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Abstract: The increase in multi-drug resistant Candida strains has caused a sharp rise in life-
threatening fungal infections in immunosuppressed patients, including those with SARS-CoV-2.
Novel antifungal drugs are needed to combat multi-drug-resistant yeasts. This study aimed to syn-
thesize a new series of 2-oxazolines and evaluate the ligands in vitro for the inhibition of six Candida
species and in silico for affinity to the CYP51 enzymes (obtained with molecular modeling and protein
homology) of the same species. The 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-tosyl-4,5-dihydrooxazoles
6a-j were synthesized using the Van Leusen reaction between 1,3-diphenyl-4-formylpyrazoles 4a-j
and TosMIC 5 in the presence of K2CO3 or KOH without heating, resulting in short reaction times,
high compound purity, and high yields. The docking studies revealed good affinity for the active site
of the CYP51 enzymes of the Candida species in the following order: 6a-j > 4a-j > fluconazole (the
reference drug). The in vitro testing of the compounds against the Candida species showed lower MIC
values for 6a-j than 4a-j, and for 4a-j than fluconazole, thus correlating well with the in silico findings.
According to growth rescue assays, 6a-j and 4a-j (like fluconazole) inhibit ergosterol synthesis. The in
silico toxicity assessment evidenced the safety of compounds 6a-j, which merit further research as
possible antifungal drugs.

Keywords: pyrazoles; 1,3-dihydrooxazoles; molecular modeling; molecular docking; antifungal activity

1. Introduction

In recent years, yeasts of the genus Candida have been responsible for a sharp increase
in invasive fungal infections in patients with an immunosuppressed system, including
those with the SARS-CoV-2 virus. As a result, there have been significant complications in a
considerable number of critically ill hospitalized patients, sometimes leading to death [1,2].
This situation is due in large part to the rise in multi-drug-resistant fungi. Prior to the
extensive clinical administration of antifungal drugs such as azoles, studies had found a
prevalence of fungal species susceptible to all classes of antifungal drugs. Unfortunately, the
widespread use of antifungals over the years has gradually undermined the effectiveness
of the current treatments for many kinds of invasive fungal infections. It is more common
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each year to find species of fungi with resistance to one or more types of drugs, leading to
therapeutic failure in many cases [3,4].

Candidemia is one of the most common types of invasive fungal infections [5–7]. The
main species involved is C. albicans, followed by C. glabrata, C. parapsilosis, C. tropicalis,
and C. krusei. The frequency of incidence depends on the population, geographic region,
patient age, and previous exposure to antifungal drugs [8,9]. Relatively new species, such
as C. auris and C. haemulonii, have been emerging as pathogens worldwide and some
of their strains have become multi-drug-resistant. These species are considered a public
health problem because of their high mortality, tendency to provoke nosocomial outbreaks,
and lack of susceptibility to drugs [10–13]. Hence, new compounds are needed that can
effectively treat multi-drug resistant fungal infections.

The lanosterol 14α demethylase enzyme (CYP51) is an important target for combatting
fungal infections. In fungal cells, it catalyzes lanosterol 14α demethylation through a
series of successive oxidation reactions to form a key intermediate in ergosterol synthesis.
Ergosterol is an essential component of the fungal cell membrane, maintaining its fluidity,
integrity, and permeability. Thus, the inhibition of CYP51 has become a key strategy for the
development of new antifungal drugs [14,15].

In the search for new antifungal agents, interest has been shown in 2-oxazolines (also
known as 4,5-dihydrooxazoles), which are partially saturated analogues of oxazoles [16].
1,3-oxazoles are aromatic five-membered heterocyclic compounds moderately rich in
π-electrons [17]. The attractiveness of 2-oxazolines for medicinal chemistry owes itself
to their presence in the structure of a variety of compounds with antifungal [18], antivi-
ral [19], anticancer [20], anti-inflammatory [21], antibacterial [22], antidiabetic [23], and/or
antioxidant activity [24]. The potential antifungal activity of 2-oxazolines has recently been
described in the literature in relation to various Candida species, including multi-drug-
resistant species (e.g., C. auris and C. haemulonii). Other reports indicate that they are active
against Cryptococcus neoformans, Aspergillus fumigatus, Tilletia indica, Trichoderma, Psilocybe
cubensis, Sphaerotheca fuliginea, and Phytophthora infestans [18,25–28].

Other compounds of interest in the search for new antifungal agents are pyrazoles,
a type of 1,2-diazole with two adjacent nitrogen atoms. These aromatic heterocycles are
moderately rich in π-electrons [17] and are regarded as privileged structures since they are
found in a large number of drugs and naturally occurring molecules with antifungal [29],
antiparasitic [30], antimicrobial [31], anti-inflammatory [31], anticancer [32], antihyperten-
sive [33], antiviral [34], and antidiabetic activity [35].

Due to the great therapeutic relevance of the 2-oxazoline and 1H-pyrazole systems,
several methods have been developed to synthesize them. One method for achieving the
2-oxazoline system involves an intramolecular cyclization reaction of the 5-exo-trig type
in accordance with Baldwin’s rules. It takes place in derivatives of salicylic acid and is
promoted by thionyl chloride. [18,25–27]. A characteristic example for the other method-
ologies is the reaction between benzaldehydes, with 4-phenyl-thiosemicarbazide involving
a hydrazone intermediate which reacts with benzoin to obtain 2-oxazolines [28]; another
methodology is based on the (3 + 2) reaction between TosMIC 5 and an aromatic aldehyde
in the presence of a base. This synthetic strategy generally leads to the corresponding
oxazole via the oxidation of the primary oxazoline formed [36–38].

The aim of the current contribution was first to synthesize new 2-oxazolines with the
Van Leusen reaction between a series of 1,3-diphenyl-4-formylpyrazoles 4a-j and TosMIC 5
in the presence of K2CO3, and then evaluate the new compounds in silico and in vitro in
relation to six Candida species. The series of hybrid molecules of 5-(1,3-diphenyl-1H-pyrazol-
4-yl)-4-tosyl-4,5-dihydrooxazoles 6a-j contained both the 2-oxazoline and 1H-pyrazole
systems. Molecular docking studies conducted at the active site of the CYP51 enzymes
of Candida spp. showed better binding energy values for ligands 3a-j and 5a-j than for
the reference drug fluconazole. According to the in vitro antifungal tests, the MIC values
were much lower (better inhibition of the yeasts) for both series of test compounds than for
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fluconazole 20. Also, the MIC values were lower for 6a-j than 4a-j. Thus, the in silico and
in vitro data correlated well.

2. Results and Discussion
2.1. General Strategy for Obtaining Compounds 6a-j

The general synthetic strategy for obtaining (4S*, 5S*)-5-(1,3-diphenyl-1H-pyrazol-4-
yl)-4-tosyl-4,5-dihydrooxazoles 6a-j was based on three steps: (a) a series of the 1-phenyl-
2-(1-phenylethylidene)hydrazines 3a-j was prepared from the nucleophilic addition of
phenylhydrazine 2 with the respective substituted acetophenones 1a-j, which is a reaction
catalyzed by glacial acetic acid; (b) then, the pyrazole ring was formed, followed by a
formylation at C-4 of the heterocyclic system in a single step by using 2.5 equivalents of
POCl3/DMF (in accordance with the Vilsmeier–Haack conditions) to obtain 1,3-diphenyl-
1H-pyrazole-4-carbaldehydes 4a-j; (c) finally, a cycloaddition (3 + 2) was carried out be-
tween the series of aldehydes 4a-j and the anion of para-toluenesulfonylmethylisocyanide
5 under basic conditions to furnish (4S*, 5S*)-5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-tosyl-4,5-
dihydrooxazoles 6a-j in good yields (Scheme 1). To our knowledge, the synthesis of this
type of dihydrooxazole has not yet been reported.
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2.2. (E)-1-Phenyl-2-(1-Phenylethylidene)Hydrazones 3a-j

Phenylhydrazones 3a-j were synthesized in good yields and with very short reaction
times (Table 1). As expected, the reaction took less time for molecules with the electron-
withdrawing groups NO2 and CN in the para position of the aromatic ring, given that these
groups exert a negative mesomeric effect and make the ketone more electrophilic. With
high-resolution mass spectrometry (HRMS), it was possible to detect the molecular ion in all
compounds of the series 3a-j (see Supplementary Material, Figures S1–S250, Tables S1–S6).
In the IR spectra, the C=N signal for 3a-j was observed between 1640 and 1690 cm−1.

