2 kcal/mol], and CHEK1 [∆G = −8.3 kcal/mol]
oncogenes through our docking analysis performed using AutoDock Vina software in the
command prompt. We compared Dapagliflozin’s binding affinity to CDK1 to Abemaciclib’s
binding affinity to CDK1, obtained using the same analytical method with CDK1 having a
∆G of −8.9 kcal/mol, suggesting a similar better effect of Dapagliflozin in targeting these
oncogenes but with a shorter binding distance. However, we found no FDA-approved
standard inhibitor for PBK and CHEK1 to compare as references for our molecular docking
results for these oncogenes. Moreover, analytical results in BIOVIA Discovery Studio
revealed that Dapagliflozin formed conventional hydrogen (H) bonds with CDK1 on
GLN132 (1.94 Å, 2.72 Å), Alkyl bond on ALA145, Pi-Alkyl bonds (ALA132, LEU135,
PHE82, VAL18), and Pi-Sigma on PHE82.

PBK had three H bonds with Dapagliflozin (ASN45:2.81 Å, ARG278:2.96 Å, and
THR24:3.07 Å), Alkyl and Pi-Alkyl bonds on PRO280, Carbon Hydrogen Bond on THR277,
and Pi-Pi-T shaped and Pi-Pi Stacked on TYR47. CHEK1 formed a H bond with Da-
pagliflozin on ASP148 (2.37 Å), Alkyl (VAL68, LEU15 and LEU84), Pi-Alkyl (LEU137,
ALA36, VAL23), Carbon Hydrogen Bond on GLY90, Pi-Sigma on LEU15, and Pi-Donor Hy-
drogen bond on SER147. Figures 7 and 8 below are a 3D and 2D graphical presentation of
these interactions as viewed in BIOVIA Discovery Studio. The details of all the interactions
between Dapagliflozin and CDK1, PBK, and CHEK1 are summarized in Table 1 below.
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Figure 8. Putative binding of Abemaciclib on CDK1 in 3D and 2D structures. (A,B) show a slightly
better putative binding of Abemaciclib on CDK1 [∆G = −8.9 kcal/mol] but has a longer binding
distance (LYS33:3.23 Å) stabilized by a H bond in green color compared to Dapagliflozin.
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Table 1. A summary of the docking results for Dapagliflozin on CDK1/PBK/CHEK1 oncogenic
signature. The results comprise the binding energies, binding distances, the interacting amino acid
on the receptor, and the type of bond for each ligand–receptor interaction.

Oncogenes and Binding Energy [] Interacting Amino Acids and Binding Distance () Interaction Type

CDK1 [∆G = −8.4 kcal/mol] GLN132 (1.94 Å, 2.72 Å) Conventional Hydrogen Bond
ALA145 Alkyl

ALA132, LEU135, PHE82, VAL18 Pi–Alkyl
PHE82 Pi–Sigma

PBK [∆G = −7.2 kcal/mol] ASN45 (2.81 Å), ARG278 (2.96 Å), THR24 (3.07 Å) Conventional Hydrogen Bond
PRO280 Alkyl and Pi–Alkyl bonds
THR277 Carbon Hydrogen Bond
TYR47 Pi-Pi-T shaped and Pi-Pi Stacked

CHEK1 [∆G = −8.3 kcal/mol] ASP148 (2.37 Å) Conventional Hydrogen Bond
VAL68, LEU15, LEU84 Alkyl

LEU137, ALA36, VAL23 Pi–Alkyl
GLY90 Carbon Hydrogen Bond
LEU15 Pi–Sigma
SER147 Pi–Donor Hydrogen bond

3. Discussion

There is still no cure for glioblastoma, whose aggressiveness results in poor overall
patient survival, with a median survival of less than 15 months [5]. Temozolomide resis-
tance contributes to poor patient survival in GBM despite TMZ being the only approved
chemotherapeutic drug for GBM [47–49]. In addition, GBM tumor heterogeneity and stem
cell presence complicate total patient cure even after surgical resection, chemotherapy, and
adjuvant radiation therapy [50]. It is imperative to continue exploring other treatment
options that will sensitize tumors and improve the current survival rate of GBM patients.

