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Abstract: There have been more than 70 FDA-approved drugs to target the ATP binding site of kinases,
mainly in the field of oncology. These compounds are usually developed to target specific kinases,
but in practice, most of these drugs are multi-kinase inhibitors that leverage the conserved nature of
the ATP pocket across multiple kinases to increase their clinical efficacy. To utilize kinase inhibitors in
targeted therapy and outside of oncology, a narrower kinome profile and an understanding of the
toxicity profile is imperative. This is essential when considering treating chronic diseases with kinase
targets, including neurodegeneration and inflammation. This will require the exploration of inhibitor
chemical space and an in-depth understanding of off-target interactions. We have developed an
early pipeline toxicity screening platform that uses supervised machine learning (ML) to classify
test compounds’ cell stress phenotypes relative to a training set of on-market and withdrawn drugs.
Here, we apply it to better understand the toxophores of some literature kinase inhibitor scaffolds,
looking specifically at a series of 4-anilinoquinoline and 4-anilinoquinazoline model libraries.

Keywords: kinase inhibitors; toxophore; machine learning drug discovery; 4-anilinoquinoline;
4-anilinoquinazoline

1. Introduction

Protein kinases catalyze the transfer of a phosphate group from adenosine triphosphate
(ATP) to tyrosine, threonine, or serine residues in specific target substrates and proteins.
These phosphorylation events are ubiquitous within signal transduction pathways and
hence provide regulatory points for potential therapeutic intervention [1]. Kinases have
been extensively investigated and successfully targeted for more than 30 years, with more
than 70 kinase inhibitors clinically approved by the FDA [2,3]. While most of the currently
approved drugs focus on multi-targeted tyrosine kinase inhibitors to treat cancer [3–7], the
approval of kinase inhibitors to treat non-oncological related diseases, including rheuma-
toid arthritis, lung fibrosis, and psoriasis, has demonstrated a more extensive utility to treat
human disease [8,9]. There are more than 500 kinases in the human genome [10], with
only a small percentage targeted by currently approved drugs, highlighting a potential
untapped opportunity in the remaining kinome [11]. Large-scale kinome-wide profiling of
ATP-competitive kinase inhibitors has also started to uncover the preferred chemotypes for
the inhibition of many of the relatively under-studied kinases or dark kinases [6,7,12–15].
Despite the success in the development of kinase inhibitor drugs, there is still a need for
new inhibitors and heterocycles on which to build ATP-competitive inhibitors [11].

As available structural space is expanded to identify new inhibitors, the drug develop-
ment pipeline would benefit from the added efficiency of conducting toxicity de-risking in
parallel [16]. Screening candidate pharmaceuticals for the detection of potential toxicity
mechanisms and safety risks is a field that has developed substantially during the past
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three decades [17]. Structure-based drug design matches small molecule structures to
target binding sites [18,19]. Whereas polypharmacology-based toxicity screening detects
interactions between small molecules and secondary biomolecular targets known to be
associated with adverse drug reactions and hence, can be synergically beneficial [20–22]. Al-
ternatively, cell-based multiparametric phenotypic screens can inform a similar de-risking
process using relevant biological readouts [23]. Recently, these two strategies were directly
compared for ranking the human safety risks within a set of 40 excipient compounds.
The two methods produced complementary information, the phenotypic screen was less
labor intensive and used a machine learning classifier to convert its multiparametric data
into an easily interpretable risk score [24]. We subsequently employed this same pheno-
typic screen to rank estimated human safety risk for candidate kinase inhibitors targeting
chordoma models [25]. We now describe the use of this screening method as a structure-
activity relationship approach for assessing toxicity risk among a more generalized set of
kinase inhibitors.

2. Results

We have previously published complete descriptions of the logical design and method-
ological execution for the AsedaSciences® SYSTEMETRIC® Cell Health Screen [24,25].
Briefly, it is a multiparametric live-cell phenotypic screen using automated flow cytometry
(FC), in which a twelve-parameter acute cellular stress phenotype is classified by a super-
vised machine learning classifier. The classifier uses a multidimensional logistic regression
model in which each dimension is an FC parameter. The training was performed with a
300-compound training set [24,25], which consisted of on-market and withdrawn drugs,
research compounds, and several agricultural/industrial compounds [24,25]. The training
set was first divided into binary outcome classes (high toxicity risk and low toxicity risk)
using literature, clinical trial results, and market histories (where applicable). Next, all
300 compounds were processed through the FC screen and the empirical data populated
distributions within each of the two known outcome classes. These distributions optimized
the logistic regression model, defining the dependence of the outcome on each of the 12 FC
parameters. The trained classifier subsequently classifies the acute cellular stress phenotype
produced when an unknown test compound is applied to the cells. The final classification
value, or Cell Health Index (CHI), is a probability value (0–1) representing the maximum
likelihood that a test compound’s phenotype belongs in the high toxicity risk outcome
class (Tables S1 and S2). In addition, the classifier can be used to produce the same type of
probability score by using only one or a subset of the twelve FC parameters, and this is how
it generates the biological fingerprint, comprised of eight phenotypic endpoints. Hence, for
example, the cell morphology score is produced by allowing the classifier to only see four
FC parameters related to forward scatter and side scatter from one laser. The assay is run
with HL-60 cells, not because of any specific appropriateness as a disease model but for
two pragmatic reasons. Suspension cell culture enables automated flow cytometry, and
during the screen prototyping phase, HL-60 cells empirically produced an optimal dynamic
range for the required fluorescent reporter dyes. This resulted in a screen design that was
most generalizable across compounds from diverse therapeutic and chemical classes while
having relatively low labor intensity and cost.

To have a better understanding of the kinase inhibitor toxophore landscape, we first
screened thirty-one literature-reported, late-stage, and clinically approved kinase inhibitors
in the Cell Health Screen (Table 1). The CHI results showed that twenty one inhibitors had
higher risk factors, with four in the mid-range and six showing risk at or lower than 0.41.
These results are, in part, reflective of on-target effects from these anti-cancer agents that
generally target pathways promoting cell growth [26].
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Table 1. Toxicity profiling of a broad range of clinical and literature kinase inhibitors a,b,c.