2.3. 1,3-Arylphenyl-1H-Pyrazole-4-Carbaldehydes 4a-j

The preparation of the 1,3-diphenyl-1H-pyrazole-4-carbaldehyde 4 system was achieved
through the reaction of (E)-1-phenyl-2-(1-phenylethylidene)hydrazones 3 with an excess of
POCl3 (3.0 equiv) and DMF. This process involves an attack by the tautomeric hydrazone 7
on the chloroiminium ion 8 to give intermediate 9, which undergoes a 5-exo-trig cyclization
to afford 11. The subsequent aromatization of 11 allows for the formation of the pyrazole 14,
which reacts at C-4 with a second chloroiminium ion to provide 17. With an aqueous workup,
17 is hydrolyzed to deliver the 1,3-diphenyl-1H-pyrazole-4-carbaldehydes 4a-j (see Scheme S1
in Supplementary Material).

As expected, the highest yields (72–76%) were obtained with electron-withdrawing
substituents at the para position (e.g., F, Cl, Br, I, and NO2; Table 2). Since these substituents
increase the acidity of the alpha hydrogens, they favor tautomerization to furnish 7. The
subsequent reaction between 7 and 8 results in 4. On the other hand, the electron-donating
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substituents (e.g., Me, Et, and OMe) decrease the acidity of the alpha hydrogens, thus
generating lower yields (55–68%).

Table 1. Reaction conditions and yields for the synthesis of (E)-1-phenyl-2-(1-phenylethylidene)-
hydrazones 3a-j a.
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Table 2. Reaction conditions and yields for the synthesis of 1,3-diphenyl-1H-pyrazole-4-
carbaldehydes 4a-j a.
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Entry Hydrazone R T (◦C) t (h) 4a-j (%) b

1 3a H 25–95 12 60
2 3b F 25–95 12 72
3 3c Cl 25–95 12 77
4 3d Br 25–95 12 74
5 3e I 25–95 12 73
6 3f CN 25–95 12 60
7 3g NO2 25–95 12 76
8 3h Me 25–95 12 67
9 3i Et 25–95 12 55

10 3j OMe 25–95 12 68
a All reactions were performed with 1.0 equiv mol of 3 and 3.0 equiv mol of POCl3 in 7 mL in DMF at 95 ◦C.
b Isolated yield after column chromatography.

Compounds 4a-j were fully characterized. In the 1H NMR spectra, the singlet signal
of the formyl group was observed from 10.03 to 10.09 ppm. The 13C assignment was
made using heteronuclear single quantum coherence (HSQC) spectroscopy and heteronu-
clear multiple-bond correlation (HMBC) spectroscopy. Key correlations were found in all
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compounds, including a triple bond interaction of C3
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the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 
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(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 
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White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
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pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 
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White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
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Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-
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therapy against multi-drug-resistant species of the Candida genus. 

. 

with H1 and H5

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 3 
 

 

posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 
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White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
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2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 
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MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-
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compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
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Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
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(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 
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tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 
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White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 
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(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 
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. 

. The IR spectroscopy revealed the formyl group signal at 1668-1682 cm−1 for
all compounds of the series 4a-j. By means of HRMS, molecular ions were identified for
all compounds.

2.4. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazoles 6a-j

In view of the biological importance of dihydrooxazoles, a synthetic route to access
5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-tosyl-4,5-dihydrooxazoles 6a-j was explored. Com-
pounds 6a-j are herein reported for the first time. The synthesis took place through a
(3 + 2) cycloaddition of 1,3-diphenyl-1H-pyrazole-4-carbaldehydes 4a-j with the anion of
para-toluenesulfonylmethylisocyanide 5, promoted by a base. Cycloaddition reactions rep-
resent a powerful tool that can be used for the construction of new and complex molecules
by reacting a dipole with a dipolarophile. In this case, the 1,3-dipolar cycloaddition involved
the para-toluenesulfonylmethylisocyanide TosMIC 5 as the dipole and 1,3-diphenyl-1H-
pyrazole-4-carbaldehydes 4a-j as dipolarophiles. The reactivity and selectivity of each
carbaldehyde were examined within the context of the overall efficiency of the process.

Initially, molar equivalents of the aldehydes 4a-j were reacted with TosMIC 5 and
K2CO3, finding quite low yields and the formation of byproducts. Therefore, the proportion
of the reactants was modified to 1.0 equiv mol of 4, 1.8 equiv mol of TosMIC 5, and an excess
of the base (2.5 equiv mol of K2CO3). The reaction was carried out at room temperature (rt)
for 3 h to furnish the series of compounds 6a-j. Nevertheless, the yields were still low. Other
bases were tested as well (e.g., morpholine, DBU, and K2HPO4), but good yields were not
achieved. Consequently, it was decided to conduct different tests involving a protic solvent
(MeOH) and the modification of the equivalents of the base. It was found that higher yields
were obtained in the same reaction time by reacting 4g with a slight excess of TosMIC 5
(1.2 equiv mol) and 1.2 equiv mol of KOH. Once the reaction conditions were optimized, a
variety of formyl pyrazoles (some with electron-donating groups and others with electron-
withdrawing groups) were employed to determine the scope of the methodology, resulting
in ten new derivatives of the 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-tosyl-4,5-dihydrooxazole
system 6a-j (Table 3).

Compounds 6a-j were fully characterized. Although there was no evidence of a
formyl signal in the 1H NMR spectra, the signals of the methyl group and tosyl group were
identified at 2.40 to 2.47 ppm. The characteristic signals of the H4 and H5 protons of the
dihydrooxazole ring were found between 5.79 and 6.07 ppm. Based on NOESY experiments
performed on 6d, 6g, and 6h, the general tendency for the H4 and H5 protons to adopt
a trans configuration could be observed (see Figures S167 and S200 in Supplementary
Material). Furthermore, the H2 signal of the oxazole ring was observed in all cases from
7.41 to 7.72 ppm. The 13C NMR spectra displayed signals of the methyl group from
21.2 to 21.4 ppm and of C4, C5 from 71.7 to 90.8 ppm. The other aromatic carbons were
also observed. In the HMBC experiment, the triple bond interaction of C2 with the H4 and
H5 protons of the dihydrooxazole ring can be appreciated.

A plausible mechanism for the formation of 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-tosyl-
4,5-dihydrooxazole 6a is based on the initial deprotonation of para-toluenesulfonylmethylis-
ocyanide 5 promoted by KOH to provide carbanion 18, which reacts with the formyl group
of 4a via a (3 + 2) cycloaddition to generate intermediate 19a. Finally, the latter is protonated
with the protic solvent in a subsequent stage to deliver dihydrooxazoles 6a (see Scheme S2
in Supplementary Material).
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Table 3. Reaction conditions and yields for the synthesis of (4S*, 5S*)-5-(1,3-diphenyl-1H-pyrazol-4-
yl)-4-tosyl-4,5-dihydrooxazoles 6a-j a.
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2.5 equiv mol of K2CO3 in THF at rt for 3 h. b Reactions of entries 11-20 were performed with 1.0 
equiv mol of 4, 1.2 equiv mol of TosMIC 5, and 1.2 equiv mol of KOH in MeOH at rt for 3 h. c Isolated 
yield after column chromatography. 
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formyl signal in the 1H NMR spectra, the signals of the methyl group and tosyl group were 
identified at 2.40 to 2.47 ppm. The characteristic signals of the H4 and H5 protons of the 
dihydrooxazole ring were found between 5.79 and 6.07 ppm. Based on NOESY 

Entry a,b 4a-j R 6a-j (%) c

1 4a H 46
2 4b F 54
3 4c Cl 25
4 4d Br 27
5 4e I 25
6 4f CN 12
7 4g NO2 66
8 4h Me 48
9 4i Et 55
10 4j OMe 68
11 4a H 81
12 4b F 86
13 4c Cl 85
14 4d Br 80
15 4e I 38
16 4f CN 69
17 4g NO2 63
18 4h Me 71
19 4i Et 66
20 4j OMe 62

a Reactions of entries 1–10 were performed with 1.0 equiv mol of 4, 1.8 equiv mol of TosMIC 5, and 2.5 equiv mol
of K2CO3 in THF at rt for 3 h. b Reactions of entries 11-20 were performed with 1.0 equiv mol of 4, 1.2 equiv mol
of TosMIC 5, and 1.2 equiv mol of KOH in MeOH at rt for 3 h. c Isolated yield after column chromatography.

