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Abstract: Nelumbo nucifera Gaertn., an aquatic medicinal plant (Nelumbonaceae family), has a
history of use in traditional medicine across various regions. Our previous study demonstrated the
skin anti-aging potential of its stamen ethanolic extract by effectively inhibiting collagenase and
tyrosinase enzymes. While the major constituents of this extract are well documented, there is a
lack of research on the individual compounds’ abilities to inhibit skin aging enzymes. Therefore,
this study aimed to evaluate the anti-aging potential of the primary flavonoids found in N. nucifera
using both in silico and in vitro approaches. Our initial step involved molecular docking to identify
compounds with the potential to inhibit collagenase, elastase, and tyrosinase. Among the seven
flavonoids studied, kaempferol-3-O-robinobioside (Kae-3-Rob) emerged as the most promising
candidate, exhibiting the highest docking scores for three skin aging-related enzymes. Subsequent
enzyme-based inhibition assays confirmed that Kae-3-Rob displayed robust inhibitory activity against
collagenase (58.24 ± 8.27%), elastase (26.29 ± 7.16%), and tyrosinase (69.84 ± 6.07%). Furthermore,
we conducted extensive 200-ns molecular dynamics (MD) simulations, revealing the stability of the
complexes formed between Kae-3-Rob and each enzyme along the MD simulation time. MM/PBSA-
based binding free energy calculations indicated the considerably stronger binding affinity of Kae-3-
Rob for collagenase and tyrosinase compared to elastase, which was related to the greater percentage
of hydrogen bond occupations. These computational findings were consistent with the relatively
high inhibitory activity of Kae-3-Rob against collagenase and tyrosinase observed in our in vitro
experiment. In conclusion, the results obtained from this comprehensive study suggest that Kae-3-
Rob, a key flavonoid from N. nucifera, holds significant potential as a source of bioactive compounds
for anti-aging cosmeceutical and other phytopharmaceutical application.

Keywords: lotus plant; skin-aging enzyme inhibition; molecular docking; molecular dynamics simulation

1. Introduction

Skin aging is a multifaceted process characterized by various conditions, including
the loss of skin elasticity and strength, along with the development of pigmentation disor-
ders [1]. Furthermore, skin aging involves hyperpigmentation, the breakdown of collagen
and elastin fibers, leading to the formation of wrinkles, skin laxity, dryness, and impaired
wound healing [2]. These concerns have been associated with the increased activity of key
aging-related enzymes such as collagenase and elastase [3,4]. Additionally, the level of
melanin content and its distribution are considered important factors affecting skin color.
Tyrosinase, the key rate-limiting enzyme, regulates melanin content during the process of
melanogenesis. Unfortunately, abnormal melanin production causes various dermatologi-
cal problems such as freckles, melasma, age spots, and senile lentigines, leading to flaws
and a premature aging appearance. Therefore, inhibiting tyrosinase activity is a common
approach recommended for addressing pigmentation disorders and is used as a whitening
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agent for aesthetic purposes [5]. While synthetic skincare products with anti-aging ingre-
dients are available, they can sometimes lead to adverse reactions such as allergic contact
dermatitis, irritant contact dermatitis, and phototoxic and photo-allergic responses [6].
Consequently, the research community is currently focusing on exploring phytochemicals
extracted from medicinal plants and/or their major phytochemical compounds, especially
flavonoids, as a promising avenue in addressing skin aging [7–12].

Sacred lotus is an Asian lotus species that is widely used for both ornamental and
medicinal proposes [7,8,13–17]. Due to the beauty of its flowers, sacred lotus has long been
used for ornamental purposes. This lotus is also recognized as the spiritual symbol of
various religions such as Buddhism, Hinduism, and Ancient Egyptian religion since the
ancient period [8,13–15]. This sacred lotus is a species member of an aquatic flowering
plant family Nelumbonaceae (Figure 1), and its scientific name is also known as Nelumbo
nucifera Gaertn. [13,14]. This species distributes mainly in Asian regions, e.g., Thailand,
India, China, Sri Lanka, Nepal, and Japan [13,14,18–20]. Furthermore, sacred lotus is used
as an ingredient for preparing various traditional medicines or herbal drugs [18–23].
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kaempferol-3-O-glucoside (Kae-3-Glc), kaempferol-3-O-glucuronide (Kae-3-Glu), and iso-
rhamnetin-3-O-glucoside (Iso-3-Glc) [7–9,19]. Our previous study demonstrated that the 
ethanolic extract from N. nucifera stamens by using ultrasound-assisted extraction meth-
odology exhibited promising inhibitory effects on aging-related enzymes, specifically col-
lagenase and tyrosinase, with a relatively weaker inhibition observed for elastase and hy-
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Nowadays, a large number of research teams have studied phytochemical characteri-
zation as well as the pharmacological activities of this medicinal species [7,8,16–27]. The
anti-aging effect of N. nucifera, in particular against degenerative diseases, has been re-
cently ascribed to its flavonoid fraction [9,28–30]. In lotus species, the stamen is an enriched
source of flavonoids [7–10,17–23,25–30]. The stamen ethanolic extract of N. nucifera contains
seven major flavonoids, namely myricetin-3-O-glucoside (Myr-3-Glc), rutin, quercetin-3-
O-glucuronide (Quer-3-Glu), kaempferol-3-O-robinobioside (Kae-3-Rob), kaempferol-3-O-
glucoside (Kae-3-Glc), kaempferol-3-O-glucuronide (Kae-3-Glu), and isorhamnetin-3-O-
glucoside (Iso-3-Glc) [7–9,19]. Our previous study demonstrated that the ethanolic extract
from N. nucifera stamens by using ultrasound-assisted extraction methodology exhibited
promising inhibitory effects on aging-related enzymes, specifically collagenase and ty-
rosinase, with a relatively weaker inhibition observed for elastase and hyaluronidase [9].
However, we have yet to explore the individual major compounds within this medicinal
plant to assess their anti-aging activity against enzymes associated with skin aging.

