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Abstract: Cathepsin L (CTSL) expression is dysregulated in a variety of cancers. Extensive empirical
evidence indicates their direct participation in cancer growth, angiogenic processes, metastatic
dissemination, and the development of treatment resistance. Currently, no natural CTSL inhibitors
are approved for clinical use. Consequently, the development of novel CTSL inhibition strategies is
an urgent necessity. In this study, a combined machine learning (ML) and structure-based virtual
screening strategy was employed to identify potential natural CTSL inhibitors. The random forest
ML model was trained on IC50 values. The accuracy of the trained model was over 90%. Furthermore,
we used this ML model to screen the Biopurify and Targetmol natural compound libraries, yielding
149 hits with prediction scores >0.6. These hits were subsequently selected for virtual screening
using a structure-based approach, yielding 13 hits with higher binding affinity compared to the
positive control (AZ12878478). Two of these hits, ZINC4097985 and ZINC4098355, have been shown
to strongly bind CTSL proteins. In addition to drug-like properties, both compounds demonstrated
high affinity, ligand efficiency, and specificity for the CTSL binding pocket. Furthermore, in molecular
dynamics simulations spanning 200 ns, these compounds formed stable protein-ligand complexes.
ZINC4097985 and ZINC4098355 can be considered promising candidates for CTSL inhibition after
experimental validation, with the potential to provide therapeutic benefits in cancer management.

Keywords: cathepsin L; cancer; natural compounds; machine learning; drug-likeness

1. Introduction

Cathepsins are proteases found in lysosomes classified into cysteine, aspartate, and ser-
ine cathepsins, depending on their active site [1]. Cysteine cathepsins (CTS) are found in a
wide range of organisms, spanning from prokaryotes to mammals, and exhibit a conserved
cysteine residue within their active site. These enzymes are essential for degrading proteins
internalized by lysosomes and are active at pH levels ranging from neutral to acidic [2].
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They also aid in the breakdown of intracellular proteins, the activation of inactive enzyme
precursors, and the remodeling of the extracellular matrix [3,4]. CTS serve an important
role in tissue homeostasis and contribute to processes such as immune response, apoptosis,
and development under normal physiological settings [5]. However, their expression, loca-
tion, and activity changes have been linked to various clinical diseases, including cancer
progression [6,7]. Ectopic cysteine cathepsin expression is frequently associated with a
poor prognosis [8]. The number of cathepsin classes in humans has increased from the
previously recognized 11 to 15. These include the classes A, B, C, D, E, F, G, H, L, K, O, S, V,
X, W, and Z [9].

Cathepsin L (CTSL) functions both intracellularly and extracellularly. The acidic envi-
ronment created in cancer cells by anaerobic glycolysis promotes the activity of CTSL [10,11],
which actively degrades collagen, fibronectin, and laminin [12]. CTSL is normally con-
fined within lysosomes in healthy physiological states. However, in the context of tumors,
changes in expression levels and translocation pathways can lead to CTSL secretion. Stud-
ies on animal models of pancreatic cancer have demonstrated that CTSL and cathepsin S
enzymes are released from cancer cells and act on the extracellular domain of cell adhesion
molecules present on the surface of cancer cells [13]. CTSL’s ability to degrade E-cadherin
(a cell–cell adhesion molecule) contributes to cancer cells’ invasive function and metastatic
capacity [14]. CTSL expression increases in various cancers, including glioma, melanoma,
pancreatic, breast, and prostate carcinoma [15]. Given the importance of CTSL in tumor
cell dissemination, there is a pressing demand to develop novel CTSL inhibition strategies.
Several CTSL inhibitors have been identified, including SID 26681509, quarterhydrate,
and Z-FY-CHO [16]. While these inhibitors show CTSL specificity, it is important to note
that they are synthetic and not derived from natural sources. Because of their synthetic
origin, they may have potential side effects when used. This highlights the importance of
investigating natural compounds as potential CTSL inhibitors in order to alleviate concerns
about side effects and improve the translational potential of CTS-targeted therapeutic
interventions.

The drug development process is characterized by its interdisciplinary nature, signifi-
cant costs, and time requirements. Over the last two decades, scientific progress has trans-
formed the approach to pharmaceutical research in generating new bioactive molecules [17].
Notably, advances in computational techniques and parallel hardware support have made
it easier to use in silico methods, particularly the structure-based drug design approach.
These methods have accelerated various stages of the drug development process, including
target identification via identifying initial active compounds and subsequent optimization
of lead compounds [18]. This study employed in silico strategies, including a combination
of machine learning (ML) and structure-based screening of natural compounds, to find
natural CTSL inhibitors for combating cancer.