Name CM CMI ROS GSH NMI1 CC NMI2 MMP CHI
Ponatinib 1.00 1.00 1.00 1.00 1.00 0.95 0.99 1.00 0.95

Dacomitinib 1.00 1.00 1.00 1.00 1.00 0.98 0.99 1.00 0.94
Bosutinib 1.00 1.00 1.00 1.00 1.00 0.91 1.00 1.00 0.94

Vandetanib 1.00 1.00 1.00 1.00 1.00 0.94 1.00 1.00 0.93
Osimertinib 1.00 1.00 1.00 1.00 0.99 0.96 0.99 1.00 0.93
Palbociclib 1.00 1.00 1.00 1.00 1.00 0.98 0.99 1.00 0.93
Sunitinib 1.00 1.00 1.00 1.00 1.00 0.93 0.99 1.00 0.93
Crizotinib 1.00 1.00 1.00 1.00 1.00 0.96 0.99 1.00 0.92
Canertinib 1.00 1.00 1.00 1.00 1.00 0.68 1.00 1.00 0.92

Afatinib 1.00 1.00 1.00 1.00 1.00 0.93 0.99 1.00 0.92
Tesevatinib 1.00 1.00 1.00 1.00 0.91 0.96 0.99 1.00 0.92

Cobimetinib 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 0.91
Pelitinib 1.00 1.00 1.00 1.00 0.77 0.95 0.99 1.00 0.91
Ibrutinib 1.00 1.00 1.00 1.00 0.97 0.99 0.98 1.00 0.90
Lapatinib 1.00 1.00 0.90 0.96 0.97 0.93 0.92 1.00 0.89
Sorafenib 1.00 1.00 1.00 0.99 1.00 0.87 0.99 1.00 0.88
Neratinib 1.00 1.00 1.00 0.98 0.97 0.83 1.00 1.00 0.87

Regorafenib 0.99 0.97 1.00 0.89 1.00 0.89 0.98 1.00 0.85
Gefitinib 1.00 0.99 0.93 0.97 0.61 0.93 0.94 0.99 0.80

Poziotinib 1.00 0.99 0.40 0.98 0.98 0.97 0.89 0.99 0.80
Saracatinib 1.00 0.92 0.72 0.93 0.81 0.76 0.78 0.71 0.69
Alectinib 1.00 0.98 0.99 0.97 0.84 0.054 0.036 0.15 0.55

Vemurafenib 0.77 0.52 0.95 0.22 0.99 0.31 0.89 0.37 0.51
Cabozantinib 0.94 0.73 0.080 0.029 0.49 0.17 0.77 0.70 0.48

Pazopanib 0.73 0.12 0.73 0.22 0.27 0.34 0.078 0.71 0.46
Trametinib 0.86 0.83 0.34 0.15 0.53 0.21 0.073 0.10 0.41
Erlotinib 0.77 0.50 0.13 0.63 0.10 0.10 0.062 0.12 0.40

Ruxolitinib 0.90 0.19 0.45 0.089 0.16 0.30 0.061 0.23 0.39
Sapitinib 0.63 0.30 0.024 0.28 0.32 0.43 0.28 0.22 0.38

Dabrafenib 0.37 0.50 0.22 0.089 0.21 0.49 0.058 0.45 0.37
Tofacitinib 0.36 0.042 0.034 0.032 0.056 0.11 0.14 0.12 0.23

a Abbreviations from columns left to right. CM: Cell morphology; CMI: Cell membrane integrity; ROS: Reactive
oxygen species; GSH: Glutathione; NMI1: Nuclear membrane integrity 1; CC: Cell Cycle; NMI2: Nuclear
membrane integrity 2; MMP: Mitochondrial membrane potential; CHI: Cell Health Index. b Traffic light colouring
matching classifier values (Red–Green: high toxicity risk–low toxicity risk). c all n = 2.

The six kinase inhibitors with lower toxicity risk are potentially the most interesting,
as although many kinase inhibitors were developed towards specific targets, in practice,
most of these drugs are multi-kinase inhibitors. That leveraging of the ATP pocket across
multiple kinases increases their clinical efficacy, but it can also lead to increased toxicity.
To target diseases outside of oncology, kinase inhibitors with lower toxicity and likely
narrower target specificity are required [27]. This will enable the treatment of chronic
diseases via kinase targets, including inflammation and neurodegeneration, potentially
opening the route of personalized medicine [27–29].

These six kinase inhibitors with low toxicities include Tofacitinib and Ruxolitinib,
which are both Janus kinase (JAK) inhibitors, based on the 7H-pyrrolo[2,3-d]pyrimidin-
4-amine core scaffold [30,31]. Tofacitinib has been FDA-approved for a number of non-
oncology indications, including the treatment of psoriatic arthritis, juvenile idiopathic
arthritis, and ulcerative colitis [31–33]. Ruxolitinib has also been used to treat myelofibrosis,
polycythemia vera, and steroid-refractory acute graft-versus-host disease [31,34]. Ruxoli-
tinib has more recently been approved for several topical indications, including mild to
moderate atopic dermatitis [35] and the treatment of vitiligo [36]. Tofacitinib and ruxolitinib
are both primarily targeting non-oncology indications, which may, in part, explain these
favorable CHI values, as their intended uses would not tolerate high human safety risk.
Trametinib and dabrafenib were also in this group of six low-scoring kinase inhibitors.
Trametinib is a highly selective allosteric mitogen-activated protein kinase kinase (MEK) in-
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hibitor [37], that was originally approved for the treatment of malignant melanoma driven
by the BRAF V600E mutation in combination with BRAF inhibitors, such as dabrafenib [38].
More recently, the combination of dabrafenib with trametinib has been approved for BRAF
V600-positive advanced or metastatic non-small-cell lung cancer (NSCLC) [39]. These
targeted therapies can be considered a first step towards personalized medicine, where
the presence of the BRAF V600 mutation dictates the success of the treatment [40,41]. The
narrower kinome spectrum of these compounds again may help to explain the favorable
CHI values for both trametinib and dabrafenib.