This research aims to explore the anti-aging properties of major flavonoids found in
N. nucifera stamen concerning three crucial enzymes associated with the skin aging process,
such as collagenase, elastase, and tyrosinase, using computational approaches. In vitro
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enzyme-based assays were also performed to compare with these molecular modeling data.
Herein, we initially screened the flavonoids against these three aging-related enzymes
using the molecular docking technique. The most potent compound, as determined by its
superior docking score among the three enzymes, underwent experimental testing through
in vitro enzyme inhibition assays. Subsequently, molecular dynamic (MD) simulation was
conducted to gain insights into the dynamic behavior of the protein–ligand complex in
aqueous solution, which provides the mechanism of action at the atomic level. As far as
we know, this study is the first report on the molecular modeling of the major flavonoids
found in the N. nucifera medicinal plant. Ultimately, we anticipate that these findings will
be the fundamental data for the further development of new anti-aging cosmeceuticals or
phytopharmaceutical applications.

2. Results and Discussion
2.1. Molecular Docking

To predict the potency of seven flavonoid glycosides against three aging-associated
enzymes—collagenase, elastase, and tyrosinase—molecular docking was performed using
AutoDock Vina 1.2.5. The docking scores of each compound with the target enzymes
are presented in Figure 2, where lower values indicate better binding. Generally, all the
major flavonoids from the N. nucifera stamen ethanolic extract displayed lower docking
scores than positive controls for all target enzymes. Interestingly, Kae-3-Rob exhibited the
highest binding affinity against the three enzymes (−8.82, −8.55, and −8.18 kcal/mol for
collagenase, elastase, and tyrosinase, respectively) compared to the other compounds. The
second most promising compound with anti-aging potential against these aging-related
proteins was rutin. This finding is consistent with a previous report that highlighted
the notable biological effects of rutin on skin aging. The anti-aging properties of rutin
were determined using a cell viability assay, reverse transcription-quantitative polymerase
chain reaction, senescence-associated-β-galactosidase assay, and reactive oxygen species
scavenging activity in in vitro; the anti-aging of rutin in vivo model, rutin-containing cream,
was tested in human skin with a double-blind clinical study [31].
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Figure 2. Docking results calculated with AutoDock Vina scoring function of seven major compounds
from N. nucifera toward collagenase, elastase, and tyrosinase relative to their reference compounds
(1,10-phenanthroline, oleanolic acid, and kojic acid).

From a docking perspective, Kae-3-Rob has gained much attention in this study. To
the best of our knowledge, there are no reports on the inhibitory activity of this compound
against these aging-related enzymes. To provide further insight, we analyzed the binding
mode and interactions of Kae-3-Rob with each target enzyme obtained from molecular
docking. The 3D graphics and 2D diagrams of protein–ligand interactions are depicted in
Figure 3.
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Figure 3A illustrates the 3D and 2D representations of the most favorable binding pose
of Kae-3-Rob on the collagenase catalytic domain. The results revealed that Kae-3-Rob can
effectively bind to the enzyme’s active site during the docking process. The most stable
conformation of Kae-3-Rob displayed interactions with several residues in the enzyme
binding pocket. These interactions involve van der Waals (vdW), hydrogen bonding
(H-bond), and π-related interactions. Furthermore, the catalytic Zn2+ ion, which plays a
crucial role in collagenase’s enzymatic process, could form a metal–acceptor interaction
with the 7-hydroxyl group on the chromone ring of Kae-3-Rob. This interaction likely
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resulted in the blocking of Zn2+ during catalysis and/or disturbed the interactions with
zinc metal-binding residues (i.e., H523, H527, and E555) [32]. These findings may explain
the strong inhibitory effect of Kae-3-Rob against collagenase, as determined by enzymatic
assays (as shown further in Section 2.2).

