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Abstract: Acute kidney injury (AKI) is common following liver transplantation and is associated
with liver ischeamia reperfusion (IR) injury. The purpose of this study was to use a mouse model of
liver IR injury and AKI to study the role of Neutrophil Gelatinase Associated Lipocalin (NGAL), a
biomarker of AKI, in liver IR injury and AKI. We demonstrate an adapted, reproducible model of
liver IR injury and AKI in which remote ischemic preconditioning (RIPC) by repeated episodes of
hindleg ischemia prior to liver IR reduced the severity of the IR injury. In this model, serum NGAL at
2 h post reperfusion correlated with AKI development early following IR injury. This early rise in
serum NGAL was associated with hepatic but not renal upregulation of NGAL mRNA, suggesting
NGAL production in the liver but not the kidney in the early phase post liver IR injury.

Keywords: ischaemia reperfusion; acute kidney injury; remote ischaemic preconditioning

1. Introduction

Ischaemia reperfusion (IR) injury, the injury that occurs when the blood supply to
an organ is interrupted and reconstituted, is a key mechanism of organ damage in solid
organ transplantation [1]. IR injury occurs in 2 phases. In the first phase, ischaemia leads to
depletion of energy reserves within cells and the build-up of toxic metabolites, including
free radicals [2]. In the second phase, reperfusion restores the oxygen supply to the
ischaemic tissue and is accompanied by dysregulation of cellular processes, mitochondrial
injury, cell fragmentation, and initiation of cellular death mechanisms [3]. The influx of
immune cells and upregulation of the systemic response potentiates the organ injury [4].

IR injury is a key determinant in the viability of organs and recipient survival post
organ transplantation [5–7]. The transplantation research has long been centred on the
need to either obviate injury or attenuate the recipient’s systemic response to injury in
a transplanted organ [8–11]. One potential strategy for the attenuation of a recipient’s
response is Remote Ischaemic Preconditioning (RIPC). In RIPC, either the donor or the
recipient is exposed to a reduced and sometimes repeated ischaemic stress of a anatomi-
cally distant tissue, with a phase of reperfusion between stresses and prior to retrieval or
implantation of the transplant organ [12]. Evidence from a variety of different experimental
and clinical settings suggests that this approach can reduce the systemic inflammatory
response and downregulate IR injury [13–18]. The underlying mechanisms of protection
remain poorly understood but involve neural, humoral and systemic pathways and include
a downregulation of oxidative stress and upregulation of protective pathways within the
transplant organ [19]. Whilst experimental animal models have provided promising results,
there has been limited translation into clinical practice [20–24].
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The kidneys are known to be especially vulnerable to injury following heart or liver
transplant [25,26]. Acute kidney injury (AKI) is seen in approximately 50% of patients
who undergo orthotopic liver transplantation (OLT) [27]. The degree of liver IR injury
following OLT correlates with the severity of post-operative AKI and a requirement for
renal replacement therapy (RRT) [28]. AKI post OLT is associated with graft failure, worse
overall survival, delay to discharge from both intensive care and hospital, and progression
to chronic kidney disease, including end-stage renal failure (ESRF) [27,29,30].

Neutrophil Gelatinase Associated Lipocalin (NGAL) is increasingly used as an early
biomarker of renal injury in animal and clinical studies of AKI [31,32]. NGAL is an iron
binding protein that was first isolated from secondary granules in neutrophils and may
exist as a monomer, dimer, or heterodimer (with MMP-8) [33]. Its principle physiological
role is believed to be sequestration of free iron, reducing the availability of iron as an energy
source to bacteria, as part of the innate defence to infection [34]. NGAL has since been
isolated from a variety of other cell and tissue types and is believed to have additional
functions, but these have not been fully elucidated [35,36]. NGAL is usually detected
in clinical samples using ELISA tests on either plasma, serum, or urine samples. In the
experimental setting, investigators have used a combination of ELISA, Western Blot, and
mRNA quantification to evaluate changes in NGAL expression in response to a variety
of stimuli.