2.5. Physicochemical, Drug-Likeness, Pharmacokinetic, and Toxicological Properties of
1,3-Diphenyl-1H-Pyrazole-4-Carbaldehydes 4a-j, (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j, and Fluconazole 20

With the Osiris DataWarrior version 6.1.0 (Allschwil, Switzerland) [39] program and
the SwissADME (Laussane, Switzerland) [40] server, several pharmacological proper-
ties were determined for 1,3-diphenyl-1H-pyrazole-4-carbaldehydes 4a-j, (4S*, 5S*)-5-(1,3-
diphenyl-1H-pyrazol-4-yl)-4-tosyl-4,5-dihydrooxazoles 6a-j, and fluconazole 20, with the
aim of evaluating their efficacy and behavior in the human body (Tables 4 and 5). The
first descriptor to be examined was lipophilicity (the octanol/water partition coefficient,
Log P) [41]. This parameter provides evidence of many aspects of the performance of a drug,
including solubility, membrane permeability, absorption in the gut, distribution through
the bloodstream by binding to plasma proteins, the crossing of the blood–brain barrier
(BBB), entry into organs, metabolism, and clearance from the body (ADME properties). The
partition coefficient (P = [organic]/[aqueous]) is defined as the ability of a compound to
differentially dissolve in a mixture of water and lipids/organic solvents [42]. Permeability
is high with Log P values close to 5 and low with negative values. The Log P values of
4a-j and 6a-j are acceptable; all values are under 5.0 and none of them are negative. On
the other hand, fluconazole 20 has a negative log P value (−0.1089). The highest values
(3.23 and 4.06) correspond to 4i and 6i (R = Et). Compounds 4f and 6f, containing the polar
substituent (R = NO2), had Log P values of 1.59 and 2.41, respectively.
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Table 4. Pharmacokinetics and physicochemical properties of 1,3-diphenyl-1H-pyrazole-4-carbaldehydes
4a-j and fluconazole 20.
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Aqueous solubility constitutes a key property of chemical substances because it gov-
erns important phenomena in drug design, agrochemical design, and protein–ligand bind-
ing. It is quantified as the maximum amount of a compound (i.e., the solute) that can be
dissolved in each volume of water. It depends on physical conditions such as temperature
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and pressure. According to the calculated values, all the 5-(1,3-diphenyl-1H-pyrazol-4-yl)-
4-tosyl-4,5-dihydrooxazoles 6a-j and 1,3-diphenyl-1H-pyrazole-4-carbaldehydes 4c-f are
moderately soluble in water (−6 > Log S > −4), while a few of them (4a, 4b, and 4g-j) have
only a slight tendency to solubilize (−4 > Log S > −2) [43].

Another effective descriptor for predicting the drug solubility and transport properties
of a molecule is the polar surface area (PSA), which has been widely used in the study of
drug transport properties such as intestinal absorption [44] and penetration of the BBB [45].
It is the sum of the contributions to the molecular surface area (usually van der Waals
forces) of polar atoms (e.g., oxygen and nitrogen) and slightly polar atoms (S and P), and the
hydrogen atoms attached to them. PSA values of 34.89 to 127.75 Å2 were found in 4a-j and
5a-j, suggesting acceptable permeability. Compounds 4g and 6g, with nitro substituents
and thus a greater number of electronegative atoms, showed the highest PSA values
(80.71 and 127.75 Å2), and consequently the lowest permeability of cell membranes [46].

Ligand efficiency (LE) is the binding energy per hydrogen atom and is interpreted as
a measurement of the goodness of interaction between a given compound and its target
protein. It is calculated by dividing the free binding energy of each molecule by the number
of heavy non-hydrogen atoms in the structure (LE = ∆Ginteraction/[number of heavy non-
hydrogen atoms]) [47]. Therefore, it takes the affinity and size of the ligand molecule into
account, but not the size and topological properties of the molecular target [48].

High gastrointestinal absorption was evidenced for the entire series of compounds
4a-j along with 6a-f and 6h-j, which coincides with the values obtained for the polar surface
area (in all cases being < 140 Å2). Only 6g seems to have limited gastrointestinal absorption,
which is caused by the polarity of the nitro group.

According to the results, 4a-j can cross the BBB (except for 4g due to the electroneg-
ativity of the nitro group), but compounds 6a-j could not cross the BBB because of their
sulfone group. Likewise, fluconazole 20 does not pass through this barrier.

A comparative study of the possible risk of toxicity of compounds 4a-j and 6a-j was
made through computational tools (DataWarrior) (Tables 6 and 7), finding no evidence of
tumorigenicity, mutagenicity, irritation, or reproductive effects. The results demonstrate a
wide margin of safety between the effective dose and the dose that could cause any serious
risk to human health.

2.6. Homology Modeling of Lanosterol 14-Alpha Demethylase (CYP51) from C. auris, C.
dubliniensis, C. glabrata, C. haemulonii, and C. krusei

Once the azoles 4a-j and 6a-j were obtained, an evaluation was made of the recognition
of and affinity for the active site of the CYP51 enzyme of different Candida species: C. auris,
C. dubliniensis, C. glabrata, C. haemulonii, and C. krusei. The homology modeling of the CYP51
proteins of the aforementioned species was carried out, using the 3D structure of CYP51
C. albicans (PDB code 5FSA) as the template [14]. The identity of the protein of each Candida
strain with the CYP51 C. albicans was greater than 50%. According to the Ramachan-
dran plot [49] for all the CYP51 proteins, including CYP51Cau (from C. auris), CYP51Cdu
(from C. dubliniensis), CYP51Cha (from C. haemulonii), and CYP51Ckr (from C. krusei)
(Figures S242–S246, Supplementary Materials), over 90% of the amino acid residues fall
within the allowed regions with respect to the amino acids of the CYP51 enzyme of
C. albicans; the close structural similarity between the 3D structures was noted. Figure 1
illustrates the models obtained from these five CYP51 enzymes (above), as well as the
overlap of each of the modeled CYP51 enzymes with the CYP51 of C. albicans (below). The
RMSD values were also determined to evaluate the structural alignment of the 3D models
of the CYP51 enzymes of the Candida spp. that were tested. In all cases, the values were
less than 1.2 Å, thus evidencing the high quality of the 3D models obtained. The results are
summarized in Table S4 (see Supplementary Material).
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Table 6. Estimated risk of toxicity for 1,3-diphenyl-1H-pyrazole-4-carbaldehydes 4a-j and the refer-
ence drug, fluconazole 20 (inhibitors of CYP51).
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lap of each of the modeled CYP51 enzymes with the CYP51 of C. albicans (below). The 
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Figure 1. Above: 3D representation of the CYP51 enzymes of C. albicans (blue), C. glabrata (green),
C. auris (yellow), C. dubliniensis (red), C. haemulonii (purple), and C. Krusei (brown). Below: the
overlap of each of the modeled CYP51 enzymes with the CYP51 of C. albicans.

2.7. Molecular Docking

To determine whether the compounds have affinity with the active site of the lanos-
terol 14-alpha demethylase enzyme of the different Candida species, an exhaustive dock-
ing analysis was carried out for all the compounds (4a-j, 6a-j, and fluconazole 20) at
the active site of the CYP51 enzyme of C. albicans, C. glabrata, C. auris, C. dubliniensis,
C. haemulonii, and C. krusei (Table 8). A higher affinity with the active site of C. albicans
was displayed by pyrazoles 4a-j versus 20, which was evidenced by better interaction
free energy values (−8.92 to −9.81 kcal/mol vs. −7.29 kcal/mol). This same trend was
observed for compounds 4a-j on the other CYP51 proteins (of C. auris, C. dubliniensis,
C. glabrata, C. haemulonii, and C. krusei). Hence, these pyrazole derivatives form enzyme–
ligand complexes with greater stability than the enzyme–fluconazole complex.

The affinity for the CYP51Ca enzyme (from C. albicans) was even greater for (4S*,
5S*)-5-(1,3-pheny-1H-pyrazol-4-yl)-4-tosyl-4,5-dihydrooxazoles 6a-j than for compounds
4a-j (−12.44 to −14.23 kcal/mol vs. −8.92 to −9.81 kcal/mol, respectively; Table 8). The
difference in affinity is due to the hydrophilic and hydrophobic intermolecular interactions
presented by both the dihydrooxazole ring and the tosyl group of 6a-j, causing a strong
affinity with the CYP51 active site of the distinct Candida species. Such interactions with
the amino acid residues of CYP51 are not found with the 4-formylpyrazoles 4a-j, which
only interact through the formyl group.
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Table 8. Binding energy of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j, (4S*, 5S*)-5-(1,3-diaryl-1H-
pyrazol-4-yl)-4-tosyl-4,5-dihydrooxazoles 6a-j, and fluconazole 20 at the active site of lanosterol
14-alpha demethylase CYP51 from C. albicans.