In the molecular docking analysis of Kae-3-Rob with elastase, it was observed that
the B-ring of Kae-3-Rob effectively occupied the active site of elastase, which includes
the catalytic triad (H57, D102, and S195) [33]. This particular configuration was primarily
stabilized by the H-bond with S190, amide-π stacking with F215, and π-alkyl interactions
with C220. Additionally, residues T41, N152, and G216 were found to form H-bonds with
the A-ring, rhamnose, and galactose moieties, respectively. Notably, our results indicate
that while Kae-3-Rob could interact with multiple residues within the binding pocket of
elastase, it did not form any direct interaction with the catalytic triad, only exhibiting weak
vdW interactions with S195. These observations may explain the relatively weak inhibitory
activity of Kae-3-Rob against elastase, as shown further in Section 2.2. This was in contrast
to epigallocatechin gallate (EGCG), which could directly bind to the catalytic triad and
exhibited potent inhibition [34].

The docked complex between Kae-3-Rob and tyrosinase is illustrated in Figure 3A.
Kae-3-Rob displayed great potential for inhibiting tyrosinase, as indicated by its superior
binding affinity compared to the positive control, kojic acid (docking score−5.57 kcal/mol).
The molecular docking results revealed that ring B of Kae-3-Rob, which has a structural
resemblance to the tyrosine substrate, effectively occupied the active site of mushroom
tyrosinase, suggesting its ability to compete with tyrosine binding [35]. In the 2D interaction
map, the chromone ring was stabilized through π-related interactions with the residues
V248 (π-alkyl) and F264 (π-π T-shaped), while V283 participated in a π-alkyl interaction
with ring B of Kae-3-Rob. Additionally, the hydroxyl groups on the rhamnose moiety
of Kae-3-Rob formed conventional H-bonds with the binding site residues N81, C83,
and A323. Although the compound did not directly interact with the binuclear copper
ions (CuA and CuB) at the catalytic center, the 4′-hydroxyl group on the B-ring formed
a non-classical carbon H-bond with H259, one of the coordinating residues with CuB.
Furthermore, the B-ring established hydrophobic contacts with H61 and H263, which are
coordinated with CuA and CuB, respectively. Therefore, our docking results suggest that
Kae-3-Rob can disrupt the redox cycle critical for the catalytic activity of tyrosinase by
binding into the catalytic cavity and interfering with the interactions between the active
site copper ions and the histidine-based catalytic residues. This similar binding pattern
within the tyrosinase catalytic domain, as derived from molecular docking, has also been
observed for other phytochemicals, such as galangin [36], (+)-catechin [37], and luteolin
5-O-β-D-glucopyranoside [38].

2.2. In Vitro Assay of Kae-3-Rob toward Aging-Related Enzymes Inhibition

The results from the in vitro aging-related enzymes inhibition assay show that Kae-
3-Rob, which is a major flavonoid phytochemical compound from the medicinal plant
N. nucifera [7–9,19], exhibits anti-aging potential against the skin-aging enzymes (Table 1)
including tyrosinase (69.84 ± 6.07% of enzyme inhibition), collagenase (58.24 ± 8.27%
of enzyme inhibition), and elastase (26.29 ± 7.16% of enzyme inhibition), respectively.
This result from this current study is consistent with what was previously reported on the
potential of flavonoids as anti-aging phytochemical compounds for cosmetic, cosmeceutical,
or phytopharmaceutical applications [7,31,39,40].
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Table 1. Comparison of in vitro skin aging enzyme inhibition of Kae-3-Rob.

Anti-Aging Activity % of Enzyme Inhibition a

Tyrosinase 69.84 ± 6.07
Collagenase 58.24 ± 8.27

Elastase 26.29 ± 7.16
a 1,10-Phenantroline (100 µM) was used as the specific inhibitor of collagenase, leading to an inhibition of
33.4 ± 1.9%, while kojic acid (10 µM) was used as the specific inhibitor of tyrosinase, leading to an inhibition
of 51.2 ± 0.9%. Oleanolic acid (10 µM) was used as the specific inhibitor of elastase, leading to an inhibition of
46.7 ± 1.5%.