We previously showed that the urinary NGAL levels measured at the end of liver
transplant surgery accurately predict both development of AKI and renal replacement
therapy (RRT) requirement post OLT [37]. The origin of NGAL in this context is not clear,
and there is no clear consensus in the literature about the origin of NGAL in other forms of
AKI, with some authors suggesting a renal origin and others an immune cell origin [38,39].
It is also unclear whether NGAL is released as part of the response to IR injury or whether
it has a pathological role.

The purpose of this study was to adapt an established murine model in which liver
IR injury is known to cause AKI to study the role of NGAL in the early phase post liver
IR injury.

2. Results
2.1. The Mouse Model of Liver Ischaemia Reperfusion Was Associated with Liver and Renal Injury

The murine model of partial liver ischaemia (provided by 45 min of continuous
clamping of the left and middle portal pedicles followed by 120 min of reperfusion) was
associated with the development of ischaemia reperfusion injury, as indicated by the ele-
vated plasma AST/ALT levels at two hours post reperfusion (Figure 1). Remote ischaemic
pre-conditioning (RIPC) alone was not associated with liver injury (RIPC provided by inter-
mittent 5 min episodes of clamping the right femoral pedicle with reperfusion in between).
RIPC prior to liver ischaemia reperfusion was associated with a significant reduction in liver
injury (reduction in AST p ≤ 0.001, ALT p = 0.04). Morphological evidence of injury was not
demonstrated at this early time point on standard H&E histological staining (Appendix A).
Ischaemia reperfusion of the liver produced acute kidney injury (Figure 1c), as measured
by serum creatinine at two hours post reperfusion. There was no morphological evidence
of renal injury in the standard H&E histological staining results at this early time point
(Appendix A) but staining with a DNA/RNA damage antibody (15A3) revealed evidence
of oxidative injury in the liver IR group compared to the other groups.
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Figure 1. (a–d) Biochemical markers of liver and renal injury at 2 h post liver reperfusion. Plasma 

transaminases (AST and ALT) measured at two hours post liver reperfusion were used as surrogate 

markers of liver injury and confirmed injury in the liver Ischaemia Reperfusion (IR) group (a,b). 

Liver IR was provided by a single episode of 45 min of clamping the left and middle portal pedicles 

followed by 120 min of reperfusion. Liver injury was attenuated by pre-treatment with Remote Is-

chaemic Pre-Conditioning (RIPC) in the form of intermittent clamping of the femoral vessels for 5 

min episodes with reperfusion in between and was not seen in either the sham laparotomy or RIPC 

only groups. Liver IR injury was accompanied by renal injury, demonstrated by a statistically sig-

nificant increase in plasma creatinine compared to the sham laparotomy ((c), p = 0.0007). Renal in-

jury was attenuated by pre-treatment with RIPC. Plasma Neutrophil Gelatinase Associated 

Lipocalin (NGAL) concentration at two hours post reperfusion was significantly elevated in the 

Liver IR group but was reduced to control levels with RIPC pre-treatment (d). Dotted lines denote 

the normal values for plasma AST, ALT, and creatinine in mice. (e) Histological evidence of liver 

injury. Histological specimens confirmed oxidative injury with increased staining for DNA/RNA 

oxidative damage in renal specimens from the liver IR group compared to the sham; injury was 

attenuated by RIPC (e). N = 12 mice/experimental group for biochemical measurements. 

  

Figure 1. (a–d) Biochemical markers of liver and renal injury at 2 h post liver reperfusion. Plasma
transaminases (AST and ALT) measured at two hours post liver reperfusion were used as surrogate
markers of liver injury and confirmed injury in the liver Ischaemia Reperfusion (IR) group (a,b). Liver
IR was provided by a single episode of 45 min of clamping the left and middle portal pedicles followed
by 120 min of reperfusion. Liver injury was attenuated by pre-treatment with Remote Ischaemic
Pre-Conditioning (RIPC) in the form of intermittent clamping of the femoral vessels for 5 min
episodes with reperfusion in between and was not seen in either the sham laparotomy or RIPC only
groups. Liver IR injury was accompanied by renal injury, demonstrated by a statistically significant
increase in plasma creatinine compared to the sham laparotomy ((c), p = 0.0007). Renal injury was
attenuated by pre-treatment with RIPC. Plasma Neutrophil Gelatinase Associated Lipocalin (NGAL)
concentration at two hours post reperfusion was significantly elevated in the Liver IR group but
was reduced to control levels with RIPC pre-treatment (d). Dotted lines denote the normal values
for plasma AST, ALT, and creatinine in mice. (e) Histological evidence of liver injury. Histological
specimens confirmed oxidative injury with increased staining for DNA/RNA oxidative damage in
renal specimens from the liver IR group compared to the sham; injury was attenuated by RIPC (e).
N = 12 mice/experimental group for biochemical measurements.
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2.2. Liver and Renal Injury Are Associated with Upregulation of Serum NGAL