2. Results and Discussion

The CHEMBL database was used to obtain compound activity data against the CTSL
enzyme. The dataset’s redundancy was examined, and all duplicate compounds were re-
moved. Compounds with IC50 values less than 1000 nM were considered active, while those
with IC50 values greater than 1000 nM were considered inactive. We confirmed 2000 ac-
tive molecules and 1278 inactive molecules using these criteria. The Morgan fingerprints
(1024) have been calculated for the active/inactive molecules. Following vectorization, the
random forest (RF) classification model was trained to differentiate between active and
inactive molecules. ROC curves from 10-fold cross-validation were plotted. Figure 1A
depicts the study’s workflow. The AUC mean values of the RF model were estimated at
0.91 (Figure 1B).
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Figure 1. Workflow of study (A), and evaluation of the train RF machine learning model for CTSL
protein (B).

Following that, the RF train model was used to screen the Biopurify and Targetmol
natural compound libraries, with the top hits selecting them for further SBVS. A total of
149 compounds with prediction scores >0.6 were identified. These compounds were then
used in structure-based virtual screening (SBVS) to selectively interact with the CTSL pro-
tein’s active site. In this study, the positive control was AZ12878478. The binding energies
that exceeded those of the control compound were chosen for further interaction analysis,
which included both two-dimensional (2D) and three-dimensional (3D) interactions. SBVS
yielded thirteen hits with higher affinity, as determined by binding energy, in comparison to
the positive control (Table 1). Table 1 presents the RF prediction scores and binding affinities
of the 13 compounds. Further physicochemical and molecular properties encompass the
molecular weight, the number of rotatable bonds, as well as the number of hydrogen bond
donors and acceptors.

Table 1. Binding energies and physicochemical properties of the top 13 compounds.

Compound ID Binding Affinity
(kcal/mol)

RF_Prediction
Score MolWt MolLogP HA HD RB

ZINC4097985 −7.9 0.794152879 408.403 −0.3084 9 4 4

ZINC4098355 −7.6 0.788373218 422.474 2.6621 8 0 8

ZINC96023730 −6.4 0.684678299 484.721 6.6687 4 1 10

ZINC38429839 −7.2 0.652458095 456.711 6.6289 3 2 5

ZINC13383393 −6.5 0.651968775 358.302 2.2031 6 5 4

ZINC299817526 −6.6 0.648805457 468.678 7.4357 2 2 9

ZINC4098425 −7.5 0.646199152 232.235 0.969 4 1 1

ZINC5665355 −6.6 0.643019115 470.694 7.6597 2 2 9

ZINC1702729 −6.9 0.640874436 388.416 2.8323 7 3 6

ZINC238760072 −6.5 0.633125885 376.493 4.5247 5 0 8



Int. J. Mol. Sci. 2023, 24, 17208 4 of 11

Table 1. Cont.

Compound ID Binding Affinity
(kcal/mol)

RF_Prediction
Score MolWt MolLogP HA HD RB

ZINC238790964 −6.4 0.624866697 430.541 2.3323 6 3 3

ZINC28876559 −6.4 0.621405139 440.712 7.2275 2 2 5

ZINC3982483 −6.6 0.620906903 406.545 −0.857 8 5 7

AZ12878478 (control) −6.3 - - - - - -

No. of H acceptors: HA; No. of H donors: HD; No. of rotatable bonds: RB.

The top two compounds, ZINC4097985, and ZINC4098355, as well as the positive
control, were subjected to detailed interaction analysis with the CTSL active site residues.
ZINC4097985 was found to interact with Gln19, Gly20, Gln21, Cys22, Gly23, Cys25, Trp26,
Cys65, Asn66, Gly67, Gly68, Leu69, Met70, Ala135, Met161, Asp162, His163, and Trp189
residues of CTSL protein. The Gln19, Gly20, and Asp162 residues were H-bonded with
ZINC4097985 (Figure 2A). Furthermore, ZINC4098355 interacted with Cys25, Trp26, Asn66,
Gly67, Gly68, Leu69, Met70, Asp71, Ala135, Glu159, Asp160, Met161, Asp162, Ala214, and
Ser216 residues of CTSL protein. The Gly68, Met70, and Met161 residues were H-bonded
with ZINC4098355 (Figure 2B).