The final two compounds of the six low-scoring kinase inhibitors were erlotinib, a
first-generation epidermal growth factor receptor (EGFR) inhibitor [42], and sapitinib,
a second-generation reversible EGFR inhibitor [43,44]. The main clinical indication for
erlotinib is NSCLC, but there have also been subsequent approvals for the treatment
of locally advanced, unresectable, or metastatic pancreatic cancer in combination with
gemcitabine [45,46]. Whereas sapitinib has an enhanced pharmacologic profile due in part
to equipotent inhibition of EGFR, erbB2, and erbB3, showing potent antitumor activity
in preclinical cancer models [43,47]. Erlotinib and sapitinib are both oncology drugs
based on the 4-anilinoquinazoline kinase inhibitor scaffold and are multi-kinase inhibitors,
albeit not as promiscuous across the kinome as some inhibitors [6,7,12–16]. The fact that
both of these compounds have a favorable CHI prompted us to further investigate the
4-anilinoquin(az)oline scaffold.

To explore the 4-anilinoquin(az)oline scaffold, we profiled seven focused arrays
of compounds, probing the toxicity profile structure-activity relationships of the quino-
line/quinazoline scaffold. We synthesized and screened a series of compounds (1–112) to
follow up on the results of erlotinib and sapatinib, exploring the 4-anilinoquin(az)oline
through a series of nucleophilic aromatic displacements of 4-chloroquin(az)olines with a
series of anilines in good yields (Scheme 1) consistent with previous reports [48–53].
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To understand the structural drivers of toxicity on the 4-anilinoquin(az)oline scaf-
fold, we first screened a series of simplified erlotinib-related 4-anilinoquinazolines con-
taining the 3-ethynylaniline (1–20) (Table 2). We first screened N-(3-ethynylphenyl)-6,7-
dimethoxyquinazolin-4-amine (1) and found that, despite the curtailment of the pendent
arms with the removal of the ethylene glycol linker to afford the methoxy groups, the
toxicity profile was broadly similar with a CHI of 0.41 (vs. 0.40 for erlotinib). Interestingly,
the removal of the 7-position methoxy 2 or the 6-position methoxy 3 resulted in a decrease
in the CHI, with 3 showing an almost 40% reduction in CHI. In the fingerprint of each
compound, there appears to be a switch in driving CMI toxicity and limited reactive oxygen
species (ROS) involvement in 2, while in 3, this trend is reversed. The catechol with the
fused methyl spacer 4 cleaned the profile further, with a more than two-fold reduction
of CHI compared with erlotinib. The extension of the fused spacer to ethyl 5 resulted
in an almost 40% increase in the CHI compared with erlotinib, while the unsubstituted
quinazoline 6 showed an increase of 80% in the CHI. The introduction of 6-position fluorine
7 reduced the CHI substantially compared to both the unsubstituted analog 6 and erlotinib.
The 6,7-position difluoro 8 had a slightly lower CHI, at 0.26, compared to 0.31 for 6-fluoro 7.
The trend of 6-position halogens chloro 9, bromo 10, iodo 11, and trifluoromethyl 12 analogs
all showed a almost 50% reduction in CHI compared with erlotinib. Interestingly, switching
the halogen from the 6- to 7-position led to an increase in CHI, with the 7-position fluoro
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13 having the same CHI as erlotinib at 0.40. The 7-position chloro 14 and bromo 15 had
similar fingerprints and an identical CHI of 0.33, an almost 20% reduction in CHI compared
with erlotinib. However, unlike the 6-position analogs, the trend did not continue, with
the 7-position iodo 16 and trifluoromethyl 17 having a nearly two-fold increase in CHI
compared to erlotinib. Switching to the 7-position cyano 18 reduced CHI but still resulted
in a 10% increase over erlotinib. The 6-position cyano analog 19 showed a more favorable
CHI with more than 50% reduction relative to the 7-position cyano 18. The 6-position
methylsulfone 20 also performed favorably with a low CHI of 0.22.

Table 2. Toxicity profiling of erlotinib and related simplified quinazolines (1–20) a,b,c.
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matching classifier values (Red–Green: high toxicity risk–low toxicity risk). c all n = 2.

Second, we screened a series of 3-cyanoquinolines containing the 3-ethynylaniline
(21–32) (Table 3). The 3-cyanoquinoline still maintains the ability to form a dual hydrogen
bond at the hinge region but forces the aniline out of plane to an almost perpendicular an-
gle [51]. The unsubstituted analog 21 showed a 75% increase in CHI compared to erlotinib,
similar to the quinazoline analog 6. However, unlike the 6-position halogen quinazoline
analogs 7 and 9–11, the 3-cyanoquinoline derivatives 22–25 all showed similar or higher
toxicity with relatively high CHI risk indicators. A switch to the 6-position methylsulfone
26 reduced the CHI by more than two-fold compared with erlotinib. A similar level of
reduction was also seen in the CHI of the 6-position methoxy 27, potentially related to the
electron-donating ability of these two compounds. Screening 4-((3-ethynylphenyl)amino)-
6,7-dimethoxyquinoline-3-carbonitrile (28), we found the same CHI as erlotinib despite
several phenotypic endpoint score differences and differing structural features. The 7-
position methoxy analog 29 showed a 10% increase in CHI, while the chloro substitution 30
showed a 10% decrease in CHI. The other two 7-position halogens had much higher CHI,
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with the bromo 31 50% higher and the iodo 32 100% higher compared with erlotinib. The
7-position iodo 32 had a similar profile to the quinazoline counterpart 16.