In this murine model, plasma levels of NGAL at termination were normal in the
control group shams and animals receiving RIPC alone. Liver ischaemia reperfusion was
associated with increased plasma NGAL at two hours post reperfusion (Figure 1d). This
early increase in plasma NGAL shows temporal correlation to the development of liver
and renal injury in the model.

2.3. With Liver IR Injury and AKI, NGAL mRNA Upregulation Is Seen in the Liver but Not the
Kidney. The Liver NGAL mRNA Was Reduced by Pre-Treatment with RIPC

Compared to the sham laparotomy, NGAL mRNA was upregulated in the liver tissue
following IR. This was evident in liver samples from both the liver lobe subjected to
ischaemia (p = 0.02) and the non-ischaemic liver lobe (p = 0.008) (Figure 2a). Significant
upregulation of NGAL mRNA compared to the sham was also seen in the liver samples
taken following RIPC alone (p = 0.009). Following RIPC + liver IR, significant NGAL mRNA
upregulation was only observed in the non-ischaemic liver lobe (p = 0.009), with no NGAL
mRNA upregulation in the lobe subjected to ischaemia (p = 0.13) when compared to the
sham laparotomy. RIPC prior to IR may have reduced the liver parenchyma NGAL mRNA
in both the ischaemic and non-ischaemic liver, but the reduction was not significant.
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Figure 2. Fold change in NGAL mRNA in each of the experimental groups compared to sham
laparotomy for (a) liver and (b) kidney specimens. Median values and interquartile ranges are shown.
Statistical analysis was performed using Kruskal–Wallis and Mann–Whitney tests as appropriate.
“Ischaemic” and “non-ischaemic” denotes which liver lobe from the animal was sampled. With
regards to statistical significance of result compared to sham laparotomy, “ns” denotes not significant
(p ≥ 0.05), * denotes p ≤ 0.05, and ** denotes p ≤ 0.01. Statistically significant p values are provided
in the text. N = 6 mice/experimental group.

NGAL mRNA was not upregulated in the kidney following liver IR, RIPC alone, or
RIPC + liver IR when compared to the sham laparotomy group (Figure 2b).
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2.4. NGAL Expression by IHC in the Liver and Kidney Compared with Plasma
NGAL Concentration

To correlate tissue NGAL mRNA expression with serum NGAL levels, histological
assessment of six formalin fixed, paraffin preserved (FFPE) liver and kidney specimens
from each experimental group were analysed. Liver specimens were selected from the
ischaemic and non-ischaemic liver lobes of the same animals to represent an internal control
(Figure 3). Firstly, histological assessment of H&E specimens was performed to ensure
that the IR protocol had not resulted in liver necrosis. Histology showed no apparent
morphological differences between the experimental groups for either livers or kidneys.
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Figure 3. Neutrophil Gelatinase Associated Lipocalin (NGAL) staining on background of
haemoxylin/eosin. Cells stained for NGAL are brown, as shown in (a–c). (a) is from a ‘sham’
liver section, (b) is from ‘liver Ischaemia Reperfusion (IR)—ischaemic lobe’ and (c) is from ‘liver
IR—non-ischaemic lobe’. All samples demonstrated NGAL staining with no difference between
the groups. Hepatocytes did not stain positively for NGAL and so further staining was performed
to identify the NGAL positive cells using F4/80, a marker of macrophages. (d) demonstrates co-
localization of NGAL (pink) and F4/80 (brown) in a ‘liver IR’ liver section, with co-localization
shown by yellow overlay in (e). (f) NGAL staining within the kidney from the “liver IR” group, with
NGAL (brown) positively staining within the apical third of tubular cells. Histological evidence of
either liver or renal injury was not demonstrated with H&E staining, and inflammatory cells were
not observed. 40× magnification for all images. N = 6 mice/experimental group.