Compound Binding Energy ∆G (kcal/mol)

R C. albicans C. auris C. dubliniensis C. glabrata C. haemulonii C. krusei

Fluconazole - −7.29 −7.48 −7.27 −7.5 −7.41 −6.93
4a H −8.94 −9.32 −9.15 −9.34 −9.22 −8.80
4b F −8.92 −9.34 −9.07 −9.21 −9.18 −8.87
4c Cl −9.55 −9.6 −9.45 −9.67 −9.63 −9.48
4d Br −9.81 −9.69 −9.31 −9.76 −9.56 −9.61
4e I −9.77 −9.99 −9.66 −9.81 −9.42 −9.34
4f CN −9.64 −9.91 −9.24 −9.98 −9.55 −9.77
4g NO2 −9.27 −9.28 −9.18 −9.22 −9.16 −9.23
4h Me −9.40 −9.47 −9.44 −9.65 −9.61 −9.28
4i Et −9.76 −9.97 −9.97 −10.09 −9.74 −9.47
4j OMe −9.41 −9.75 −9.25 −9.65 −9.40 −9.09
6a H −13.28 −13.50 −13.19 −13.21 −13.06 −13.13
6b F −13.04 −13.47 −13.02 −13.10 −12.08 −12.67
6c Cl −13.10 −13.75 −13.20 −13.21 −13.06 −12.76
6d Br −14.23 −13.63 −12.97 −13.27 −13.24 −12.80
6e I −12.99 −13.63 −12.42 −13.33 −13.33 −12.49
6f CN −13.56 −13.83 −13.62 −13.31 −13.46 −13.05
6g NO2 −12.44 −13.99 −12.98 −12.79 −12.53 −12.56
6h Me −13.21 −13.81 −13.15 −13.29 −12.98 −12.73
6i Et −13.10 −14.04 −13.42 −13.32 −13.46 −12.89
6j OMe −13.02 −9.75 −13.33 −13.19 −13.05 −12.31

In a complementary manner, we carried out the molecular docking analysis using
the GOLD v.5.6.3 program. As a scoring function, we use ChemScore fitness DG, which
represents the total free energy change that occurs on ligand binding. The docking results
are summarized in Table S3. As we can see, a similar trend is observed with respect to
the results obtained by Autodock4; in all cases compounds 6a-j and 4a-j showed better
binding energies when compared with the reference drug fluconazole 20. It is important to
note that in general, compounds 6a-j showed even greater affinity to the active site of the
CYP51 of Candida spp. with respect to derivatives 4a-j. This is due to a greater number of
interactions with the amino acids of the active site of the enzyme. These results confirm
that the compounds obtained, 6a-j and 4a-j, act at the same level as fluconazole.

Table 9 shows the residues involved in the ligand–receptor interaction as well as the
different hydrophobic and hydrophilic interactions found for 1,3-diaryl-1H-pyrazole-4-
carbaldehydes 4a-j, (4S*, 5S*)-5-(1,3-diaryl-1H-pyrazol-4-yl)-4-tosyl-4,5-dihydrooxazoles
6a-j, and fluconazole 20. The two series of test compounds and the reference drug all
interact with key amino acids of the active site of the CYP51Ca enzyme, such as Thr122,
Phe126, Ile131, Tyr132, Phe228, Gly307, and Thr311. All of them also interact with the
prosthetic group Hem580, which is known to be essential for the catalytic activity of the
enzyme, as previously reported for azole derivatives [14,50,51].

Table 9. Interactions of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j, (4S*, 5S*)-5-(1,3-diaryl-1H-
pyrazol-4-yl)-4-tosyl-4,5-dihydrooxazoles 6a-j, and fluconazole 20 at the active site of the lanosterol
14-alpha demethylase CYP51 enzyme from C. albicans.

Compound Interacting Residues
Interactions

Polar Hydrophobic

Fluconazole

Tyr118, Leu121, Thr122, Phe126,
Ile131, Tyr132, Phe228, Phe233,

Gly303, Ile304,
Gly307, Thr311, Leu376, Hem580.

O-H. . . . . .O (Tyr132)
C-H. . . . . .O (Gly307)
N. . . . . .H-C (Gly307)

π–π stacked (Tyr118)
π–alkyl (Ile131)

π–π T-shaped (Tyr132)
π–alkyl (Ile304)

π–cation (Hem580)
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Table 9. Cont.

Compound Interacting Residues
Interactions

Polar Hydrophobic

4a
Thr122, Phe126, Ile131, Tyr132,
Leu139, Lys143, Leu300, Ile304,

Gly307, Thr311, Leu376, Hem580.

π–alkyl (Ile131)
π–sigma (Ile131)
π–alkyl (Ile304)

π–alkyl (Hem580)
π–cation (Hem580)
π–sigma (Hem580)

4b

Thr122, Phe126, Ile131, Tyr132,
Leu139, Gln142, Lys143, Phe228,
Leu300, Ile304, Gly307, Thr311,

Leu376, Hem580.

π-sigma (Ile131)
π–alkyl (Ile304)

π–cation (Hem580)
halogen (Hem580)
π–sigma (Hem580)

4c

Thr122, Phe126, Ile131, Tyr132,
Leu139, Gln142, Lys143, Phe228,
Leu300, Ile304, Gly307, Thr311,

Leu376, Hem580.

π–sigma (Ile131)
π–alkyl (Ile304)
π–alkyl (Leu376)
halogen (Leu376)

halogen (Hem580)
π–sigma (Hem580)

π–π stacked
(Hem580)

4d
Phe126, Ile131, Leu139, Gln142,
Lys143, Leu300, Gly303, Ile304,

Gly307, Thr311, Leu376, Hem580.

halogen (Ile131)
π–sigma (Ile131)
halogen (Leu139)
halogen (Lys143)
halogen (Leu300)
π–alkyl (Ile304)
π–alkyl (Ile376)

π–cation (Hem580)
π–sigma (Hem580)

4e

Thr122, Phe126, Ile131, Tyr132,
Leu139, Gln142, Lys143, Leu300,
Ile304, Gly307, Thr311, Leu376,

Hem580.

halogen (Ile131)
π–sigma (Ile131)
halogen (Leu139)
halogen (Leu300)
π–alkyl (Ile376)

π–cation (Hem580)
π–sigma (Hem580)

4f

Tyr118, Thr122, Phe126, Ile131,
Tyr132, Leu139, Lys143, Leu300,
Ile304, Gly307, Thr311, Pro375,

Leu376, Hem580.

π–sigma (Ile131)
π–alkyl (Ile304)
π–alkyl (Ile376)

π–cation (Hem580)
π–sigma (Hem580)

4g

Thr122, Phe126, Ile131, Tyr132,
Leu139, Gln142, Lys143, Ala146,
Leu300, Ile304, Gly307, Thr311,

Leu376, Hem580.

π–sigma (Ile131)
π–alkyl (Ile304)
π–alkyl (Ile376)

π–cation (Hem580)
π–sigma (Hem580)

4h
Tyr118, Thr122, Phe126, Ile131,

Tyr132, Leu139, Lys143, Leu300,
Ile304, Thr311, Leu376, Hem580.

π–sigma (Ile131)
π–alkyl (Ile304)
π–alkyl (Ile376)

alkyl (Ile376)
π–cation (Hem580)
π–sigma (Hem580)
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Table 9. Cont.

Compound Interacting Residues
Interactions

Polar Hydrophobic

4i
Phe126, Ile131, Leu139, Gln142,
Lys143, Leu300, Gly303, Ile304,

Gly307, Thr311, Leu376, Hem580.

Π–sigma (Ile131)
alkyl (Lys143)
alkyl (Leu300)
π–alkyl (Ile304)
π–alkyl (Ile376)
alkyl (Hem508)

π–cation (Hem580)
π–sigma (Hem580)

4j

Thr122, Phe126, Ile131, Tyr132,
Leu139, Gln142, Lys143, Ala146,
Leu300, Ile304, Gly307, Thr311,

Leu376, Ile471, Hem580.

C-H. . . . . .O (Gln142)

π–sigma (Ile131)
π–alkyl (Ile304)
π–alkyl (Ile376)

π–cation (Hem580)
π–sigma (Hem580)

6a

Tyr118, Leu121, Thr122, Tyr132,
Phe228, Pro230, Phe233, Met306,
Gly307, Gly308, His310, Thr311,
Leu376, Ser378, Ile379, Phe380,

Met508, Val509, Hem580.