Table 3. Toxicity profiling of 3-ethynylaniline analogs containing a 3-cyanoquinoline scaffold, similar
to Bosutinib (21–32) a,b,c.
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Third, we switched the 3-ethynylaniline with the 3,4,5-trimethoxyaniline and 
screened a series of 3-cyanoquinolines (33–43) (Table 4), starting with 6,7-dimethoxy-4-
((3,4,5-trimethoxyphenyl)amino)quinoline-3-carbonitrile (33) which had a similar CHI to 
erlotinib. The removal of either methoxy group 34–35 resulted in a 25% decrease in CHI 
with respect to 33 and erlotinib. The unsubstituted analog 36, unlike the 3-ethynylaniline 

Name R1 R2 CM CMI ROS GSH NMI1 CC NMI2 MMP CHI
Bosutinib - 1.00 1.00 1.00 1.00 1.00 0.91 1.00 1.00 0.94
Erlotinib - 0.77 0.50 0.13 0.63 0.10 0.10 0.062 0.12 0.40

21 H H 0.99 1.00 0.98 0.98 0.85 0.76 0.81 0.97 0.70
22 F H 0.98 0.99 0.93 0.97 0.71 0.76 0.72 0.96 0.69
23 Cl H 1.00 1.00 1.00 0.99 0.98 0.93 0.97 0.99 0.83
24 Br H 1.00 1.00 1.00 0.98 0.32 0.98 0.98 0.96 0.75
25 I H 0.88 1.00 0.89 0.93 0.74 0.91 0.81 0.99 0.70
26 SO2Me H 0.0027 0.037 0.046 0.039 0.18 0.071 0.0093 0.021 0.16
27 OMe H 0.020 0.004 0.056 0.0085 0.30 0.74 0.11 0.28 0.26
28 OMe OMe 0.35 0.77 0.81 0.071 0.67 0.33 0.29 0.39 0.40
29 H OMe 0.97 0.90 0.68 0.78 0.20 0.81 0.16 0.22 0.44
30 H Cl 0.31 0.25 0.44 0.065 0.69 0.17 0.041 0.080 0.35
31 H Br 0.95 0.88 0.87 0.92 0.45 0.92 0.34 0.84 0.59
32 H I 1.00 1.00 0.99 0.98 0.95 0.95 0.94 0.99 0.81

a Abbreviations from columns left to right. CM: Cell morphology; CMI: Cell membrane integrity; ROS: Reactive
oxygen species; GSH: Glutathione; NMI1: Nuclear membrane integrity 1; CC: Cell Cycle; NMI2: Nuclear
membrane integrity 2; MMP: Mitochondrial membrane potential; CHI: Cell Health Index. b Traffic light colouring
matching classifier values (Red–Green: high toxicity risk–low toxicity risk). c all n = 2.

Third, we switched the 3-ethynylaniline with the 3,4,5-trimethoxyaniline and screened a
series of 3-cyanoquinolines (33–43) (Table 4), starting with 6,7-dimethoxy-4-((3,4,5-
trimethoxyphenyl)amino)quinoline-3-carbonitrile (33) which had a similar CHI to erlotinib.
The removal of either methoxy group 34–35 resulted in a 25% decrease in CHI with respect
to 33 and erlotinib. The unsubstituted analog 36, unlike the 3-ethynylaniline counterparts
quinazoline 6 and 3-cyanoquinoline 21, had a lower toxicity risk profile with a nearly two-fold
reduction compared with erlotinib’s CHI. The same was the case with the 6-position halo-
gens chloro 37, bromo 38, and iodo 39, showing a 50–75% reduction in CHI compared with
erlotinib. The 6-position methyl sulfone 40 showed a 50% spike in the CHI to 0.59, which
was an opposite trend to the unsubstituted analogs, with counterparts quinazoline 20 and
3-cyanoquinoline 26 both having shown a lower toxicity risk estimate. Last, the 7-position
halogen chloro 41, bromo 42, and iodo 43 all demonstrated a lower CHI than erlotinib. The
chloro analog 41 showed a more than 50% reduction in CHI, with the bromo 42 and iodo
43 showing a more modest 10% reduction in CHI. This was, however, a much shallower
trend than the matched pair quinazolines and 3-cyanoquinoline 3-ethynylaniline analogs,
particularly with the iodo derivatives 16 and 32.
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Table 4. Toxicity profiling of 3,4,5-trimethoxyaniline analogs containing a 3-cyanoquinoline scaffold
similar to Bosutinib (33–43) a,b,c.
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Fourth, we switched from the 3-cyanoquinoline to a series of quinazolines while 
maintaining the 3,4,5-trimethoxyaniline (44–62) (Table 5). This time, the direct derivative 
44 of erlotinib was screened with the 3,4,5-trimethoxyaniline replacement and found to 
have a 40% lower CHI compared to erlotinib. This effect appears to be mainly driven by 
a reduction in glutathione depletion (GSH) and a reduction in cell membrane disruption 
effects (CM). The 7-position mono-methoxy group derivative 45 showed a further reduc-
tion with a >50% lower CHI risk estimate than erlotinib, while the 6-position mono-meth-
oxy 46 had only a 20% reduction in CHI. The unsubstituted analog 47 had the lowest CHI 
of the entire study at 0.13, which contrasted with some of the previous unsubstituted an-
alogs, including 6 and 21, but was more consistent with 36 that had the 3,4,5-trimethoxy-
aniline present in the compound. Interestingly, the addition of a methyl group in the 6-

Name R1 R2 CM CMI ROS GSH NMI1 CC NMI2 MMP CHI
Bosutinib - 1.00 1.00 1.00 1.00 1.00 0.91 1.00 1.00 0.94
Erlotinib - 0.77 0.50 0.13 0.63 0.10 0.10 0.062 0.12 0.40