2.3. Molecular Dynamics of Kae-3-Rob Bound to Aging-Related Enzymes
2.3.1. System Stability

Since Kae-3-Rob showed the most negative binding energy against three aging-related
enzymes (Figure 2), we further conducted 200 ns MD simulations to investigate the binding
stability and dynamic behavior in an aqueous environment. To assess the stability of
the simulated systems, the root-mean-square deviation (RMSD) of the complex atoms,
including enzyme backbone atoms and ligand heavy atoms, was initially calculated over
the course of the MD simulations. The RMSD profiles revealed that all the systems were
found to reach an equilibrium after 125 ns (Figure 4A), with stable RMSD values ranging
from 1.8 to 2.3 Å. Additionally, the compactness of the enzyme structure upon ligand
binding was determined by calculating the radius of gyration (Rg) throughout the MD
simulation time of 0–200 ns (Figure 4B). The Rg plots for protein Cα atoms showed that the
three systems were relatively stable, with consistent Rg values of approximately 19.2–19.5 Å
for collagenase, 16.4–16.6 Å for elastase, and 20.3–20.6 Å for tyrosinase. This indicated that
the overall protein structures maintained their compactness throughout the MD simulation
time. It is worth noting that a slight increase in the Rg value was observed after ~60 ns for
the Kae-3-Rob–tyrosinase system, which could be attributed to minor adjustments in the
enzyme’s structure when the ligand bound to its active site.
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We also tracked the number of hydrogen bonds (# H-bonds) formed within each en-
zyme binding site and with Kae-3-Rob along the simulation times, as depicted in Figure 4C.
A higher number of # H-bonds signifies the greater stability of the complex. In the Kae-3-
Rob–collagenase complex, the time course of # H-bonds revealed consistent interactions
from 50 to 200 ns, averaging around 6 H-bonds. Similarly, the H-bond profile of Kae-3-Rob
bound to tyrosinase gradually increased from 0 to 80 ns, after which it remained constant
(~5 H-bonds) until 200 ns. In contrast to both systems, the H-bond profile of the Kae-3-Rob–
elastase system appeared to fluctuate (1–7 H-bonds) throughout the simulation, especially
during the 50 to 150 ns period, suggesting that Kae-3-Rob may bind to the active site of
elastase with less stability compared to collagenase and tyrosinase. Altogether, the struc-
tural parameters collectively indicate that throughout the MD simulations, all complexes
remained stable, and there were no significant observed conformational changes.

2.3.2. Binding Affinity

Due to the consistency and small fluctuations observed in RMSD, Rg, and # H-bonds
(Figure 4) during the 150–200 ns, the 500 MD snapshots extracted from this period were
used to calculate the binding free energies (∆Gbind) of the simulated systems. The binding
affinities of Kae-3-Rob to collagenase, elastase, and tyrosinase were estimated using the
Molecular Mechanics-Poisson Boltzmann surface area (MM/PBSA) approach. The method
is considered as more computationally accurate compared to docking scoring functions
(empirical or knowledge-based scoring functions), as it can detect conformational changes
induced by ligand binding and provide a rigorous free energy decomposition, offering
insights into contributions from various atom groups and types of interactions [41]. The
∆Gbind, together with its energy components of each system, is given in Table 2. Note that
the normal mode analysis [42] that was conducted to calculate the entropic contribution
(T∆S) averaged over only 50 snapshots, due to the substantial computational cost associated
with the calculation.

Table 2. The average ∆Gbind and its energy component (kcal/mol) of Kae-3-Rob bound to collagenase,
elastase, and tyrosinase calculated with the MM/PBSA method. Data are shown as means ± the
standard error of the mean (SEM).

Collagenase Elastase Tyrosinase

∆EvdW −28.96 ± 0.27 −35.38 ± 0.14 −32.02 ± 0.18
∆Eele −46.08 ± 0.25 −13.23 ± 0.17 −35.34 ± 0.36

∆EMM −75.04 ± 0.27 −48.61 ± 0.21 −67.36 ± 0.29
−T∆S 22.57 ± 2.02 21.71 ± 1.03 21.72 ± 1.84
∆Gele

sol 50.61 ± 0.22 28.25 ± 0.18 41.36 ± 0.24
∆Gnonpolar

sol −4.44 ± 0.01 −4.06 ± 0.01 −4.64 ± 0.01
∆Gsol 46.17 ± 0.21 24.19 ± 0.17 36.71 ± 0.24

∆Gtotal −28.87 ± 0.20 −24.42 ± 0.12 −30.65 ± 0.14
∆Gbind −6.30 −2.71 −8.93

The calculated MM/PBSA energies for Kae-3-Rob binding to collagenase, elastase,
and tyrosinase were as follows: −6.30, −2.71, and −8.93 kcal/mol, respectively. More
specifically, the corresponding energetic values revealed that the electrostatic term (∆Eele)
was the primary contributor to the binding energies of the Kae-3-Rob–collagenase complex,
surpassing the vdW term (∆EvdW) by ~1.5-fold. This phenomenon could be attributed to the
relatively high # H-bonds formed between the protein and ligand, as depicted in Figure 4.
In contrast, the Kae-3-Rob–elastase complex was primarily stabilized by the ∆EvdW term,
while the ∆Eele and ∆EvdW values were closely similar for the tyrosinase system. However,
when considering solvation free energies, the polar term (∆Eele + ∆Gele

sol) resulted in an
unfavorable binding contribution (positive value), as opposed to the favorable non-polar
term (∆EvdW + ∆Gnonpolar

sol ). This pattern is commonly observed in the binding of various
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protein–ligand complexes [43–45]. Note that all three complexes exhibited nearly identical
values for the T∆S contribution (~−22 kcal/mol). In summary, these findings indicated a
stronger binding affinity of Kae-3-Rob to collagenase and tyrosinase compared to elastase.
This may justify the in vitro anti-aging assays, where Kae-3-Rob showed more potent
inhibition against collagenase and tyrosinase than against elastase.