NGAL staining was identified within all the specimens. Within the liver, non-parenchymal
cells stained positively for NGAL. There was no difference in the number of cells stained
for NGAL in any of the experimental groups compared to the sham laparotomy and
specifically no increase in the number of cells stained positively for NGAL in the liver IR
group (Appendix B). There was also no difference in staining between the ischaemic and
non-ischaemic liver lobe samples. In the kidney specimens, NGAL staining centred around
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renal tubules in all groups. There was no difference in the proportion of renal tubules
stained positively for NGAL between the different experimental groups (Appendix B).

2.5. In the Liver, NGAL Demonstrates Partial Co-Localisation with F4/80

Hepatocytes did not express NGAL using IHC in any of the groups. NGAL was
routinely expressed by another cell population which histologically had the appearance
of Kupffer cells. We therefore performed multiplex co-staining for NGAL and F4/80, a
marker of macrophages, in the sham laparotomy and liver IR groups. This demonstrated
partial, but not complete, co-localisation, suggesting involvement of Kupffer cells in the
production of NGAL in this context (Figure 3d,e). Increased co-localisation between NGAL
and F4/80 was not seen in any of the experimental groups compared to the sham.

3. Discussion

We used an established murine model of partial liver ischaemia reperfusion and in
keeping with other studies, demonstrated liver injury with elevations in ALT and AST
following the IR insult. Liver injury was reduced by remote ischaemic preconditioning,
in the form of repeated 5 min intervals of hindleg ischemia. Again, this has previously
been demonstrated in other similar models [40]. In our model, liver IR and liver injury
were associated with the development of AKI. The link between liver IR injury and AKI
in murine models has been well documented [41], but for the first time, we link the three
processes (liver IR injury, RIPC and AKI) and show that RIPC reduces AKI as well as liver
IR injury. From an experimental perspective, the ability to attenuate injury by RIPC also
increases the utility of this model for the investigation of the mechanisms underlying AKI
development following liver IR injury.

Clinically the importance of secondary organ injury is well known. AKI following liver
IR injury during liver transplantation is associated with worse overall survival and donor
graft function [42]. Clinical data suggests that secondary renal injury occurs within 2 h of
liver IR injury [37]. Investigation of the mechanisms of renal injury and new treatments
need to focus on the very early changes following liver IR; thus, we chose to study outcomes
following two hours of liver reperfusion. Histological cellular changes associated with
liver IR injury were not seen in either the liver or the kidney with standard H&E staining
at this early time point. Cellular changes take time to develop and were not expected to
be demonstrated histologically at this stage. Regarding the biochemical markers of liver
IR injury, AST/ALT are widely used markers of liver injury in both the experimental and
clinical settings. Creatinine and NGAL provided biochemical evidence of renal injury,
which was confirmed by staining for oxidative damage. We did not broaden the model
to include multiple longer periods of reperfusion before animal sacrifice because we felt
that this data would be less informative and to provide reproducible data would require a
greatly increased number of experimental animals. In addition, evidence of cellular changes
consistent with renal injury following liver IR at longer time points post reperfusion is
already within the published literature [41].

Once the model had been shown to reproducibly produce AKI following liver IR
injury, we investigated NGAL in the early stage of liver-IR-induced AKI. Circulating
NGAL was increased at 2 h post liver IR injury. This response was attenuated by remote
ischaemic preconditioning, in line with the observed attenuation of liver IR injury and AKI,
indicating a specificity of the response. To our knowledge, this early time point has only
been previously studied in a rat model of liver transplantation, where AST, ALT, NGAL,
and creatinine were all elevated at 30 min and 2 h post reperfusion [43]. In mice, the earliest
time point studied is 4 h post reperfusion [44], with demonstrated an increase in circulating
NGAL at that time point.