33 OMe OMe 0.25 0.041 0.062 0.070 0.37 0.15 0.21 0.50 0.42
34 H OMe 0.71 0.029 0.050 0.018 0.30 0.091 0.16 0.31 0.33
35 OMe H 0.024 0.46 0.075 0.10 0.41 0.34 0.017 0.041 0.29
36 H H 0.0021 0.57 0.072 0.042 0.13 0.35 0.047 0.019 0.23
37 Cl H 0.19 0.013 0.28 0.010 0.20 0.35 0.073 0.093 0.25
38 Br H 0.0063 0.12 0.36 0.019 0.067 0.29 0.078 0.065 0.29
39 I H 0.033 0.044 0.084 0.025 0.16 0.12 0.15 0.16 0.27
40 SO2Me H 0.52 0.82 0.10 0.30 0.90 0.95 0.78 0.96 0.59
41 H Cl 0.25 0.021 0.22 0.012 0.55 0.060 0.026 0.15 0.27
42 H Br 0.33 0.037 0.56 0.013 0.67 0.15 0.0063 0.18 0.36
43 H I 0.013 0.23 0.37 0.14 0.58 0.13 0.33 0.21 0.37

a Abbreviations from columns left to right. CM: Cell morphology; CMI: Cell membrane integrity; ROS: Reactive
oxygen species; GSH: Glutathione; NMI1: Nuclear membrane integrity 1; CC: Cell Cycle; NMI2: Nuclear
membrane integrity 2; MMP: Mitochondrial membrane potential; CHI: Cell Health Index. b Traffic light colouring
matching classifier values (Red–Green: high toxicity risk–low toxicity risk). c all n = 2.

Fourth, we switched from the 3-cyanoquinoline to a series of quinazolines while
maintaining the 3,4,5-trimethoxyaniline (44–62) (Table 5). This time, the direct derivative
44 of erlotinib was screened with the 3,4,5-trimethoxyaniline replacement and found to
have a 40% lower CHI compared to erlotinib. This effect appears to be mainly driven by
a reduction in glutathione depletion (GSH) and a reduction in cell membrane disruption
effects (CM). The 7-position mono-methoxy group derivative 45 showed a further reduction
with a >50% lower CHI risk estimate than erlotinib, while the 6-position mono-methoxy 46
had only a 20% reduction in CHI. The unsubstituted analog 47 had the lowest CHI of the
entire study at 0.13, which contrasted with some of the previous unsubstituted analogs,
including 6 and 21, but was more consistent with 36 that had the 3,4,5-trimethoxyaniline
present in the compound. Interestingly, the addition of a methyl group in the 6-position
48 caused the CHI to double compared to the unsubstituted derivative 47. Switching
the methyl for a fluoro 49 maintained the CHI, as does having a 6,7-position difluoro
substitution 50 and 6-position chloro 51. However, increasing the size of the 6-position
halogen appeared to be unfavored, with the bromo analog 52 having an almost 50% increase
over the CHI of erlotinib and >100% increase in CHI from chloro 51 to bromo 52. The
penalty appears to plateau with the 6-position iodo 53 and trifluoromethyl 54 showing only
a 10% uptick on the CHI of erlotinib. The 7-position halogens are more favored with low
CHI across the fluoro 55, chloro 56, and bromo 57. The 7-position iodo 58 reversed that
trend with a 2.5-fold increase compared to bromo 57 and an almost 50% increase compared
with erlotinib. The 7-position trifluoromethyl 59 was near parity with erlotinib, with only a
10% increase in CHI. Interestingly, switching to 7-position cyano 60 led to a more favorable
CHI with a 60% reduction compared with erlotinib, while the 6-position cyano 61 showed
parity with the CHI of erlotinib. Switching to the 6-position methyl sulfone 62 recovered
the earlier gain from the 7-position cyano 60 with an identical CHI.
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Table 5. Toxicity profiling of 3,4,5-trimethoxyaniline analogs containing a quinazoline scaffold, similar
to Erlotinib and Sapitinib (44–62) a,b,c.
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Erlotinib  - 0.77 0.50 0.13 0.63 0.10 0.10 0.062 0.12 0.40 

44 6,7-(OCH2CH2OMe)2 0.37 0.38 0.0051 0.027 0.031 0.24 0.040 0.023 0.24 

45 H OMe 0.038 0.016 0.040 0.035 0.14 0.24 0.025 0.013 0.18 

46 OMe H 0.55 0.22 0.21 0.10 0.63 0.40 0.088 0.013 0.32 

47 H H 0.0078 0.0021 0.075 0.0074 0.25 0.059 0.034 0.052 0.13 

48 Me H 0.11 0.40 0.084 0.15 0.10 0.46 0.31 0.34 0.32 

49 F H 0.036 0.55 0.28 0.49 0.11 0.46 0.089 0.066 0.35 
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51 Cl H 0.011 0.71 0.10 0.34 0.49 0.18 0.23 0.047 0.27 

52 Br H 0.99 0.88 0.085 0.84 0.90 0.80 0.60 0.52 0.57 

53 I H 0.88 0.77 0.074 0.53 0.47 0.82 0.52 0.26 0.45 

54 CF3 H 0.81 0.43 0.065 0.38 0.75 0.80 0.47 0.47 0.45 

55 H F 0.029 0.0049 0.031 0.029 0.43 0.073 0.17 0.028 0.15 

56 H Cl 0.0049 0.37 0.45 0.14 0.68 0.33 0.14 0.12 0.28 

57 H Br 0.00066 0.14 0.28 0.014 0.30 0.10 0.23 0.11 0.22 

58 H I 0.97 0.97 0.74 0.93 0.18 0.80 0.80 0.64 0.57 

59 H CF3 0.087 0.74 0.85 0.66 0.18 0.68 0.80 0.53 0.44 

60 H CN 0.0065 0.21 0.13 0.035 0.13 0.015 0.039 0.0067 0.16 

61 CN H 0.71 0.51 0.27 0.56 0.77 0.066 0.073 0.031 0.38 

62 SO2Me H 0.0026 0.16 0.24 0.0062 0.30 0.022 0.060 0.0028 0.16 
a Abbreviations from columns left to right. CM: Cell morphology; CMI: Cell membrane integrity; 
ROS: Reactive oxygen species; GSH: Glutathione; NMI1: Nuclear membrane integrity 1; CC: Cell 
Cycle; NMI2: Nuclear membrane integrity 2; MMP: Mitochondrial membrane potential; CHI: Cell 

Name R1 R2 CM CMI ROS GSH NMI1 CC NMI2 MMP CHI
Erlotinib - 0.77 0.50 0.13 0.63 0.10 0.10 0.062 0.12 0.40