2.3.3. Key Binding Residues

To further analyze the crucial binding residues of collagenase, elastase, and tyrosinase
important for Kae-3-Rob binding, the calculation of MM/PBSA per residue decomposition
energy (∆Gres

bind) for each complex system was conducted. This analysis was performed
over the same set of 500 snapshots used for the binding free energy calculations mentioned
above. The results obtained are presented in Figure 5A, where the residues demonstrating
an energy stabilization of≤−1.0 kcal/mol are marked in the plots. The binding orientations
of Kae-3-Rob within the active site of each enzyme are depicted in Figure 5B.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 8 of 16 
 

 

favorable non-polar term (∆EvdW + ∆Gsol
nonpolar). This pattern is commonly observed in the 

binding of various protein–ligand complexes [43–45]. Note that all three complexes exhib-
ited nearly identical values for the T∆S contribution (~–22 kcal/mol). In summary, these 
findings indicated a stronger binding affinity of Kae-3-Rob to collagenase and tyrosinase 
compared to elastase. This may justify the in vitro anti-aging assays, where Kae-3-Rob 
showed more potent inhibition against collagenase and tyrosinase than against elastase. 

2.3.3. Key Binding Residues 
To further analyze the crucial binding residues of collagenase, elastase, and tyrosi-

nase important for Kae-3-Rob binding, the calculation of MM/PBSA per residue decom-
position energy (∆Gbindres ) for each complex system was conducted. This analysis was per-
formed over the same set of 500 snapshots used for the binding free energy calculations 
mentioned above. The results obtained are presented in Figure 5A, where the residues 
demonstrating an energy stabilization of ≤−1.0 kcal/mol are marked in the plots. The bind-
ing orientations of Kae-3-Rob within the active site of each enzyme are depicted in Figure 
5B. 

 
Figure 5. (A) The plots of ∆Gbindres  calculated with the MM/PBSA method for Kae-3-Rob complexed 
with collagenase, elastase, and tyrosinase, with the key residues involved in ligand binding labeled 
in the graph (energy stabilization of ≤−1.0 kcal/mol). (B) A close-up view of key influential residues 
of collagenase, elastase, and tyrosinase contributing to Kae-3-Rob binding. 

The critical residues in collagenase that participated in binding with Kae-3-Rob in-
cluded N492, G493, G494, R508, F515, L520, E555, E559, D603, and W604. These stabilizing 
amino acid residues were also implicated in the binding of other reported collagenase 
inhibitors such as ohioensin A, nor-ohioensin D [46], bisresorcinol [47], and turmerone 
[48]. Notably, residue E555, which is one of the Zn2+-binding residues, exhibited the most 
negative energy contribution (∆Gbindres  of –6.9 kcal/mol) to ligand binding, primarily 
through electrostatic interactions (as discussed later in Figure 6). This interaction likely 
disrupts the binding with the catalytic Zn2+ during catalysis, thereby inhibiting the 

Figure 5. (A) The plots of ∆Gres
bind calculated with the MM/PBSA method for Kae-3-Rob complexed

with collagenase, elastase, and tyrosinase, with the key residues involved in ligand binding labeled
in the graph (energy stabilization of ≤−1.0 kcal/mol). (B) A close-up view of key influential residues
of collagenase, elastase, and tyrosinase contributing to Kae-3-Rob binding.

The critical residues in collagenase that participated in binding with Kae-3-Rob in-
cluded N492, G493, G494, R508, F515, L520, E555, E559, D603, and W604. These stabilizing
amino acid residues were also implicated in the binding of other reported collagenase
inhibitors such as ohioensin A, nor-ohioensin D [46], bisresorcinol [47], and turmerone [48].
Notably, residue E555, which is one of the Zn2+-binding residues, exhibited the most nega-
tive energy contribution (∆Gres

bind of −6.9 kcal/mol) to ligand binding, primarily through
electrostatic interactions (as discussed later in Figure 6). This interaction likely disrupts
the binding with the catalytic Zn2+ during catalysis, thereby inhibiting the enzymatic
activity. Consistent with this observation, residue E555 has also been identified as form-
ing a strong H-bond with EGCG, a potent collagenase inhibitor [49]. In the case of the
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Kae-3-Rob–elastase complex, six stabilizing residues (H57, S190, C191, N192, D194, and
S217) were associated with the binding of Kae-3-Rob to elastase. While Kae-3-Rob could
directly bind to the catalytic residue H57 through hydrophobic interactions (as shown in
Figure 6), the relatively low energy contribution (−1.1 kcal/mol) may not be sufficient
to outcompete substrate binding and enzyme catalysis. This observation aligns with the
weaker inhibition of Kae-3-Rob against elastase (Table 1). In contrast, EGCG was capa-
ble of direct interactions with the catalytic residues of elastase, leading to strong enzyme
inhibition [34]. Meanwhile, the binding of Kae-3-Rob with tyrosinase revealed the key bind-
ing residues crucial for ligand binding, including H61, N81, H85, G245, A246, E256, N260,
V283, and E322. Specifically, Kae-3-Rob interacted with the catalytic histidine residues H61
and H85, potentially interfering with the active CuA catalytic center. Furthermore, E256
and E322, with favorable energy contributions (−7.9 and −5.6 kcal/mol, respectively),
played an essential role in maintaining the position of the B-ring and rhamnose moiety
within the tyrosinase binding pocket. The significance of both residues in the ligand bind-
ing process has also been observed in other reported mushroom tyrosinase inhibitors, such
as bromophenols [50], caffeine [49], and carvacrol derivatives [51].
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The degree of stabilization from the individual residues highlighted in Figure 5 was
further considered in terms of the polar (∆Eele + ∆Gele