The co-crystal inhibitor was found to interact with Gly23, Cys25, Trp26, Asn66, Gly67,
Gly68, Leu69, Ala135, Glu159, Met161, Asp162, His163, and Gly164 residues of CTSL pro-
tein (Figure 2C). Notably, among these residues, Cys25, Trp26, Asn66, Gly67, Gly68, Leu69,
Ala135, Met161, and Asp162 were found to be common interaction residues for the co-
crystal inhibitor and the hit compounds (ZINC4097985 and ZINC4098355) (Figure 2A–C).
This observation suggests that the hit compounds ZINC4097985 and ZINC4098355 bind to
the same binding pocket on the CTSL protein as the co-crystal inhibitor.
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Figure 2. 3D and 2D interaction of ZINC4097985 (red) (A), ZINC4098355 (green) (B), and control
compound (black) (C) in the CTSL protein binding pocket.

CTSL has an electrophilic center that can act as a thiol trap for the active-site cysteine
(Cys-25), making it an ideal target for covalent inhibitors. CTSL inhibitors currently use
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electrophilic moieties such as epoxides, vinyl sulfones, fluoromethyl ketones, and dia-
zomethyl ketones to form an irreversible covalent linkage with CTSL [19–21]. Nonetheless,
the use of irreversible inhibitors in drug candidate development raises significant safety
concerns due to the potential difficulties associated with dissociation. Nitrile-functionalized
inhibitors have been classified as covalent and reversible inhibitors due to the capacity of
nitriles to selectively bind sulfur atoms, leading to the formation of thioimidazole bonds
that exhibit hydrolytic properties over a period of time [22,23]. Importantly, the identified
natural compounds in this study (ZINC4097985 and ZINC4098355) have demonstrated
interactions with CTSL’s Cys-25 residue, implying that these compounds could be potent
CTSL inhibitors.

The evaluation of adsorption, distribution, metabolism, excretion, and toxicity (AD-
MET) properties holds significant importance in the realm of small-molecule drug dis-
covery and therapeutics. It is important to acknowledge that a multitude of clinical
trials have encountered obstacles due to inadequacies in these characteristics. Although
early-stage ADMET profiling is considered optimal, the execution of experimental eval-
uations is often hindered by the high costs involved and the limited availability of data.
The ADMET properties of the top two compounds were predicted using online tools
(https://ai-druglab.smu.edu/admet, accessed on 10 July 2023) (Table 2) [24]. The antic-
ipated values of diverse molecular properties for these two compounds fell within an
acceptable range, suggesting their potential as lead molecules.

Finally, the docked complexes of these two compounds (ZINC4097985 and ZINC4098355)
and the control were subjected to 200 ns of MD simulation. MD simulations of the docked
complexes were performed to assess their binding stability. The root mean square deviation
(RMSD) serves as a metric for assessing protein stability, with smaller deviations indicating
a higher degree of stability in the protein structure. CTSL-control, CTSL-ZINC4097985, and
CTSL-ZINC4098355 had average RMSD values of 0.18, 0.21, and 0.15 nm, respectively. The
RMSD plot exhibits that CTSL-ZINC4098355 and the CTSL-control complex were more stable
than CTSL-ZINC4097985. The bound structure of the CTSL-ZINC4097985 complex exhibited
a high deviation from the initial conformation, indicating that CTSL’s catalytic pocket formed
a stable interaction with the screened compound. Furthermore, the ligand RMSD exhibits that
the control and ZINC4098355 demonstrated high deviation, while the ZINC4097985 complex
showed low deviation (Figure 3A,B).
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Table 2. ADMET prediction for the top two compounds, ZINC4097985 and ZINC4098355.

Molecule Property
Value

Unit
ZINC4097985 ZINC4098355

Absorption

Caco-2 Permeability −5.51 −5.27 log(cm/s)

HIA 62.85 66.63 %

Pgp Inhibition 36.88 30.23 %

log D7.4 1.83 1.72 log-ratio

Aqueous Solubility −4.46 −4.09 log(mol/L)

Oral Bioavailability 36.66 40.58 %

Distribution

BBB 18.77 29.17 %

PPBR 35.01 45.2 %

VDss 3.13 3.39 L/kg

Metabolism

CYP2C9

Inhibition

50.93 53.89

%

CYP2D6 98.02 92.92

CYP3A4 34.92 35.24

CYP2C9

Substrate

34.14 32.66

CYP2D6 51.03 56.54

CYP3A4 41.78 42.75

Excretion

Half-Life 58.17 63.46 h

CL-Hepa 47.36 55.3 µL min−1 (106 cells)−1

CL-Micro 40.61 48.28 mL min−1 g−1

Toxicity

hERG Blockers 43.62 40.04

%Ames 48.32 39.31

DILI 49.79 59.98

LD50 2.75 2.45 −log(mol/kg)