44 6,7-(OCH2CH2OMe)2 0.37 0.38 0.0051 0.027 0.031 0.24 0.040 0.023 0.24
45 H OMe 0.038 0.016 0.040 0.035 0.14 0.24 0.025 0.013 0.18
46 OMe H 0.55 0.22 0.21 0.10 0.63 0.40 0.088 0.013 0.32
47 H H 0.0078 0.0021 0.075 0.0074 0.25 0.059 0.034 0.052 0.13
48 Me H 0.11 0.40 0.084 0.15 0.10 0.46 0.31 0.34 0.32
49 F H 0.036 0.55 0.28 0.49 0.11 0.46 0.089 0.066 0.35
50 F F 0.029 0.53 0.091 0.42 0.081 0.071 0.026 0.033 0.27
51 Cl H 0.011 0.71 0.10 0.34 0.49 0.18 0.23 0.047 0.27
52 Br H 0.99 0.88 0.085 0.84 0.90 0.80 0.60 0.52 0.57
53 I H 0.88 0.77 0.074 0.53 0.47 0.82 0.52 0.26 0.45
54 CF3 H 0.81 0.43 0.065 0.38 0.75 0.80 0.47 0.47 0.45
55 H F 0.029 0.0049 0.031 0.029 0.43 0.073 0.17 0.028 0.15
56 H Cl 0.0049 0.37 0.45 0.14 0.68 0.33 0.14 0.12 0.28
57 H Br 0.00066 0.14 0.28 0.014 0.30 0.10 0.23 0.11 0.22
58 H I 0.97 0.97 0.74 0.93 0.18 0.80 0.80 0.64 0.57
59 H CF3 0.087 0.74 0.85 0.66 0.18 0.68 0.80 0.53 0.44
60 H CN 0.0065 0.21 0.13 0.035 0.13 0.015 0.039 0.0067 0.16
61 CN H 0.71 0.51 0.27 0.56 0.77 0.066 0.073 0.031 0.38
62 SO2Me H 0.0026 0.16 0.24 0.0062 0.30 0.022 0.060 0.0028 0.16

a Abbreviations from columns left to right. CM: Cell morphology; CMI: Cell membrane integrity; ROS: Reactive
oxygen species; GSH: Glutathione; NMI1: Nuclear membrane integrity 1; CC: Cell Cycle; NMI2: Nuclear
membrane integrity 2; MMP: Mitochondrial membrane potential; CHI: Cell Health Index. b Traffic light colouring
matching classifier values (Red–Green: high toxicity risk–low toxicity risk). c all n = 2.

Fifth, building on the encouraging results of the 3,4,5-trimethoxyaniline analogs, we
switched to another less common kinase hinge binder, quinoline (63–80) (Table 6). The
quinoline has a reduced capacity to form an additional hydrogen bond in the 3-position of
the ring system, but the C-H can push the aniline portion of the scaffold out of plane of the
quinoline by up to 60 degrees [51]. Initially, the dimethoxy analog 6,7-dimethoxy-N-(3,4,5-
trimethoxyphenyl)quinolin-4-amine (63) was screened and, despite a narrow spectrum on
the kinome [48], afforded a CHI of close to with a 130% increase compared to erlotinib. The
removal of the 6-position methoxy group to afford 64 reduced the CHI by almost 3-fold
from the dimethoxy 63 to a much more favorable 0.32, a 20% reduction compared with
erlotinib. Removal of the 7-position methoxy group to produce 65 reduced the CHI with
respect to the dimethoxy 63, but the CHI was still 40% greater than erlotinib.

The unsubstituted analog 66 was consistent with 36 and 47 and demonstrated a lower
CHI of 0.32. The 6-position fluoro 67 and 6,7-position difluoro 68 analogs both have a
similar CHI to the unsubstituted derivative 66 with roughly a 30% reduction compared
to erlotinib. Increased size of the halogen resulted in an increased toxicity risk; the chloro
derivative 69 had parity with erlotinib, while the bromo 70 showed a 15% increase in
CHI and the iodo 71 showed nearly a 70% increase. The 6-position trifluoromethyl 72
returned the CHI to parity with erlotinib, while the introduction of a cyano 73 at the 6-
position reduced the CHI by a further 40% to 0.22. While the direct methylsulfone analog
74 had a slightly shallower 30% reduction compared to trifluoromethyl 72, this was still
a 40% reduction over erlotinib. Switching to the 7-position with a fluoro substitution 75
was favorable, with a 50% reduction in CHI over erlotinib; conversely, the chloro analog
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76 showed an almost 60% increase in CHI. The 7-position bromo 77 showed a >100%
improvement over chloro 76 and 30% over erlotinib. The respective iodo 78 was closer
to parity with erlotinib with only a 10% reduction; this reduction was extended with the
direct trifluoromethyl replacement to afford 79 with a 25% reduction. The 7-position cyano
analog 80 showed an additional improvement with a 45% reduction in CHI compared with
erlotinib, with the majority of the CHI appearing to be derived from nuclear membrane
integrity 1 (NMI1).

Table 6. Toxicity profiling of 3,4,5-trimethoxyaniline analogs containing a quinoline scaffold (63–80) a,b,c.
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72 CF3 H 0.89 0.78 0.063 0.096 0.24 0.50 0.064 0.078 0.37
73 CN H 0.079 0.006 0.055 0.047 0.23 0.18 0.066 0.045 0.22
74 SO2Me H 0.096 0.072 0.23 0.10 0.53 0.36 0.051 0.14 0.25
75 H F 0.010 0.15 0.31 0.020 0.13 0.045 0.005 0.060 0.21
76 H Cl 0.81 0.98 0.95 0.97 0.71 0.88 0.566 0.94 0.63
77 H Br 0.28 0.12 0.11 0.15 0.28 0.052 0.045 0.021 0.27
78 H I 0.097 0.11 0.18 0.18 0.22 0.51 0.024 0.15 0.35
79 H CF3 0.29 0.078 0.27 0.21 0.05 0.18 0.0050 0.33 0.30
80 H CN 0.010 0.035 0.12 0.027 0.76 0.026 0.0092 0.018 0.22

a Abbreviations from columns left to right. CM: Cell morphology; CMI: Cell membrane integrity; ROS: Reactive
oxygen species; GSH: Glutathione; NMI1: Nuclear membrane integrity 1; CC: Cell Cycle; NMI2: Nuclear
membrane integrity 2; MMP: Mitochondrial membrane potential; CHI: Cell Health Index. b Traffic light colouring
matching classifier values (Red–Green: high toxicity risk–low toxicity risk). c all n = 2.