We went on to investigate the origin of the serum NGAL increase in this early phase
following liver IR injury. We performed immunohistochemistry and evaluated mRNA
upregulation within FFPE-preserved livers and kidneys harvested from our murine model.
Despite a statistically significant increase in plasma NGAL following liver IR, we did not
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demonstrate any increase in the number of cells stained for NGAL in either the liver or
kidney compared to the sham, RIPC, or RIPC + IR injury. This novel finding raises the
possibility that NGAL is not synthesised by either the liver or the kidney in liver IR injury.
Published data provides mixed evidence, with some groups reporting a renal origin [45]
and others reporting a liver origin [46] for NGAL.

Even more interestingly, hepatocytes did not express NGAL in any of the experimental
groups, in contrast to other published studies which demonstrated hepatocyte staining
for NGAL in response to liver injury [47]. Instead, the current study findings would be
compatible with a study evaluating liver production of NGAL in response to bacterial
infection which identified NGAL mRNA upregulation in hepatocytes in combination
with increased circulating NGAL but without significant hepatocyte staining for NGAL
following inoculation with E coli. The variability in published data related to the origin of
NGAL following liver IR injury may be a result of a rapid NGAL release mechanism, as
suggested by a hepatic NGAL knockout model [48].

We demonstrate partial co-localisation of NGAL with F4/80 in liver specimens from
all four experimental groups, suggesting that Kupffer cells may act as a source for NGAL in
murine livers. This is in keeping with previous results [47,49]. The release of NGAL from
such a reservoir may explain why an increase in the number of cells stained for NGAL was
not observed in our data. The population of F4/80NEG, NGALPOS cells in murine livers
may resemble monocytes or even neutrophils which have migrated following IR injury.
Further work is ongoing to identify the cellular source of NGAL within the murine liver
following IR injury.

Despite no change in the number of cells stained positively for NGAL across the
experimental groups, mRNA upregulation was observed within the livers but not the
kidneys across all the liver IR experimental groups compared to the sham. Some attenuation
of NGAL upregulation in response to liver IR was seen with RIPC, although this did not
achieve statistical significance. Larger experimental groups may be required to confirm
this finding.

NGAL has previously been reported to be an acute phase reactant [48] released by
the murine liver in response to inflammatory or infective stimuli, including LPS [50,51]. It
may be that the inflammatory stimulus provided by either RIPC or liver IR induces mRNA
upregulation of NGAL. However, this does not explain the relative downregulation of
NGAL mRNA following RIPC and liver IR compared to either individual stimulus, and it
does not correlate to the serum concentrations of NGAL in each of the experimental groups.
This would suggest that NGAL modulation in the model is not simply a reflection of an
acute inflammatory response to the experimental intervention. Additionally, within the
ischaemic liver lobes, an apparent downregulation of NGAL mRNA is observed from liver
IR to RIPC + liver IR, which is in keeping with the reduction in circulating NGAL between
these two experimental groups. There may be two mechanisms at work here, a broad
“acute phase response” upregulation of NGAL mRNA and a more specific “ischaemia
induced” upregulation of liver NGAL mRNA. As only the latter correlates to circulating
NGAL, additional control steps may be involved in translation and NGAL release.

The model of RIPC and liver IR reported here provides some interesting findings with
relation to the association between liver IR injury, AKI, and NGAL but also raises further
questions regarding the nature of the relationship between the three and specifically the
role of the ischaemic versus non-ischaemic liver lobe in the local and systemic response
to IR injury and NGAL release. Further experiments in a mouse model may not provide
additional insight, as this would require blood and tissue sampling from multiple sites,
which would be technically challenging and unlikely tolerated by the anaesthetized rodents.
Murine NGAL shares limited homology with human NGAL [52], and whilst NGAL release
by the liver as part of a global inflammatory response has been observed in mice, this had
not been demonstrated in the human setting. Our ongoing work seeks to address the clinical
relationship between liver IR injury, AKI, and NGAL observed in liver transplantation in
more detail.
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4. Materials and Methods
4.1. Animals

Mice aged 8–10 weeks C57BL/6 (Charles River, Harlow, UK) were allowed to acclima-
tise under standard laboratory conditions, with free access to water and chow pellets. This
study was performed in accordance with the Animals (Scientific Procedures) Act 1986 and
under a project license from the Home Office.