The average fluctuation of all residues during the simulation and the root mean square
fluctuation (RMSF) of CTSL during the binding of CTSL-control, CTSL-ZINC4097985, and
CTSL-ZINC4098355 were plotted as a function of CTSL residue numbers. The CTSL-control
and CTSL-ZINC4098355 backbones exhibited consistent fluctuations in the CTSL binding
pocket, most likely due to differing orientations, and CTSL-ZINC4097985 showed high
fluctuation in several regions such as 38–45, 58–61, and 110–115 residues (Figure 3C).
Conversely, the CTSL-control and CTSL-ZINC4098355 complexes had the overall fewest
fluctuations. Collectively, ZINC4098355 was more stable than ZINC4097985, and it follows
the control RMSF pattern with CTSL.

In order to acquire a deeper understanding of the intricate compactness profile within
a biological system, the radius of gyration (Rg) was used. The complexes CTSL-control,
CTSL-ZINC4097985, and CTSL-ZINC4098355 exhibited average Rg values of 1.66 nm,
1.68 nm, and 1.64 nm, respectively. The Rg plot revealed that the CTSL-control and CTSL-
ZINC4097985 complexes were less compact than the CTSL-ZINC4098355 complex. It was
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inferred that after the binding of CTSL-control and CTSL-ZINC4097985 compounds, CTSL
becomes more stable due to the higher unfolding of CTSL’s native structure (Figure 3D).

A protein’s solvent-accessible surface area (SASA) refers to the extent of its surface
that is engaged in interactions with the surrounding solvent molecules. The average
SASA values for the three complexes, CTSL-control, CTSL-ZINC4097985, and CTSL-
ZINC4098355, were graphed. SASA values for the CTSL-control, CTSL-ZINC4097985,
and CTSL-ZINC4098355 complexes were 114.01, 116.12, and 109.23 nm2, respectively
(Figure 4A). SASA analysis showed that the binding of ZINC4098355 reduced surface
exposure, while the control and ZINC4097985 compounds enhanced the surface area of
solvent accessibility. The selected docked complexes were also subjected to hydrogen
bond analysis. The control and ZINC4097985 exhibited an average 3–5 H-bond with CTSL
protein, while the ZINC4098355 compound demonstrated a 1–3 H-bond. In addition, they
also formed more H-bonds with solvents in the system. It was inferred that the control
and ZINC4097985 compounds interacted more with water molecules in the system, while
ZINC4098355 interacted less with water. Therefore, it binds more stably in the catalytic
pocket of the CTSL protein (Figure 4B,C). Further, 2D plot analysis of complexes showed
that all the complexes overlap very well with each other (Figure 4D).
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green, and black color represent ZINC4097985, ZINC4098355, and control.

The free energy landscape of CTSL-control, CTSL-ZINC4097985, and CTSL-ZINC4098355
complexes has been demonstrated in Figure 5A–C. The complex CTSL-control and CTSL-
ZINC4098355 formed a similar pattern to CTSL-ZINC4097985. The complex CTSL-ZINC4097985
showed a higher trajectory distribution than the other compounds.

Because of their rich chemical diversity, natural products represent a valuable reservoir
of diverse bioactive compounds with promising medicinal potential [25]. Over the past
few decades, considerable research endeavors have been dedicated to the identification
and extraction of novel natural products from a variety of organisms, such as plants,
microorganisms, and other biological entities. Numerous anti-cancer pharmaceuticals
have been developed as a result of extensive research into the anti-cancer properties of
these naturally occurring compounds and the underlying mechanisms of their action.
Interestingly, it is estimated that from 1981 to 2019, about 25% of newly approved anti-
cancer medications had natural constituents as their source [26]. Notably, the hits identified
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in this study are natural compounds that have been demonstrated to bind strongly to
the CTSL protein; further investigation could confirm that these substances are potent
CTSL inhibitors.
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3. Methods
3.1. Machine Learning Model Building and Screening Natural Compounds

Compound datasets of reported active and inactive CTSL ligands were retrieved from
freely available cheminformatics databases, such as ChEMBL. To distinguish between active
and inactive compounds, the largest experimental datatype for the CTSL enzyme was used.
The activity cutoff for biochemical or biophysical activity (IC50) was 1000 nM, and anything
above that was considered inactive. Further, molecular fingerprints (FPs) for the active and
inactive compounds were determined using the cheminformatics package RDKit (5 March
2022). We counted all circular fragments from each chosen center-heavy atom up to the
specified radius of two atoms and 1024 binary bits using the Morgan FPs [27].