Sixth, after we observed different profiles between the 3-ethynylaniline and 3,4,5-
trimethoxyaniline, we selected the 6-(trifluoromethyl)quinoline, whose CHI was not only
similar to erlotinib but has been shown to maintain cellular penetrance using a nanoBRET
in-cell target engagement assay [48–53]. We fixed the quinoline and assessed how a series
of point changes on the pendent aniline altered the toxicity profile of the scaffold (81–100)
(Table 7). A direct replacement of the methoxy groups in 72 with fluorine to afford a
3,4,5-trifluoroaniline 81, resulting in a compound that had an almost 40% lower CHI than
erlotinib. The 4-position mono-fluoro 82 was nearly 30% lower, while the 3-position fluoro
83 jumped to 50% lower with a CHI of 0.21 compared to the CHI of 0.40 for erlotinib. The 2-
position mono-fluoro 84 changed the trend and showed a 4-fold increase in CHI compared
with the 3-position analog 83 and an almost 100% increase compared with the CHI of
erlotinib. The 4-chloro-3-fluoroaniline derivative 85 had a similar CHI to the 2-position
mono-fluoro 84 and with gefitinib (CHI = 0.80). Moving the chlorine around the ring to
afford the 3-chloro-5-fluoroaniline derivative 86 reduced the CHI to 0.51, still about 25%
higher than erlotinib.
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Table 7. Toxicity profiling of different aniline substitutions of 4-anilinoquinolines (81–100) based on
the scaffold of analog 72 a,b,c.
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The N-(3,4-dichlorophenyl)-6-(trifluoromethyl)quinolin-4-amine (87) analog showed
a significant increase in CHI with over an 80% increase compared with the erlotinib. The
4-position mono-chloro 88 also had a substantial increase of more than 110% relative to
the CHI of erlotinib, while the 3-position chloro 89 showed an almost 3-fold drop in CHI
compared to the 4-position analog 88. The 3-position analog had a decrease of >30% in
CHI compared with erlotinib. Moving the chlorine around the ring to the 2-position 90
afforded a compound with a similar profile to the 4-position derivative 88, where the CHI
was 100% increased relative to the CHI for erlotinib. The 4-, 3- and 2-position bromo
substitutions, 91–93, respectively, showed consistent results with the choro analogs 88–90.
However, the larger 3-position iodo 94 broke the trend with over a 50% increase in CHI
compared with erlotinib. Interestingly, the introduction of a cyano group at the 4-position
95 was well tolerated with a near 30% reduction in CHI compared with erlotinib, while
the 3-position derivative 96 demonstrated a >40% decrease, with the 2-position analog 97
showing just over 20%. The cyano groups followed the same trend as the halogens, albeit
with a less pronounced gradient. The 3-position trifluoromethyl 98 was consistent with
the iodo 94, likely related to size and/or electronegativity increase [54,55] and showed
a further increased toxicity risk with a CHI of 0.81, >100% of the corresponding CHI of
erlotinib. The 3-ethynylaniline derivative 99 was closer to the 3-cyanoquinoline series
than the quinazoline, with a 75% increase in CHI in the presence of a 6-position halogen
situated on the quinoline. This difference could be related to both electronics and the
overall conformation of the scaffold [51,54]. The final analog in this series was the 4-
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((methylsulfonyl)methyl)aniline derivative 100, which showed a substantially lower CHI
with a drop of >40% compared with erlotinib.

Finally, we investigated the direct contribution of the methoxy groups on the aniline
ring system of 72, with a series of matched pair analogs (101–112) (Table 8). The removal
of the central 4-position methoxy to afford 101 resulted in a compound that had a 60%
increase in CHI compared with parent 72. Removing one of the flanking methoxy groups
(3-position) to afford 102 had a less pronounced effect on the CHI with a marginal 10%
increase compared with parent 72. Having the two methoxy groups in the 2,4-position,
103 was even more favorable, with a net reduction in toxicity risk of 30% compared with
parent 72. Intriguingly moving one of the methoxy groups to establish a 2,5-position 104
orientation actually caused a 3-fold increase in toxicity compared with the 2,4-position
analog 104 and >100% compared with the CHI of parent 72. The 4-position mono-methoxy
105 showed a favorable toxicity profile with a 20% reduction of the CHI compared with
parent 72. The 3-position analog had parity with parent 72, while the 2-position showed a
large increase of 100% in CHI compared with parent 72, consistent with the other derivative
containing a 2-position methoxy substitution 104. Fusing the 3,4-dimethoxy analog with a
methyl spacer to afford 106 was disfavored with an almost >70% premium compared with
both parent 72 and 102. The use of an ethyl bridging group provided for a more favorable
CHI, where the increase was reduced to only 20%.