sol) and nonpolar (∆EvdW + ∆Gnonpolar
sol )

energies, as shown in Figure 6A. The contributed energies from the backbone and side
chain atoms of each residue were also analyzed (Figure 6B). The results showed that the
electrostatic interactions from the collagenase residues G493, G494, R508, E555, E559, and
D603 predominantly contributed to the binding of Kae-3-Rob. This finding aligns with the
molecular mechanics energy (∆EMM, Table 2), as well as the H-bond formations detected
in this complex (Figure 7, discussed later). In contrast, the primary energy contribution
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for the binding between elastase and Kae-3-Rob mainly came from the nonpolar energy
for H57, C191, and N192. However, for S190, the importance of this residue in recognizing
the Kae-3-Rob binding was through polar interactions (i.e., H-bonding, Figure 7). In the
Kae-3-Rob–tyrosinase system, it was found that the energy contributions of each residue
primarily came from nonpolar interactions (N81, H85, A246, N260, and V283), while polar
interactions were preferred for H61, E256, and E322. It is worth noting that most of the key
binding residues of each enzyme likely stabilized Kae-3-Rob through their side chains, as
evidenced by the greater energy contribution (more negative values) from the side chain
(blue bars) than from the backbone (red bars), as shown in Figure 6B. On the other hand, the
backbone atoms of the collagenase (N492, G493, and G494), elastase (S190, C191, and S217),
and tyrosinase (H61 and G245) residues played a crucial role in stabilizing the binding
with Kae-3-Rob.
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2.3.4. Intermolecular Hydrogen Bonds (H-Bonds)

It is well established that H-bonds play a pivotal role in protein folding and protein–ligand
interactions, as they tightly anchor the molecule in the enzyme active site [52]. Thus, the
percentage of H-bond occupations between Kae-3-Rob and each enzyme was measured
over the last 50 ns using the geometric criteria outlined in the materials and methods (see
Section 3.1.3). The representative 3D structures with the corresponding percentage of H-
bond occupations for each system are illustrated in Figure 7. In the Kae-3-Rob–collagenase
complex, H-bond formations indicated a strong stabilization (>80% occupation) with the
residues G493 (100%), G494 (99.7%), and E555 (100%). This aligns with the preferential
electrostatic interactions mentioned earlier (Figure 6A). These H-bonds likely contribute to
maintaining the chromone ring of Kae-3-Rob inside the collagenase active site. In contrast,
the Kae-3-Rob–elastase complex exhibited only one strong H-bond with the residue S190
at 92.2%, which corresponds to the weaker ∆Eele term compared to the ∆EvdW energy
(Table 2). In the case of the Kae-3-Rob–tyrosinase complex, three strong H-bonds were
detected with H61 (94.7%), H85 (95.2%), and E256 (100%). These interactions helped
stabilize the B-ring and sugar moiety within the binding pocket of tyrosinase. Taken
altogether, our findings suggest that H-bond formations played a key role in the binding of
Kae-3-Rob with collagenase and tyrosinase, in contrast to elastase.

3. Materials and Methods
3.1. Computational Studies
3.1.1. System Preparation and Molecular Docking

The three-dimensional (3D) structure of collagenase G from clostridium histolyticum
(PDB ID: 2Y6I [32]), pancreatic porcine elastase (PDB ID: 1BRU [53]), and tyrosinase from
Agaricus bisporus (PDB ID: 2Y9X [54]) were retrieved from the RCSB Protein Data Bank.
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The solvent molecules and co-crystallized ligands were removed from all selected pro-
tein structures. The missing residues (No. 598–600) in the collagenase structure were
constructed using the SWISS-MODEL server [55]. The protonation states of all ionizable
amino acids of the target protein were predicted at pH 7.4 using the H++ web server [56].
Meanwhile, the SMILES format of Myr-3-Glc (CID: 44259426), rutin (CID: 5280805), Quer-
3-Glu (CID: 5274585), Kae-3-Rob (CID: 15944778), Kae-3-Glc (CID: 5282102), Kae-3-Glu
(CID: 5318759), and Iso-3-Glc (CID: 5318645) were taken from the PubChem database
(https://pubchem.ncbi.nlm.nih.gov, accessed on 9 August 2023), as provided in Table S1
(Supplementary Materials). Next, the SMILES strings of each compound were converted
into 3D PDB format utilizing the Online SMILES Translator and Structure File Generator
(https://cactus.nci.nih.gov/translate, accessed on 9 August 2023). All the ligands were
fully optimized at the B3LYP/6-31G(d) level using Gaussian09 program (Gaussian, Inc.,
Wallingford, CT, USA) [57]. Finally, the prepared protein structures and optimized ligands
were changed into the PDBQT file format using the AutoDockFR 1.0 software suite [58]
before performing molecular docking.