Next, the ML models were built with the default Python (3.9) libraries. The classic
ML algorithm (RF) method was chosen. The scikit-learn (1.7.3) [28] package is used to
implement the RF model with a dataset splitting ratio of 4:1 (train and test). Ten-fold cross-
validation was used to assess the trained models, and receiver operating characteristic
curves were plotted for RF models. The trained model was then used to screen the natural
compound library (Biopurify and Targetmol). Furthermore, we choose the top virtual hits
from the natural compound database with a prediction score > 0.6 for further screening
using structure-based methods.

3.2. CTSL Protein Retrieval and Preparation

The 3D structure of the CTSL protein (PDB ID: 3HHA) was obtained in pdf format from
the Protein Data Bank. The structure exhibits a monomeric arrangement, with AZ12878478
as a co-crystal ligand. The co-crystal ligand and water molecules were eliminated from
the structure using Discovery Studio (DS) 2021. The ‘clean’ protein was then prepared by
employing the “prepared protein” protocol in DS 2021, and the resulting protein structure
was saved in pdb format.

3.3. Structure-Based Virtual Screening

SBVS is a well-established computational technique used in computer-assisted drug
design. This screening methodology is critical to accelerating the process of novel drug
design by identifying potentially potent compounds. Specifically, molecular docking-based
vs. is an effective method for identifying active compounds from large ligand databases.
This is accomplished by assessing the binding affinities of proteins and ligands, which aids
in the selection of compounds with promising interactions for further investigation [29].
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The PyRx tool (0.8 version) was used to screen the compounds identified by the ML model
against the active site of CTSL. The coordinates for the grid center of the CTSL were defined
as follows: X = 8.674536, Y = 8.057071, and Z = −2.836607.

3.4. Physiochemical and ADMET Properties Prediction

The physicochemical and molecular properties of the top 13 compounds were esti-
mated by the SwissADME web tool (http://www.swissadme.ch/, accessed on 10 July
2023). The ADMET properties of the final top two compounds were predicted using online
tools (https://ai-druglab.smu.edu/admet, accessed on 10 July 2023).

3.5. Molecular Dynamics (MD) Simulation

GROMACS 2022 was used to conduct MD simulations of CTSL-control, CTSL-
ZINC4097985, and CTSL-ZINC4098355 complexes at 300 K [30]. CTSL enzyme topol-
ogy was determined using the AMBER 99SB force field [31]. Force-field parameters and
lead compound topologies were generated using the AnteChamber server [32]. The lead
compound’s atoms were assembled into a complex using the topology of the CTSL enzyme.
The CTSL-compound complex was then solvated using the TIP3P water model in a cubic
box [33]. To ensure a physiological concentration of 0.15 M, the charges on CTSL-control,
CTSL-ZINC4097985, and CTSL-ZINC4098355 were restored by adding Na+ and Cl− ions
through the gmx genion module. The steepest descent method, with 1500 steps, was used
to minimize each system. The temperature was stabilized using the V-rescale thermostat
after the system was first brought to equilibrium using an NVT ensemble with a constant
number of particles, volume, and temperature of 300 K for 100 ps. The Parrinello-Rahman
barostat was then used to equalize the pressure in each system to 1.0 bar [34]. To calculate
long-range electrostatic interactions, each equilibrated system was simulated for 200 ns
using particle mesh Ewald. The Berendsen (V-rescale) thermostat [35] and the Parrinello-
Rahman barostat were used during the simulation to keep the temperature at 300 K and the
pressure at 1.0 bar, respectively. GROMACS analysis modules were used to study subse-
quent trajectories. VMD [36] and PyMOL were used to generate graphical representations
of the 3D models.

4. Conclusions

This study used a novel approach that combined ML and SBVS techniques to identify
potential natural CTSL inhibitors, the expression of which is known to be abnormal in a
variety of cancer types. ZINC4097985 and ZINC4098355 have been found to possess strong
affinities and specificities for the CTSL binding site, as well as drug-like properties. In a
200 ns MD simulation, these compounds also demonstrated stable binding in complexes
with the CTSL protein. ZINC4097985 and ZINC4098355 exhibit potential as viable inhibitors
of CTSL, thereby offering therapeutic value in the management of cancer. Nevertheless,
it is necessary to conduct experimental validation in order to optimize them as inhibitors
of CTSL.
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