O. . . . . .H-O (Tyr118)
O. . . . . .H-O (Tyr132)

π–alkyl (Leu121)
π–π T-shaped (Phe228,

Phe233)
π–alkyl (Ile376)
π–sigma (Ile376)
π–alkyl (Met508)
π–sulfur (Met508)
π–alkyl (Val509)
π–alkyl (Hem580)

π–π stacked
(Hem580)

6b

Tyr118, Leu121, Thr122, Tyr132,
Phe228, Pro230, Phe233, Met306,
Gly307, His310, Thr311, Leu376,
His377, Ser378, Ile379, Phe380,

Met508, Val509, Hem580.

O. . . . . .H-O (Tyr118)
O. . . . . .H-O (Tyr132)
N. . . . . .H-N (Met508)

π–sulfur (Tyr132)
π–π T-shaped (Phe228,

Phe233)
halogen (Met306. Gly307,

Thr311)
π–alkyl (Ile376)

π–π T-shaped (His377)
π–alkyl (met508, Val509)

π–sulfur (Met508)
π–alkyl (Hem580)

π–π stacked
(Hem580)

6c

Tyr118, Leu121, Thr122, Phe126,
Ile131, Tyr132, Phe228, Pro230,

Phe233, Gly307, His310, Thr311,
Leu376, Ser378, Phe380, Ser507,

Met508, Val509, Hem580.

π–π T-shaped (Tyr118)
π–alkyl (Leu121)

halogen (Phe126, Ile131,
Tyr132)

alkyl (Ile131)
π–π T-shaped (Phe228,

Phe233)
π–alkyl (Pro230)
π–sigma (Leu376)

alkyl (Hem580)
π–cation (Met508)

6d

Ala114, Tyr118, Tyr132, Phe228,
Pro230, Phe233, Gly307, His310,
Thr311, Leu376, Ser378, Phe380,

Ser507, Met508, Val509, Hem580.

π–alkyl (Tyr118)
π–π T-shaped (Phe228)

π–alkyl (Pro230)
alkyl (Pro230)

π–sigma (Phe233)
π–alkyl (Ile376, His468)
π–alkyl (Met508, Val509)
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Table 9. Cont.

Compound Interacting Residues
Interactions

Polar Hydrophobic

6e

Tyr118, Leu121, Tyr132, Phe228,
Pro230, Phe233, Met306, Gly307,
His310, Thr311, Leu376, His377,

Ser378, Ile379, Phe380,
Arg381, Ser507, Met508, Val509,

Hem580.

N. . . . . .H-O (Tyr118)
C-H. . . . . .O (Ser378)

N. . . . . .H-N (Met508)

π–alkyl (Pro230)
halogen (Pro230. His377)

π–alkyl (Ile376)
π–π T-shaped (His377)
π–alkyl (met508, Val509)

π–π sigma
(Hem580)

π–π stacked
(Hem580)

6f

Tyr118, Leu121, Thr122, Phe126,
Ile131, Tyr132, Phe228, Pro230,

Phe233, Gly307, His310, Thr311,
Leu376, Ser378, Phe380, Ser507,

Met508, Val509, Hem580.

π–π T-shaped (Tyr118)
alkyl (Ile131)

π–π T-shaped (Phe228,
Phe233)

π–alkyl (Pro230)
π–sigma (Leu376)
π–sulfur (Met508)

alkyl (Hem580)
π–cation (Met508)

6g

Tyr118, Leu121, Thr122, Phe126,
Ile131, Tyr132, Phe228, Pro230,

Phe233, Met306, Gly307, His310,
Thr311, Leu376, Ser378, Phe380,

Met508, Val509, Hem580.

C-H. . . . . .O (Met508)

π–π T-shaped (Tyr118)
π–alkyl (Tyr118)
π–sigma (Thr122)
π–alkyl (Tyr132)
π–alkyl (Pro230)

π–π T-shaped (Phe233)
π–sigma (Leu376)
π–sulfur (Met508)

alkyl (Hem580)
π–cation (Met508)

6h

Tyr118, Leu121, Thr122, Phe126,
Ile131, Tyr132, Phe228, Pro230,

Phe233, Met306, Gly307, His310,
Thr311, Leu376, Ser378, Phe380,

Met508, Val509, Hem580.

C-H. . . . . .O (Met508)

π–π T-shaped (Tyr118)
π–alkyl (Leu121)
π–sigma (Thr122)
π–alkyl (Phe126)

alkyl (Ile131)
π–alkyl (Tyr132)

π–π T-shaped (Phe228,
Phe233)

π–alkyl (Pro230)
π–sigma (Leu376)
π–sulfur (Met508)

alkyl (Hem580)
π–cation (Met508)

6i

Tyr118, Leu121, Thr122, Phe126,
Ile131, Tyr132, Phe228, Pro230,

Phe233, Met306, Gly307, His310,
Thr311, Leu376, His377, Ser378,

Met508, Val509, Hem580.

C-H. . . . . .O (Met508)

π–π T-shaped (Tyr118)
π–alkyl (Tyr118)

π–alkyl (Leu121, Phe126)
alkyl (Ile131)

π–alkyl (Tyr132)
π–π T-shaped (Phe228,

Phe233)
π–alkyl (Pro230)
π–alkyl (Ile376)

π–sigma (Leu376)
π–sulfur (Met508)
π–alkyl (Hem580)
π–cation (Met508)
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Table 9. Cont.

Compound Interacting Residues
Interactions

Polar Hydrophobic

6j

Tyr118, Leu121, Thr122, Phe126,
Ile131, Tyr132, Phe228, Pro230,

Phe233, Gly307, His310, Thr311,
Leu376, Ser378, Phe380, Met508,

Val509, Hem580.

C-H. . . . . .O (Met508)

Π–π T-shaped (Tyr118)
alkyl (Ile131)

π–alkyl (Pro230)
π–π T-shaped (His377)

π–sulfur (Met508)
alkyl (Hem580)

π–cation (Met508)

A greater number of hydrophobic versus hydrophilic interactions are observed
(Figure 2A,B, S247 and S248). The most common interactions for 4a-j are as follows:
π-sigma with Ile131, π-alkyl with Ile304 and Ile376, π-cation with Hem580, and π-sigma
with Hem580. Compounds 6a-d and 6f-i exhibit a T-shaped π–π interaction with the
hydrophobic amino acids Phe228 and Phe233. For 6c-j, there is a π–alkyl-type interaction
with Pro230, while 6a-b, 6d-e, and 6i interact with Ile376 through a π–alkyl-type interaction.
Meanwhile, 6a-b and 6f-i show a π–sulfur-type interaction with Met508, and 6c, 6f, 6g-h,
and 6j display an alkyl-type interaction with Hem580.
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6f (turquoise), 6g (red), 6h (gray), 6i (fuchsia) and 6j (pink).



Int. J. Mol. Sci. 2024, 25, 5091 16 of 35

Regarding hydrophilic interactions, a conventional hydrogen bond was observed
between the hydroxyl group of fluconazole and the oxygen of the carbonyl group of Tyr132.
There were also carbon–hydrogen bond interactions with Gly307. Of the series of pyrazoles
4a-j, only compound 4j exhibited a carbon–hydrogen bond interaction between the methyl
of the OMe group and Gln142. 1,3-dihydrooxazoles 6a-b and 6e exhibited a conventional
hydrogen bond with the hydroxyl group in C-4 of Tyr118. This interaction could also be
appreciated between the oxygen of the sulfone group of 6a-b and the hydroxyl group of the
aromatic ring of Tyr132. A carbon–hydrogen bond type interaction is also present between
the C-H bond in C5 of the pyrazole ring of compounds 6g-j and the oxygen of the carbonyl
group of Met508.

Compounds 4a-j, 6a-j, and 20 also interact with key residues of the active site of
CYP51Cg (from C. glabrata) (Table S2, Figures S249 and S250 of Supplementary Material),
such as Thr78, Phe82, Tyr88, Phe184, Gly258, Gly262, and Hem478. Several hydrophobic
interactions were found. An amide–π-stacking-type interaction with Gly258 was observed
for 4a-j, 6a-e, and 6g-i. An π–alkyl-type interaction was evident for 4a-c, 4e-i, and 6a-i with
Val259 as well as for 4a-e, 4g-j, 6a-e, and 6g-j with Hem478. The latter prosthetic group also
interacts with the aromatic rings in 4a-j through a π–π stacking interaction.