Accumulating studies have shown that CDKs and other protein kinases are potential
therapeutic targets in GBM and other cancers due to the vital roles these kinases play
in driving the cell cycle and eventual tumor progression [1,20,27,32,38,51,52]. We iden-
tified a chemoradio-resistant oncogenic signature in GBM comprising CDK1, PBK, and
CHEK1 through our comprehensive in silico analysis. We explored various databases
to comprehensively identify and analyze this oncogenic signature in GBM and the role
it plays in promoting tumor progression and overall patient survival. In this study, we
successfully showed that the overexpression of these genes promotes tumor progression
by aiding its proliferation, evading senescence and apoptosis through the aberrant com-
pletion of the cell cycle, especially the G2/M phase transition. In addition, we showed
that CDK1/PBK/CHEK1 overexpression promotes GBM tumor aggressiveness, immuno-
suppression, and progression by recruiting the tumor-promoting immune cells such as
the T Cells CD4+ Th2 subtype, MDSCs, and the TAM-M2 subtype [42,46,53,54]. These
pro-tumor immune cells enhance tumor initiation and angiogenesis and suppress other
anti-tumor immune responses, increasing tumor cell population within the tumor microen-
vironment, metastasis, and eventual poor patient survival [43–45,55,56]. Furthermore, we
revealed that CDK1/PBK/CHEK1′s overexpression is associated with poor patient survival
in GBM as outlined above in the KM survival estimates, thus underlining the biomarker
and prognostic properties of the CDK1/PBK/CHEK1 oncogenic signature in GBM.

Despite advancements in unraveling potential therapeutic targets in GBM, several
attempts to develop other drugs and treatment modalities for this aggressive primary brain
tumor have not been successful. The blood–brain barrier (BBB) is the main reason for
this failure due to the presence of efflux pumps that actively pump out cancer drugs that
cross the BBB [57,58]. Moreover, some of the developed drugs have been toxic to normal
cells, outweighing the benefits that they might have in killing cancer cells [51,59,60]. How-
ever, studies have shown that Sodium Glucose-linked cotransporters 2 (SGLT2) inhibitors
such as Dapagliflozin cross the BBB as the brain has SGLT2 receptors [61,62]. In addition,
Dapagliflozin is less toxic and promotes cardiovascular, renal, and neurovascular protec-
tion [62,63]. It has since been successfully repurposed and approved for treating chronic
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kidney diseases [63,64]. Studies have shown the potential anticancer effects that SGLT2
inhibitors have in addition to their primary correlation with glucose transporters [65–68].
In addition, studies have confirmed the inhibitory effect of SGLT2 inhibitors such as
Canagliflozin on CDK1 and the subsequent cell cycle arrest at the G2/M in hepatocellular
carcinoma [67]. Furthermore, Dapagliflozin has previously shown inhibitory effects on
different cancer types’ cell adhesion by acting directly on the ADAM10 gene [67]. In this
study, we have successfully shown and validated through in silico molecular docking and
analyses that Dapagliflozin binds to CDK1, PBK, and CHEK1 and arrests the cell cycle
progression from the G2/M phase with equally the lowest energies as Abemaciclib. These
interactions are well stabilized by conventional hydrogen bonds. The simultaneous inhibi-
tion of CDK1/PBK/CHEK1 will promote the cell cycle arrest, senescence, and apoptosis of
GBM, suppressing tumor progression. Our results elucidate the anticancer properties of Da-
pagliflozin, an already approved drug with a well-documented safety profile, as a potential
drug for glioblastoma treatment [67,69]. It has previously been reported that a combination
of cancer therapy comprising Dapagliflozin or other SGLT2 inhibitors enhances patient
tolerance to standard cancer treatments and improves the drugs’ effectiveness [67–70]. Pre-
clinical experiments are ongoing in our laboratory to validate the efficacy and therapeutic
effect of Dapagliflozin on CDK1/PBK/CHEK1 and evaluate the viability of a combination
therapy with standard treatments to improve the current chemo-radiotherapy resistance
and toxicity status in GBM [49,59,67–72].