Molecular docking studies were executed by AutoDock Vina 1.2.5 [59]. The crystalized
ligand of each protein structure was defined as the docking site. The dimensions of the
grid box size were equally set to 24 Å for collagenase, 20 Å for elastase, and 26 Å for
tyrosinase. The grid center x, y, and z coordinates had the following values: (i) 24.1, −2.7,
and 15.9 (collagenase), (ii) 23.2, 47.7, and 17.1 (elastase), and (iii) −10.0, −28.8, and −43.6
(tyrosinase). The exhaustiveness value was set to 64, while the remaining parameters were
kept at the program’s default values. All screened compounds were ranked by binding
energy (in kcal/mol) based on the AutoDock Vina scoring function (a more negative value
indicates higher affinity). Among the three proteins, the docked complex with the lowest
AutoDock Vina docking score (i.e., the best pose) was chosen as the initial configuration
for MD simulation. Furthermore, the 3D binding mode of the protein–ligand complex
was visualized using the UCSF Chimera [60] and ChimeraX [61] programs, while the 2D
diagram of protein–ligand interactions was verified using the Discovery Studio Visualizer
(BIOVIA, San Diego, CA, USA).

3.1.2. Molecular Dynamic (MD) Simulations

The MD simulations of the protein–ligand complexes were run under the periodic
boundary condition with the isothermal–isobaric (NPT) ensemble using SANDER and
PMEMD modules of the AMBER 20 software package (University of California, San Fran-
cisco, CA, USA) [62]. Prior to performing MD simulations, ligand parameters in terms
of the partial atomic charges and empirical force field were generated as follows. The
electrostatic potential (ESP) charges of the optimized geometry (see above) were computed
by single-point calculation at the HF/6-31G(d) level of theory. Further, the antecham-
ber module of AMBER20 was employed to convert the ESP charges of the ligand to the
restrained ESP (RESP) charges. The missing molecular parameters of the ligand were
derived from the general AMBER force field 2 (GAFF2) [63] using the parmchk2 module.
The AMBER ff14SB force field [64] was applied to the protein. All missing hydrogen
atoms of the protein–ligand complex were added by the LEaP module. The catalytic Zn2+

and Cu2+ ions of the respective collagenase and tyrosinase were treated using the 12-6-4
Lennard-Jones-type non-bonded model developed by Li and Merz [65]. Each system was
immersed in a simulation box of the TIP3P explicit solvation model [66] with a minimum
buffer thickness of 10 Å. The sodium (Na+) or chloride (Cl−) counterions were randomly
added to neutralize the total charges of the systems. To relax the structure, the added
hydrogen atoms and solvent molecules were minimized using the steepest descent (SD)
and conjugated gradient (CG) methods of 3000 and 1000 iterations, respectively. Finally,
the entire system was energetically minimized with 3000 steps of SD and 1000 steps of
CG methods. A 10-Å cutoff distance and the particle mesh Ewald (PME) method [67]
were used to treat the non-bonded interactions and long-range electrostatic interactions,
respectively. An integration time step of 2 fs was applied for MD simulation in combination

https://pubchem.ncbi.nlm.nih.gov
https://cactus.nci.nih.gov/translate
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with the SHAKE algorithm [68] to constrain all covalent bonds involving hydrogen atoms.
To maintain the target temperature and pressure of the simulated systems, the Langevin
thermostat [69] with a damping frequency of 2 ps−1 and the Berendsen barostat [70] with a
pressure-relaxation time of 1 ps were conducted.

Each simulated system was gradually heated from 10 to 300 K over 200 ps using a
canonical ensemble (NVT) with positional restraints of 30.0 kcal/mol·Å2 to the binding
residues within a 5-Å sphere from the ligand. Afterward, the complex was subjected to
NPT equilibration of restrained MD simulations with a slowly decreased force constant of
30, 20, 10, and 5 kcal/mol·Å2 for 10 ns in total, and another 1000 ps without any restraint.
Subsequently, the pre-equilibrated systems were simulated under the NPT scheme at 300 K
and 1 atm until reaching 200 ns. The MD trajectories were collected every 10 ps.