As shown in Figure 2A,B, S247–S250, compounds 4a-j, 6a-j, and fluconazole 20 bind to
the active site of CYP51Ca and CYP51Cg, as described in other reports on azole derivatives.
All the compounds display the same binding mode. Hence, (4S*, 5S*)-5-(1,3-diaryl-1H-
pyrazol-4-yl)-4-tosyl-4,5-dihydrooxazoles 6a-j and 1,3-diaryl-1H-pyrazole-4-carbaldehydes
4a-j may act with the same mechanism of action as 20. To our knowledge, there are no
reports on the binding mode of the series of azoles 6a-j and 4a-j with the active site of any
of the CYP51 enzymes of Candida species.

2.8. Antifungal Activity
2.8.1. Antifungal Effect of the 1,3-Diaryl-1H-Pyrazole-4-Carbaldehydes 4a-j and (4S*,
5S*)-5-(1,3-Diaryl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazoles 6a-j on Candida spp.

The susceptibility of six Candida species to the 1,3-diaryl-1H-pyrazole-4-carbaldehydes
4a-j and (4S*, 5S*)-5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-tosyl-4,5-dihydrooxazoles 6a-j was
examined in vitro. The MIC70 and MIC90 values were lower for 4a-j and 6a-j than for
fluconazole 20 (Tables 10 and 11). It is well known that some pyrazole derivatives dis-
tinct from those proposed herein have antifungal activity against Candida species. For
example, the MIC values of pyrazole derivatives have previously been reported at values
similar to or a little higher than those determined in this study when tested on C. albicans,
C. glabrata, C. parapsilosis, C. krusei, C. tropicalis, and C. famata [52–56]. The importance of
the present pyrazoles is that they are new and are used as intermediates for the synthesis
of dihydrooxazoles.

Likewise, good antifungal activity against Candida spp. (C. albicans, C. tropicalis, and
C. krusei) has been described for other derivatives of dihydrooxazoles in three recent
works [26–28]. However, there are few reports dealing with the effect of dihydrooxazoles
on a wide spectrum of Candida spp., despite the importance of such a study given the
multi-drug resistance that has developed in many such species (including the relatively
new species of C. auris and C. haemulonii) [57].

Hence, the current contribution is quite relevant because 4a-j and 6a-j exhibited better
antifungal activity than 20 against a large number of Candida species. In this study, the best
inhibitory activity on the greatest number of the Candida spp. was found for the compounds
with halogenated substituents. The results demonstrate the merit of continuing to design
structures analogous to these series that could possibly improve therapeutic antifungal
activity on Candida species.
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Table 10. MIC70 and MIC90 values of the series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j
against Candida species.

Compound C. albicans C. auris C. dubliniensis C. glabrata C. haemulonii C. krusei

MIC70 MIC90 MIC70 MIC90 MIC70 MIC90 MIC70 MIC90 MIC70 MIC90 MIC70 MIC90

µg/mL µg/mL µg/mL µg/mL µg/mL µg/mL

Fluconazole 1.4 1.8 >44.8 >57.6 1.4 1.8 5.6 7.2 >44.8 >57.6 5.6 7.2

4a 0.39 0.50 10.80 14.0 0.34 0.45 0.39 0.52 5.76 7.36 0.17 0.22

4b 0.61 0.79 2.80 3.60 0.10 0.14 0.32 0.43 1.42 1.85 0.17 0.22

4c 0.25 0.29 0.64 0.83 0.09 0.14 0.20 0.26 2.76 3.57 0.08 0.11

4d 0.17 0.22 11.27 14.37 0.43 0.62 0.15 0.20 2.72 3.62 0.08 0.11

4e 0.17 0.22 5.45 6.9 0.24 0.35 0.24 0.32 2.75 3.62 0.08 0.11

4f 0.65 0.86 4.2 5.25 0.20 0.28 0.26 0.30 2.70 3.52 0.08 0.11

4g 0.29 0.37 2.81 3.63 0.21 0.31 0.23 0.30 5.60 7.20 0.17 0.22

4h 0.64 0.82 11.2 14.4 0.20 0.30 0.21 0.28 2.92 3.69 0.17 0.22

4i 0.17 0.22 3.4 4.37 0.99 1.27 0.69 0.88 3.62 4.65 0.11 0.14

4j 0.42 0.54 10.43 13.92 0.21 0.30 0.25 0.32 5.60 7.30 0.08 0.11

MIC70: the lowest concentration of the compound at which 70% of yeast growth was inhibited (compared to the
control well). MIC90: the lowest concentration of the compound at which 90% of yeast growth was inhibited
(compared to the control well).

Table 11. MIC70 and MIC90 values of the series of (4S*, 5S*)-5-(1,3-diaryl-1H-pyrazol-4-yl)-4-tosyl-4,5-
dihydrooxazoles 6a-j against Candida species.

Compound C. albicans C. auris C. dubliniensis C. glabrata C. haemulonii C. krusei

MIC70 MIC90 MIC70 MIC90 MIC70 MIC90 MIC70 MIC90 MIC70 MIC90 MIC70 MIC90

µg/mL µg/mL µg/mL µg/mL µg/mL µg/mL

Fluconazole 1.4 1.8 >44.8 >57.6 1.4 1.8 5.6 7.2 >44.8 >57.6 5.6 7.2

6a 0.25 0.32 2.04 2.62 0.13 0.16 0.25 0.32 16.45 21.15 0.32 0.41

6b 0.12 0.16 16.45 21.15 0.58 0.74 0.16 0.21 8.21 10.56 0.25 0.32

6c 0.12 0.16 16.45 21.15 0.34 0.43 0.16 0.21 4.10 5.27 0.50 0.64

6d 0.12 0.16 0.50 0.64 0.04 0.05 0.28 0.36 2.04 2.68 0.05 0.07

6e 0.12 0.16 4.10 5.27 0.42 0.54 0.14 0.18 16.45 21.15 0.54 0.70

6f 0.25 0.32 0.25 0.32 0.34 0.43 0.61 0.79 16.45 21.15 1.00 1.29

6g 0.25 0.32 0.50 0.64 0.34 0.43 0.056 0.072 16.45 21.15 0.23 0.30

6h 0.50 0.64 32.9 42.3 0.18 0.23 0.07 0.09 32.9 42.3 0.21 0.27

6i 0.25 0.32 32.9 42.3 0.58 0.74 0.22 0.28 16.45 21.15 0.23 0.30

6j 0.12 0.16 2.04 2.62 0.10 0.12 0.39 0.50 32.9 42.3 0.7 0.9

2.8.2. Rescue of the Growth of Candida spp. by Adding Ergosterol

To explore whether (4S*, 5S*)-5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-tosyl-4,5-dihydroo-
xazoles 6a-j and 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j, like fluconazole 20, inhibit the
biosynthesis of ergosterol, a growth rescue assay was carried out with six Candida species
(Figures 3 and 4). After yeast growth was inhibited by the test compounds, ergosterol was
added to the yeast culture, and an increase in the growth of each well was found (treated
with any of the compounds from the 4a-j or 6a-j series). Thus, 4a-j and 6a-j appear to
interfere with ergosterol synthesis at some level (probably by CYP51 inhibition) in the six
fungal species tested, as has been described in various studies on 20 and other inhibitors of
Candida spp. [28,58–61].
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growth of yeasts cultured in the presence of an inhibitor (+) and in the absence of ergosterol (−).
The cream-colored bars portray the growth of yeasts in the presence of an inhibitor (+) and with the
posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in the
absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 ◦C for 24 h and
the optical density was determined in a microplate photometer at 620 nm. Values are expressed as
the average of three independent assays. In all cases, p < 0.001 compared to the growth observed
without any inhibitor (Student’s t-test).
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Figure 4. (A–F) Growth rescue of the six Candida species evaluated herein, promoted by adding
ergosterol after yeast growth had been stopped by treatment with any of the (4S*, 5S*)-5-(1,3-diphenyl-
1H-pyrazol-4-yl)-4-tosyl-4,5-dihydrooxazoles 6a-j or fluconazole 20. The gray bars illustrate the
mean ± standard error (SE) of the growth of yeasts cultured in the presence of an inhibitor (+) and in
the absence of ergosterol (−). The cream-colored bars portray the growth of yeasts in the presence of
an inhibitor (+) and with the posterior addition of ergosterol (+). The black bars indicate the 100%
growth of yeasts cultured in the absence of both an inhibitor (−) and ergosterol (−). The yeasts
were cultured at 37 ◦C for 24 h and the optical density was determined in a microplate photometer
at 620 nm. Values are expressed as the average of three independent assays. In all cases, p < 0.001
compared to the growth observed without any inhibitor (Student’s t-test).