4.2. Operative Procedure

The experimental procedure is detailed in Figure 4. Mice were subjected to general
anaesthetic with 0.4 mL intra-peritoneal Ketamine, Xylazine, and tracheostomy. Further
intra-peritoneal doses of Ketamine were given if required. All operative procedures were
performed under anaesthesia using a Zeiss (Cambridge, UK), OPMI, 6MD operating
microscope. All animals underwent a vertical incision extending from the abdominal
midline to the right knee, with exposure of the portal triad and right femoral pedicle.
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Figure 4. Diagram to show experimental protocol. Mice were randomly assigned to one of four
groups. Overall duration of anaesthesia prior to termination was identical across the groups at
240 min.

4.3. Sham Procedures/Controls

The femoral vessels and portal triad were exposed without cross clamping. Animals
remained under anaesthetic for 195 min (to include the 30 min required for RIPC and
165 min for liver IR required by the other experimental groups) until the end of the
experimental procedure when they were terminated by cardiac puncture.
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4.4. Remote Ischaemic-Preconditioning (RIPC)

In animals assigned to the RIPC group, the femoral pedicle was cross clamped with an
atraumatic microvascular clamp for three periods of five minutes duration, each followed by
a five-minute interval of reperfusion. The portal pedicle remained unclamped throughout,
but 165 min (required for portal clamping and reperfusion in the liver IR groups) of general
anaesthesia was administered before termination.

4.5. Liver Ischaemia Reperfusion (IR)

Following midline laparotomy, the portal triad and right femoral pedicle were exposed.
Anaesthesia was administered for 30 min (required for intermittent hindleg ischaemia in
the RIPC groups). Next, an atraumatic vascular clamp was placed across the left and
middle portal pedicles, leaving the right portal branch in circulation. After 45 min, the
clamp was removed and the liver was re-perfused for 2 h prior to termination, during
which the animal remained anaesthetised.

4.6. Remote Ischaemic Pre-Conditioning + Liver Ischaemia Reperfusion (RIPC + Liver IR)

Following exposure of the portal triad and femoral pedicle, the femoral pedicle was
intermittently clamped, as per the methodology for the RIPC group. Following completion
of this phase, the left and middle liver pedicles were clamped for 45 min, as per the
methodology for the liver IR group. After 120 min of reperfusion, animals were terminated
by cardiac puncture.

Following completion of the experimental protocol in each group, animals were
sacrificed by cardiac puncture and exsanguination. Plasma samples were collected and
stored at −80 ◦C until analysis. The liver and left kidney were harvested immediately after
termination, fixed in formalin, and embedded in paraffin after 24 h. FFPE samples were
then stored at room temperature.

4.7. Quantification of Liver and Kidney Injury

Plasma transaminase levels at termination were used as a surrogate marker of liver
injury, whilst kidney injury was determined by measurement of plasma creatinine (Jaffe re-
action, COBAS Integra 400 plus biochemistry analyser, ROCHE, Welwyn Garden City, UK).

4.8. Plasma NGAL

Plasma NGAL levels were measured using the Biolegend Legend Max™ Mouse NGAL
ELISA assay (Biolegend, London, UK), as per manufacturer’s instructions.