3.1.3. Post-Dynamic Trajectories Analyses

To investigate the structural variations of the simulated systems, the structural param-
eters, including RMSD, Rg, and the #H-bonds between protein and ligand, were calculated.
Note that the #H-bonds and H-bond occupation analysis were monitored using the follow-
ing geometric criteria: (i) the distance between the hydrogen donor (HD) and acceptor (HA)
≤ 3.5 Å and (ii) a HD–H···HA angle of≥120◦. In addition, ∆Gbind calculations based on the
MM/PBSA method [71] were utilized to predict the binding affinity of the protein–ligand
complexes. Meanwhile, ∆Gres

bind was calculated to verify the amino acid residues of each pro-
tein crucial for ligand binding. Both ∆Gbind and ∆Gres

bind were performed on 500 snapshots
extracted from the last 50 ns of each MD simulation. The structural information and binding
free energies were computed using the CPPTRAJ utility [72] and MMPBSA.py module [73]
of AMBER 20, respectively.

3.2. In Vitro Anti-Aging Activity
3.2.1. Chemicals

All solvents employed in this study were of analytical grade, provided by Thermo
Scientific (Waltham, MA, USA). Standards and reagents were obtained from Sigma-Aldrich
(St. Louis, MO, USA).

3.2.2. Collagenase Assay

The collagenase clostridium histolyticum (Sigma-Aldrich) was used for this study, and
its activity was determined with the aid of a spectrophotometer (Shimadzu, Kyoto, Japan)
using N-[3-(2-furyl)acry loyl]-Leu-Gly-Pro-Ala (FALGPA; Sigma-Aldrich) as the substrate
in accordance with the protocol of Wittenauer et al. [74]. The decrease in the absorbance of
the FALGPA was followed for 20 min at 335 nm using a microplate reader (BMG labtech,
Mornington, VIC, Australia). The measurements were conducted in triplicate, and the
anti-collagenase activity was revealed as the percent inhibition relative to the control for
every sample. The specific inhibitor of collagenase used was 1,10-Phenantroline (100 µM).

3.2.3. Elastase Assay

The elastase assay was performed using porcine pancreatic elastase (Sigma-Aldrich),
and its activity was investigated with a spectrophotometer (Shimadzu, Japan) using N-
Succ-Ala-Ala-Alap-nitroanilide (AAAVPN; Sigma-Aldrich) as the substrate and following
p-nitroaniline’s release at 410 nm using a microplate reader (BMG labtech, Australia)
modified based on the method described by Wittenauer et al. [74]. The measurements
were conducted in triplicate, and the anti-elastase activity was revealed as the percent of
inhibition relative to the control for every sample. Oleanolic acid (10 µM) was used as the
specific inhibitor of elastase.

3.2.4. Tyrosinase Assay

The tyrosinase assay was conducted following the method described by Chai et al. [75].
Briefly, L-DOPA (5 mM; Sigma-Aldrich) was used as the diphenolase substrate, and then
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mixed in sodium phosphate buffer (50 mM, pH 6.8) with 10 µL of the sample. Lastly,
0.2 mg/mL of mushroom tyrosinase solution (Sigma-Aldrich) was added to this mixture
in order to reach the final volume of 200 µL. The reaction processes were detected using
a microplate reader (BMG labtech, Australia) at a wavelength of 475 nm. Tyrosinase’s
inhibitory effect was expressed as the percent of inhibition relative to the control. Kojic acid
(10 µM) was used as the specific inhibitor of tyrosinase.

4. Conclusions

In this study, we investigated the anti-aging potential of seven major flavonoid glyco-
sides from the ethanolic extract of N. nucifera stamen against three critical skin aging-related
enzymes: collagenase, elastase, and tyrosinase, employing a combination of computational
and experimental approaches. The docking results obviously identified Kae-3-Rob as the
compound with the highest docking scores for all three enzymes. Subsequent in vitro
enzyme-based assays confirmed Kae-3-Rob’s notable inhibition of collagenase and tyrosi-
nase, albeit with weaker inhibition against elastase. To gain a comprehensive understanding
of the structural dynamics and molecular interactions involved in Kae-3-Rob’s binding to
each enzyme, we conducted extensive 200-ns MD simulations. These simulations revealed
the stability of each system throughout the duration of the simulations, as supported by
calculations of RMSD, Rg, and # H-bonds. Furthermore, binding free energy calculations,
utilizing the MM/PBSA method, consistently indicated a notably stronger binding affinity
of Kae-3-Rob when complexed with collagenase and tyrosinase compared to elastase, which
was in good agreement with the experimental results. Moreover, our analysis highlighted
the significant role of H-bond formations in facilitating the binding of Kae-3-Rob with
collagenase and tyrosinase. Overall, our study provides the first evidence that Kae-3-Rob,
which is a major flavonoid from N. nucifera stamen, can potentially act as a promising
collagenase and tyrosinase inhibitor. For the direction of further research, these current
findings illustrate the potential of Kae-3-Rob as an alternative choice for future anti-aging
cosmetic and cosmeceutical product development, but the safety of the product needs to
be confirmed. For its application in phytopharmaceutical products or herbal drugs, the
human-derived information, in vivo models, as well as clinical trials should be evaluated
in future research.
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