3. Materials and Methods
3.1. Chemicals and Instruments

All glassware was oven-dried. Chemicals and solvents were purchased from com-
mercial sources. Thin-layer chromatography (TLC) was performed with silica plates and
visualized by using a UV lamp at 254 nm or iodine. The synthesized compounds were
purified using flash column chromatography. Melting points were determined in an elec-
trothermal capillary melting point apparatus. 1H (500 or 600 MHz) and 13C (125 or 150 MHz)
NMR as well as HSQC, HMBC, and correlation spectroscopy (COSY) experiments were
conducted on a Varian VNMR System (Santa Clara, CA, USA) or Bruker Avance III HD
(Karlsruhe, Germany) with chloroform-d or dimethylsulfoxide (DMSO)-d6 and C6D6 as
a solvent and TMS as an internal standard. Most of the NMR assignments are based on
extensive 2D homonuclear and heteronuclear experiments. HRMS analyses were recorded
with electron ionization (70 eV) on a JEOL JSM-GC spectrometer (Akishima, Tokyo). IR
spectra were acquired on a Bruker Tensor 27 spectrophotometer (Karlsruhe, Germany) with
of the ATR technique.

3.2. General Procedure for the Synthesis of (E)-1-Phenyl-2-(1-Phenylethylidene)Hydrazones 3a-j

In a 50 mL balloon flask equipped with magnetic stirring, the corresponding ace-
tophenone 1 (16.66 mmol) and 8 mL of glacial acetic acid were combined and stirred at
rt for 10 min. Subsequently, phenylhydrazine 2 (16.66 mmol) was added and the stirring
continued for 20 min. The reaction was monitored with TLC by using a 7:3 hexane–AcOEt
system. After the reaction was completed, within a period between 10 to 40 min, the crude
was treated with a saturated solution of NaHCO3. Then, the reaction crude was filtered
under vacuum and washed with isopropanol/water (1:1 solution), followed by drying of
the title compound under vacuum.
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3.2.1. (E)-1-Phenyl-2-(1-Phenylethylidene)Hydrazone 3a

According to the general method, acetophenone 1a (0.5 g, 4.16 mmol) and 8 mL of glacial
acetic acid were combined and stirred, and then phenylhydrazine 2 (0.45 g, 4.16 mmol) was
added. After stirring again, the reaction crude was filtered, washed, and dried under vacuum
and 3.0 g (86%) was obtained as a light-yellow solid; m.p. = 87–88 ◦C (Lit. 104 ◦C [62]),
Rf = 0.7 (hexane/AcOEt, 7:3). FT-IR (ATR) νmax 3352, 3027, 1938, 1361, 1266, 1250, 749,
687 cm−1. HRMS (EI): m/z [M]+ calcd for C14H14N2: 210.1157; found: 210.1156.

3.2.2. (E)-1-(1-(4-Fluorophenyl)Ethylidene)-2-Phenylhydrazone 3b

Following the general method, 4-fluoroacetophenone 1b (0.574 g, 4.16 mmol) and 8 mL
of glacial acetic acid were combined and stirred, and then 2 (0.45 g, 4.16 mmol) was added.
After stirring again, the reaction crude was filtered, washed, and dried under vacuum, and
0.76 g (92%) of 3b was furnished as a clear white solid; m.p. 83–84 ◦C. FT-IR (ATR) νmax
3347, 3054, 1678, 1598, 1503, 1230, 1142, 832, 749, 690 cm−1. 1H NMR (600 MHz, C6D6):
δ = 1.39 (s, 3H), 6.85–6.89 (m, 4H), 7.15–7.16 (d, J = 6.0 Hz, 1H), 7.23–7.26 (m, 2H), 7.51–7.53
(m, 2H). 13C NMR (150 MHz, C6D6) δ 11.4, 114.0, 115.7 (J = 22.5 Hz), 120.9, 123.4, 127.8 (J =
10.5 Hz), 129.9, 136.2, 146.2, 163.4 (J = 244.5 Hz). HRMS (EI): m/z [M]+ calcd for C14H13N2F:
228.1063; found: 228.1066.

3.2.3. (E)-1-(1-(4-Chlorophenyl)Ethylidene)-2-Phenylhydrazone 3c

According to the general method, 4-chloroacetophenone 1c (0.64 g, 4.16 mmol) and
8 mL of glacial acetic acid were combined and stirred, and then 2 (0.45 g, 4.16 mmol) was
added. After stirring again, the reaction crude was filtered, washed, and dried under
vacuum, and 0.90 g (89%) of 3c was obtained as a light-yellow solid; m.p. 103–104 ◦C
(Lit. 114 ◦C [63]). FT-IR (ATR) νmax 3349, 3018, 1939, 1861, 1597, 1483, 1244, 1095, 810, 751,
695 cm−1. 1H NMR (600 MHz, C6D6): δ = 1.32 (s, 3H), 6.84-6.89 (m, 2H), 7.12 (d, J = 7.8 Hz,
2H), 7.15–7.18 (m, 2H), 7.22–7.26 (m, 2H), 7.43–7.46 (m, 2H). 13C NMR (150 MHz, C6D6):
δ = 11.1, 114.1, 121.1, 127.4, 128.9, 129.9, 134.1, 138.4, 139.9, 145.9. HRMS (EI): m/z [M]+ calcd
for C14H13N2Cl: 244.0767; found: 244.0756.

3.2.4. (E)-1-(1-(4-Bromophenyl)Ethylidene)-2-Phenylhydrazone 3d

Following the general method, 4-bromoacetophenone 1d (0.82, 4.16 mmol) and 8 mL
of glacial acetic acid were combined and stirred, and then 2 (0.45 g, 4.16 mmol) was added.
After stirring again, the reaction crude was filtered, washed, and dried under vacuum, and
1.13 g (93%) of 3d was obtained as a yellow solid; m.p. 116-117 ◦C (Lit. 126 ◦C [63]). FT-IR
(ATR) νmax 3339, 1592, 1573, 1494, 1479, 1395, 1247, 1151, 823, 750, 692 cm−1. 1H NMR
(600 MHz, C6D6): δ = 1.30 (s, 3H), 6.83 (bs, 1H), 6.89 (t, J = 7.3 Hz, 1H), 7.11–7.14 (m, 2H),
7.25 (t, J = 7.9 Hz, 2H), 7.33–7.36 (m, 2H), 7.38–7.40 (m, 2H). 13C NMR (150 MHz, C6D6):
δ = 11.1, 114.1, 121.1, 122.5, 127.7, 129.9, 131.9, 138.8, 139.8, 145.9. HRMS (EI): m/z [M]+ calcd
for C14H13N2Br: 288.0262; found: 288.0261.

3.2.5. (E)-1-(1-(4-Iodophenyl)Ethylidene)-2-Phenylhydrazone 3e

According to the general method, 4-iodoacetophenone 1e (1.02 g, 4.16 mmol) and 8 mL
of glacial acetic acid were combined and stirred, and then 2 (0.45 g, 4.16 mmol) was added.
After stirring again, the reaction crude was filtered, washed, and dried under vacuum, and
1.27 g (92%) of 3e was obtained as an orange solid; m.p. 111-112 ◦C. FT-IR (ATR) νmax
3342, 1596, 1494, 1478, 1391, 1248, 1147, 818, 750, 691 cm−1. 1H NMR (600 MHz, C6D6):
δ = 1.30 (s, 3H), 6.85–6.89 (m, 2H), 7.13–7.14 (m, 2H), 7.23–7.26 (m, 2H), 7.27–7.28 (m, 2H),
7.54–7.56 (m, 2H). 13C NMR (151 MHz, C6D6): δ = 10.9, 94.0, 114.1, 121.1, 127.8, 129.9, 137.6,
137.9, 139.4, 145.9. HRMS (EI): m/z [M]+ calcd for C14H13N2I: 336.0124; found: 336.0126.