4.9. NGAL Immunohistochemistry of Liver and Kidney Specimens

H&E staining was performed on all samples according to standard protocols. Im-
munohistochemistry was performed using our local laboratory protocol. FFPE sections
were deparaffinised and rehydrated with serial washes in xylene and alcohol through
to distilled water. Antigen retrieval was performed by microwaving slides at 640 W for
20 min in 1 L pH 9.0 TRIS ETDA buffer. After washing in Tris Buffered Saline (TBS) with
0.04% Tween-20, endogenous peroxidases were blocked using peroxidase blocking solution
(Bloxall®, Vector Laboratories, Kirtlington, UK) for 5 min, then rewashed in TBS with
protein block (MP-7401, Vector Laboratories). Sections were incubated in NGAL/lipocalin
2 primary antibody (ab216462, Abcam, Cambridge, UK) at a concentration of 1:500 TBS
for 1 h at room temperature. After re-washing in TBS Tween, sections were incubated for
25 min in Impress anti-mouse polymer secondary antibody (MP-7401, Vector Laboratories),
then washed again in TBS Tween and developed with 3,3′di-amino-benzadine (SK-4105,
Vector Laboratories). Sections were then dehydrated, cleared in xylene, and mounted.

4.10. Multiplex F4/80—NGAL Immunohistochemistry

To determine co-localisation of F4/80 and NGAL in liver specimens, a multiplex
method was used. FFPE sections were deparaffinised and rehydrated with serial washes
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in xylene and alcohol through to distilled water. Sections were incubated for 30 min at
37 ◦C in 0.5% Trypsin (MP Biomedical, Santa Ana, CA, USA)/0.5% Chymotrypsin (Sigma,
Gillingham, UK)/1% Calcium Chloride (BDH, Lutterworth, UK) in TBS pH 7.6. Sections
were bathed in TBS with 0.04% Tween-20, and endogenous peroxidase activity was blocked
with peroxidase blocking solution (Bloxall®, Vector Laboratories), followed by repeat
washing in TBS and blocking with serum block for 10 min (Impress Goat anti-rat detection
kit MP7404-50, Vector Laboratories). Sections were incubated for 1 h at room temperature
in the F4/80 primary antibody (MCR487R, Biorad, Kidlington, UK) at a concentration
of 1:50 TBS, then washed in TBS Tween and developed with 3,3′di-amino-benzadine
(SK-4105—Vector Laboratories). After re-washing in TBS Tween, sections were placed in
1 L pH 9.0 Tris EDTA buffer and microwaved at 640 W for 20 min. Sections were soaked in
TBS with 0.04% Tween-20, blocked with serum block (MP-5401, Vector Laboratories), and
incubated for 1 h at room temperature in NGAL/lipocalin 2 secondary antibody (ab216462,
Abcam) at a concentration of 1:500 TBS. After washing in TBS Tween, slides were incubated
for 25 min in Impress anti-rabbit AP polymer (MP5401, Vector Laboratories), then rewashed
in TBS and developed with fast red substrate (ab64254, Abcam). Slides were rewashed in
TBS Tween, rinsed in distilled water, airdried, cleared in Xylene, and mounted.

4.11. Interpretation of IHC

NGAL IHC Slides were examined by experienced liver and renal histopathologists
who were blinded to the treatment groups. For liver specimens, which demonstrated
focal staining, cells stained for NGAL were counted (10× high powered fields). For renal
specimens, the intensity of staining and proportion of tubules stained positively for NGAL
were determined.

4.12. Interpretation of Multiplex F4/80-NGAL IHC

The F4/80 NGAL double epitope IHC were viewed using a Mantra 2 multispectral
imaging digital camera and analysed with the inForm® 2.7.0 software (Akoya, Marlborough,
MA, USA).

4.13. DNA/RNA Oxidative Damage Immunohistochemistry

The sections were boiled for 3 min in citrate buffer (10 mmol/L, pH 6.0) at 95 ◦C
to unmask epitopes, followed by blocking with 1% (w/v) bovine serum albumin (in PBS
with 0.01% (v/v) Tween 20) for 30 min. Primary and secondary antibodies were diluted
in PBS containing 0.02% (v/v) Triton X-100 and 0.02% (v/v) Tween 20. Between every
protocol step, slides were washed in PBS 0.02% (v/v) and Tween 20 three times for 5 min.
After application of the primary antibody DNA/RNA Damage Ab (15A3) (NB110-96878SS)
(1:1000) overnight at 4 ◦C, sections were incubated for 1 h with the secondary antibody
(1:500, AlexaFluor®633 goat anti mouse, Invitrogen, Paisley, UK) at room temperature.
Finally, the slides were mounted with fluorescent-free mounting medium (Prolong Gold
antifade reagent, P36930, Life Technologies, UK). Maximal intensity projections were
obtained with an inverted Zeiss LSM confocal microscope using Axiovision 4.8.2 SP 3
software with same settings for each slide.