Table 8. Toxicity profiling of different oxygen substituted anilines based on the scaffold of analog 72
(101–112) a,b,c.
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108 CH H OCH2O H 0.98 1.00 1.00 0.99 0.87 0.98 0.96 0.98 0.69
109 CH H OCH2CH2O H 0.37 0.90 0.44 0.43 0.40 0.79 0.19 0.49 0.47
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112 N H H OMe H 0.0021 0.0032 0.19 0.0067 0.37 0.24 0.003 0.023 0.18
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The direct switch to a quinazoline 110 from quinoline 72 led to a small 10% increase
in CHI, but the removal of the central 4-position methoxy was more favorable on the
quinazoline 111 than quinoline 101 and showed an almost 30% reduction compared with
parent 72 and almost 90% compared with 101. The final analog in this series 112, the
3-position methoxy, showed a 50% drop in CHI compared to quinoline 106 and parent 72.
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3. Discussion

There are many barriers to developing a successful lead compound and eventual
clinical candidate [19,56,57]. Here we presented a toxicity profiling platform to accelerate
the drug discovery process. This screening allows granular detail and insights into the
toxicity profile within a scaffold series [24,25]. We previously showcased a series of kinase
inhibitor-based optimization projects within these 4-anilinoquin(az)olines series [48–53].
We now demonstrate detailed output from thirty-one clinically used kinase inhibitors
along with seven discrete series of 4-anilinoquin(az)olines totaling over 100 cell active
compounds [48–53]. New chemical approaches and molecular insight into the development
of highly selective and non-toxic kinase inhibitors are required in order to facilitate targeting
non-oncology-based indications within the kinome [26]. This screening could enable a
better understanding of how unknown toxicity liabilities can be identified earlier in the
drug discovery process. The early understanding of potential latent toxophores could not
only have potential implications across different kinase scaffolds but also more widely
within medicinal chemistry.

The in-depth screening around erlotinib and sapatinib focused on several different
characteristics, primarily the cone angle of the aniline vs. the quin(az)oline, where the ani-
line can be in or out of plane, and the electronics/sterics of both the aniline and quin(az)oline
substitution [51,54]. A number of interesting trends were observed, including the favorabil-
ity of the 3-position on the aniline ring system, which disproportionately afforded fewer
toxic results. These included a trend of 3-position halogens where fluoro 83, chloro 89,
bromo 93, and even 3-chloro-5-fluoro 86 formed non-toxic local minima compared to their
respective 2- and 4- position counterparts. There are also some results with real-world
applications, such as the case of 4-chloro-3-fluoro 85, the reversed gefitinib aniline deriva-
tive that has a similar CHI to gefitinib (CHI = 0.80). Other matched pairs provide further
useful structure/toxicity lessons, e.g., erlotinib and the 6,7-dimethoxy analog 1 indicate
that these extended 6,7-positions pendant arms have limited influence on core scaffold
toxicity. This observation would also support a kinase binding hypothesis, as the extensions
on the 6,7-positions are solvent exposed. This solvent-exposed observation is supported
by a number of co-crystal structures of 4-anilinoquin(az)oline, including bosutinib in Src,
pelitinib in PKMYT1, and erlotinib in EGFR, among others [58–60]. Interestingly, the first
two atoms in the point of attachment of the solvent-exposed 6,7-position region did heavily
influence the series toxicity profiles; this could be due to these atoms dictating the electronic
contribution of the substituent to the quin(az)oline ring system.

This work also expands the knowledge base around the biologically relevant 4-
anilinoquin(az)oline scaffold more generally, with extensive examples of medicinally
relevant quinolines and quinazolines reported in the literature. These include CB2 re-
ceptor agonists [61], anti-tuberculosis compounds [62], anti-malarial compounds, such
as amodiaquine [63], and compounds active against the protozoan parasite Trypanosoma
brucei [64]. There has also been increased investigation around the anti-viral potential of the
4-anilinoquin(az)oline scaffold and a series of viruses, including HMCV [65], DENV [66],
VEEV [67], and more recently, SARS-CoV-2 infection [68].

4. Materials and Methods
4.1. Biology

The AsedaSciences® SYSTEMETRIC® Cell Health Screen was performed as previously
described (see Supplementary Information) [24,25].

4.2. Chemistry

All reactions were performed using flame-dried round-bottomed flasks or reaction
vessels unless otherwise stated. Where appropriate, reactions were carried out under
a nitrogen atmosphere with dry solvents unless otherwise stated. Yields refer to chro-
matographically and spectroscopically pure isolated yields. Reagents were purchased at
the highest commercial quality and used without further purification unless otherwise
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stated. Reactions were monitored by thin-layer chromatography carried out on 0.25 mM E.
Merck silica gel plates (60F-254) using ultraviolet light as visualizing agent. NMR spectra
were recorded on a Varian Inova 400 or Inova 500 spectrometer and were calibrated using
residual protic solvent as an internal reference. The following abbreviations or combina-
tions thereof were used to explain the multiplicities observed: s = singlet, d = doublet,
t = triplet, q = quartet, m = multiplet, and br = broad. Liquid chromatography (LC) and
high-resolution mass spectra (HRMS) were recorded on a ThermoFisher hybrid LTQ FT
(ICR 7T). The LC-HRMS was collected as previously described [51].

General Procedure for the Synthesis of 4-Anilinoquin(az)olines

4-chloroquin(az)oline derivative (1.0 eq.), and aniline derivative (1.1 eq.), were sus-
pended in ethanol (10 mL) and refluxed for 18 h. The crude mixture was purified by flash
chromatography using EtOAc:hexane followed by 1–5 % methanol in EtOAc. The solvent
was removable under reduced pressure; the product was obtained as a free following
solid or recrystallized from ethanol/water. Compounds were synthesized as previously
described: 1–3 [53], 4–26 [51], 27 [53], 28 [52], 29 [53], 30–32 [51], 33 [52], 34–43 [51], 44 [52],
45–62 [51], 63–67 [48], 68 [51], 69–71 [49], 72–75 [48], 76–78 [50], 79–112 [48].

5. Conclusions

The kinase inhibitor field is rapidly expanding along with the potential therapeutic
benefit, but to create successful clinical candidates, a clear understanding of the latent
toxicity profile is imperative. This is particularly acute in the case of treating other ki-
nase indications beyond oncology, such as chronic diseases with kinase targets, including
neurodegeneration and inflammation. The screening platform employed for this study
enables a better understanding of the latent toxophores potentially within some litera-
ture kinase inhibitor scaffolds, enabling the more effective design of selective non-toxic
inhibitors. In addition to this, we have provided a series of comprehensive data sets on the
4-anilinoquin(az)oline scaffold to enable more effective design, a better understanding of
this chemotype, and expansion of the medicinal chemist’s toolbox.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
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