4. Materials and Methods
4.1. Gene Expression Dataset Retrieval

GSE108474, GSE50161, and GSE4290, comprising gene expression profiles of GBM
patients’ samples, were downloaded from Gene Expression Omnibus (GEO) database (https:
//www.ncbi.nlm.nih.gov/gds/ accessed on 14 February 2023), a functional genomics data
repository available for public use [73,74]. The samples were then sorted into tumor and
normal before being analyzed for differentially expressed genes (DEGs) on an interactive
web tool, GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/ accessed on 14 February
2023) [75]. The False discovery rate (FDR) was controlled by adjusting the p-values to
enhance the sensitivity by opting for the Benjamini and Hochberg method, with the fold-
change threshold and the significance level cut-off set at 1.5 and 0.05, respectively. These
DEGs were sorted and analyzed on Bioinformatics & Evolutionary Genomics (BEG), an
online tool available at http://bioinformatics.psb.ugent.be/webtools/Venn/ (accessed
on 14 February 2023) to identify overlapping genes and visualize them in Venn diagrams
drawn using this tool.

4.2. Protein–Protein Interaction (PPI) Network and Functional Enrichment Analysis

We explored the STRING database, version 11.5, accessible at https://string-db.org/
(accessed on 30 March 2023), to predict the interactions of the overlapping overexpressed
genes [76–78]. We clustered the PPI networks and extracted statistically significant
(p-value < 0.05) functional enrichments under the Gene Ontology (GO) biological pro-
cesses, Reactome, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.
We identified our oncogenic signature comprising CDK1, PBK, and CHEK1 from the PPI
network cluster. We further analyzed the PPI network on Network Analyst, available
at https://www.networkanalyst.ca/NetworkAnalyst/ (accessed on 1 April 2023), which
provides comprehensive profiling and visual analytics of gene expression and networks,
respectively [79–81].

4.3. Validation of CDK1/PBK/CHEK1 Expression and Correlation in GBM

We validated the identified gene signature on the Tumor Immune Estimation Resource
(TIMER2.0) available at http://timer.cistrome.org/ (accessed on 16 March 2023) [82]. We
aimed to explore the individual differential expression of these genes between tumor and
normal samples based on their availability in The Cancer Genome Atlas (TCGA) and

https://www.ncbi.nlm.nih.gov/gds/
https://www.ncbi.nlm.nih.gov/gds/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://string-db.org/
https://www.networkanalyst.ca/NetworkAnalyst/
http://timer.cistrome.org/
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in pan-cancer with a primary focus on GBM. We further validated CDK1/PBK/CHEK1
and explored their correlation on the Chinese Glioma Genome Atlas (CGGA) accessible at
http://www.cgga.org.cn/index.jsp (accessed on 16 March 2023) [83]. Only those DEGs with
a p-value < 0.05 and a positive Pearson correlation coefficient were considered significant.