4.14. NGAL qPCR

Total RNA was extracted from formalin fixed, paraffin embedded kidney, and liver
specimens, using the QIAGEN RNeasy FFPE kit (cat. 73504, Qiagen, Manchester, UK)
according to manufacturer’s instructions. RNA was immediately converted to cDNA using
Applied Biosystems (Warrington, UK) TM High-Capacity cDNA Reverse Transcription Kit
(cat. 4368814) and in a G-storm Thermocycler, as per manufacturer’s instructions.

cDNA was stored at −20 ◦C pending PCR. qPCR was performed using Applied
Biosystems™ Power Up SYBR Green master mix and on a Roche Lightcycler® 96 at cycle
settings recommended in the Applied Biosystems™ protocol but with 45 cycles rather than
the recommended 40 cycles. Negative controls were run on each plate. NGAL primer
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sequences were obtained from the Harvard Primer bank (https://pga.mgh.harvard.edu/
primerbank/, accessed on 21 February 2024). Four primer pairs were tested (Appendix C,
Table A1), with selection of the most efficient primer pair. Four normalisation genes were
selected from the published literature and http://www.housekeeping.unicamp.br (accessed
on 21 February 2024), an online repository of reliable normalisation genes catalogued by
tissue and animal (Appendix C, Table A2). Primer sets were tested for efficiency. The two
most efficient gene primer sets (P4Hb and Cali) were used for qPCR. Upon analysis of the
results, Cali was found to demonstrate greater variability and lower Ct values (sometimes
Ct values > 40); thus, P4hb normalised NGAL qPCR values were used for analysis.
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Figure A2. (a) Number of Neutrophil Gelatinase Associated Lipocalin (NGAL) staining cells/10 high-
powered fields from A: sham laparotomy, B1: liver Ischaemia Reperfusion (IR)—ischemic lobe,
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groups (p ≥ 0.05). (b) Proportion of tubules stained for NGAL in kidney specimens, with no difference
between the groups.

Appendix C

Table A1. Primer sequences trialled for Neutrophil Gelatinase Associated Lipocalin (NGAL) qPCR.

Primer Pair Primer Sequence 5′-3′ Efficiency Comments

NGAL/1 f-ATGTCACCTCCATCCTGGTCA
r-ACAGCTCCTGGTTCTTCCATACAG 80.0% Dimerization

NGAL/2 * fGGGAAATATGCACAGGTATCCTC
r-CATGGCGAACTGGTTGTAGTC 103.6%

NGAL/3 f-TGGCCCTGAGTGTCATGTG
r-CTCTTGTAGCTCATAGATGGTGC 92.5% Primer pair does not span intron

NGAL/4 f-GCAGGTGGTACGTTGTGGG
r-CTCTTGTAGCTCATAGATGGTGC 108.0% Primer pair does not span intron

* This primer pair demonstrated the best efficiency without dimerization and was used for qPCR analysis.

Table A2. Normalization genes and primer sequences trialled for qPCR analysis.

Normalization Gene Primer Sequence 5′-3′ Efficiency Comments

CCT5 f-CTGGGCTCCAAAGTGATTAACA
r-TCTCTCCGCTCCATATCTGCC 82.9%

P4hb * f-ACCTGCTGGTGGAGTTCTATGC
r-ATTGTGGGGTAGCCACGGAC 93.8%

Cali * f-TTCTTGGACGGAGATGCCTG
r-GGCCCTTATTGCTGAAGGGT 87.9%

GAPDH f-GCAATTATTCCCCATGAACG
r-GGCCTCACTAAACCATCCAA 38.9% Primers from

literature

* Primers and normalization genes selected for initial qPCR analysis. Cali was found to have Ct values > 40 in
multiple samples and so was not used for final analysis.
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