4.4. Correlation between CDK1/PBK/CHEK1 Overexpression and Immune Cell Infiltration Levels

We analyzed the correlation between the overexpression of CDK1/PBK/CHEK1 and
the immune cells namely T cell CD4+ Th2, myeloid-derived suppressor cells (MDSC), and
tumor-associated macrophages M2 subtype (TAM-M2) in GBM using TIMER2.0. TIMER2.0
has a comprehensive set of algorithms used for estimating and analyzing the immune
infiltration levels of pan cancers available in TCGA [82]. We selected the tumor purity
adjustment option to use the partial Spearman’s correlation (Rho) to control confounding
variables in our analysis since tumor purity is the major confounder in this association
analysis and is often negatively associated with most immune cell types [82]. We focused
on the analytical results from the tumor immune dysfunction and exclusion (TIDE) and
xCell algorithms of TIMER2.0 due to the statistical significance of the correlation between
CDK1/PBK/CHEK1 and the immune cells with p-value < 0.05 [84,85]. These algorithms
use gene expression profiles and gene set enrichment analysis data to compute tumor
purity, stromal cell presence in tumor microenvironment, T-cell dysfunction, and T-cell
exclusion in tumors and give a comprehensive estimate.

4.5. Assessment of CDK1, PBK, and CHEK1 as Prognostic Biomarkers in GBM

We used GlioVis (http://gliovis.bioinfo.cnio.es/ accessed on 16 March 2023) to assess
the prognostic value of CDK1, PBK, and CHEK1 in glioblastoma, and we selected the
CGGA dataset utilizing the RNA-Seq data for its estimation [86]. Furthermore, we opted
for all subtypes, all genders, and all IDH statuses for our analysis. We estimated the
Kaplan–Meier survival and analyzed the maximally selected rank statistics for the genes’
cut-off value on GlioVis with a p-value < 0.05.

4.6. Molecular Docking Analysis

We used the molecular docking analysis to assess the interactions and effects of Da-
pagliflozin (CID:9887712), which we aim to repurpose against CDK1, PBK, and CHEK1 in
GBM [87,88]. In addition, we analyzed CDK1 interactions with Abemaciclib (CID:46220502),
an FDA-approved standard inhibitor against CDKs, as a reference during our results
analysis due to its documented inhibitory activity against CDK1 [89]. However, we
found no FDA-approved standard inhibitor for PBK and CHEK1 to compare our molec-
ular docking results. We downloaded 3D structures of the ligands, Dapagliflozin and
Abemaciclib, in SDF format on PubChem (https://pubchem.ncbi.nlm.nih.gov/ accessed
on 2 April 2023) and converted them to PDB format in Open Babel GUI version 3.1.1.
The CDK1 (PDB:4YC6), PBK (PDB:5J0A), and CHEK1 (PDB:2HOG) proteins’ 3D crys-
tal structures were downloaded from RSCB protein data bank (RSCB PDB), accessed on
https://www.rcsb.org/ (accessed on 2 April 2023) [90–93]. Further pre-processing of the
ligands and proteins (receptors) and their subsequent conversion to PDBQT formats were
performed in AutoDockTools-1.5.7 [94]. We used AutoDockVina commands in the com-
mand prompt to perform molecular docking for our receptors and the ligands, with the
results analyzed in PyMOL version 2.5.4 and BIOVIA Discovery Studio 2021 Client [95–97].

5. Conclusions

In conclusion, through our comprehensive in silico analysis, we showed that overex-
pression and a strong positive correlation of the CDK1/PBK/CHEK1 oncogenic signature
in GBM promote its aggressiveness, immuno-evasion, and tumor progression through an
aberrant completion of the cell cycle and recruitment of the tumor-promoting immune cells
such as the T Cells CD4+ Th2 subtype, MDSCs, and the TAM-M2 subtype. Furthermore,
our KM survival estimates unraveled the poor patient survival associated with a high
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CDK1/PBK/CHEK1 expression in GBM. In light of this, we showed that this chemo-radio-
resistant oncogenic signature is a potential prognostic biomarker and a potential target
for Dapagliflozin. Our molecular docking analysis showed that Dapagliflozin binds to
CDK1, PBK, and CHEK1 with equally the lowest Gibbs free energies like those of the
FDA-approved standard inhibitor used. We will use the ongoing preclinical experiments in
our laboratory to validate our findings and evaluate the viability of a combination therapy.
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