3.2.6. (E)-4-(1-(2-Phenylhydrazono)Ethyl)Benzonitrile 3f

Following the general method, 4-acetylbenzonitrile 1f (0.82, 4.16 mmol) and 8 mL of
glacial acetic acid were combined and stirred, and then 2 (0.45 g, 4.16 mmol) was added.
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After stirring again, the reaction crude was filtered, washed, and dried under vacuum,
and 0.57 g (59%) of 3f was produced as a yellow solid; m.p. 160-161 ◦C. FT-IR (ATR) νmax
3332, 2218, 1599, 1568, 1490, 1252, 1154, 831, 746, 689 cm−1. 1H NMR (600 MHz, C6D6):
δ = 1.23 (s, 3H), 6.90 (t, J = 7.3 Hz, 1H), 6.96 (bs, 1H, NH), 7.11–7.16 (m, 4H), 7.24–7.26 (m, 2H),
7.36–7.38 (m, 2H). 13C NMR (151 MHz, C6D6): δ = 10.8, 111.6, 114.2, 119.6, 121.7, 126.1, 130.0,
132.4, 138.6, 143.4, 145.4. HRMS (EI): m/z [M]+ calcd for C15H13N3: 235.1109; found: 235.1108.

3.2.7. (E)-1-(1-(4-Nitrophenyl)Ethylidene)-2-Phenylhydrazone 3g

According to the general method, 4-nitroacetophenone 1g (0.6869 g, 4.16 mmol) and
8 mL of glacial acetic acid were combined and stirred, and then 2 (0.45 g, 4.16 mmol)
was added. After stirring again, the reaction crude was filtered, washed, and dried under
vacuum, and 0.90 g (85%) of 3g was obtained as a red solid; m.p. 137-138 ◦C (Lit. 183 ◦C [62]).
FT-IR (ATR) νmax 3337, 1590, 1543, 1518, 1487, 1316, 1244, 1165, 1105, 1063, 848, 746,
689 cm−1. NMR (600 MHz, CDCl3): δ = 2.27 (s, 3H, H2
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2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.61 (bs, 1H, NH), 7.93 (d, J = 8.0 Hz, 2H,
H2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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), 8.22 (d, J = 8.0 Hz, 2H, H3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

). 13C NMR (150 MHz, CDCl3): δ = 11.6 (C2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 113.6 (C2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 125.9 (C2

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 3 
 

 

posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

). HRMS (EI): m/z [M]+ calcd for C14H13N3O2: 255.1005; found: 255.1008.

3.2.8. (E)-1-Phenyl-2-(1-(p-Tolyl)Ethylidene)Hydrazone 3h

Following the general method, p-tolylacetophenone 1h (0.55, 4.16 mmol) and 8 mL of
glacial acetic acid were combined and stirred, and then 2 (0.45 g, 4.16 mmol) was added.
After stirring again, the reaction crude was filtered, washed, and dried under vacuum, and
0.90 g (97%) of 3h was generated as a white solid; m.p. 81-82 ◦C (Lit. 96 ◦C [63]). FT-IR
(ATR) νmax 3349, 1670, 1597,1499, 1480, 1250, 1141, 1110, 809, 748, 690 cm−1. 1H NMR
(600 MHz, C6D6): δ = 1.50 (s, 3H), 2.10 (s, 3H), 6.81–6.84 (m, 2H), 7.02 (d, J = 8.2 Hz, 2H),
7.15 (d, J = 7.4 Hz, 2H), 7.19–7.22 (m, 2H), 7.68 (d, J = 8.1 Hz, 2H). 13C NMR (150 MHz,
C6D6): δ = 11.5, 21.5, 114.1, 120.7, 126.2, 129.6, 129.9, 137.4, 138.0, 141.5, 146.4. HRMS (EI):
m/z [M]+ calcd for C15H16N2: 224.1314; found: 224.1313.

3.2.9. (E)-1-(1-(4-Ethylphenyl)Ethylidene)-2-Phenylhydrazone 3i

According to the general method, 4-ethylacetophenone 1i (0.61 g, 4.16 mmol) and
8 mL of glacial acetic were combined and stirred, and then 2 (0.45 g, 4.16 mmol) was
added. After stirring again, the reaction crude was filtered, washed, and dried under
vacuum, and 0.96 g (95%) of 3i was obtained as a yellow solid; m.p. 88–89 ◦C. FT-IR
(ATR) νmax 3348, 2960, 1598, 1496, 1251, 1139, 827, 749, 691 cm−1. 1H NMR (600 MHz,
C6D6): δ = 1.12 (t, J = 7.6 Hz, 3H), 1.51 (s, 3H), 2.49 (q, J = 7.6 Hz, 2H), 6.87–6.90 (m, 2H),
7.12 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 7.26 (t, J = 8.0 Hz, 2H), 7.75–7.78 (m, 2H).
13C NMR (150 MHz, C6D6): δ = 11.54, 16.18, 29.3, 114.1, 120.7, 126.4, 128.4, 129.9, 137.7,
141.6, 144.5, 146.4. HRMS (EI): m/z [M]+ calcd for C16H18N2: 238.1470; found: 238.1474.

3.2.10. (E)-1-(1-(4-Methoxyphenyl)Ethylidene)-2-Phenylhydrazone 3j

Following the general method, p-methoxyacetophenone 1j (0.62, 4.16 mmol) and 8 mL
of glacial acetic were combined and stirred, and then 2 (0.45 g, 4.16 mmol) was added. After
stirring again, the reaction crude was filtered, washed, and dried under vacuum, resulting
in 0.85 g (86%) of 3j as a white solid; m.p. 97–98 ◦C (Lit. 142 ◦C [63]). FT-IR (ATR) νmax
3336, 1598, 1498, 1251, 1140, 1115, 1029, 834, 751, 696 cm−1. 1H NMR (600 MHz, C6D6):
δ = 1.50 (s, 3H), 3.34 (s, 3H), 5.24 (bs, 1H), 6.85 (d, J = 8.9 Hz, 2H), 6.88 (t, J = 7.26 Hz,
1H), 7.22 (d, J = 7.26 Hz, 2H), 7.27 (f, J = 7.26 Hz, 2H), 7.74 (d, J = 8.9 Hz, 2H). 13C NMR
(151 MHz, C6D6): δ = 11.5, 55.19, 114.0, 114.4, 120.6, 127.6, 129.9, 132.8, 141.4, 146.6, 160.5.
HRMS (EI): m/z [M]+ calcd for C15H16N2O: 240.1263; found: 240.1262.
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3.3. General Procedure for the Synthesis of 1,3-Diphenyl-1H-Pyrazole-4-Carbaldehydes 4a-j

In a two-necked balloon flask adapted to a reflux system, equipped with magnetic
stirring and under N2 atmosphere, the corresponding hydrazone 3a-j (6.0 mmol, 1.0 eq)
was dissolved in 10.0 mL of anhydrous N,N
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. 

-dimethylformamide (DMF) and phosphorus
oxychloride (POCl3) (18.0 mmol, 3.0 eq) was slowly added. The mixture was heated at
95 ◦C for 12 h before allowing the reaction crude to cool to rt. Subsequently, 10 mL of
a solution of 5% NH4Cl was added and a saturated solution of NaHCO3 was poured
into the mixture until a pH of 7 was reached. Eventually, the reaction crude was vacuum
filtered and the solid was washed with water. Finally, the product was purified through
recrystallization with a mixture of isopropanol/acetone/water (7:2:1).

3.3.1. 1,3-Diphenyl-1H-Pyrazole-4-Carbaldehyde 4a

Yellow solid (87%). Rf = 0.48 (hexane/EtOAc, 7:3), m.p. 141–142 ◦C (Lit. 140 ◦C [64]).
FT-IR (ATR) νmax 3125, 3060.42, 1669, 1523, 1452, 1226, 1044, 956, 813, 771, 753, 686 cm−1.
NMR (600 MHz, CDCl3): δ = 7.39 (t, J = 7.0 Hz, 1H, H4
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the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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), 7.83 (d, J = 8.4 Hz, 2H, H2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 10.06
(s, 1H, CHO). NMR (150 MHz, CDCl3): δ 119.9 (C2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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), 122.6 (C4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 154.9 (C3

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 3 
 

 

posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 185.3
(CHO). HRMS (EI): m/z [M]+ calcd for C16H12N2O: 248.0950; found: 248.0951.

3.3.2. 3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4b

Light brown solid (82%). Rf = 0.44 (hexane/EtOAc, 7:3), m.p. 156–157 ◦C. FT-IR (ATR)
νmax 3125, 1668, 1594, 1519, 1505, 1454, 1223, 957, 840, 794, 751, 68 cm−1. NMR (600 MHz,
CDCl3): δ 7.17–7.20 (m, 2H, H3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.40 (t, J = 7.7 Hz, 1H, H4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.52 (t, J = 7.7 Hz, 2H, H3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

),
7.78 (d, J = 7.7 Hz, 2H, H2

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 3 
 

 

posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.83–7.89 (m, 2H, H2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 8.53 (s, 1H, H5
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 10.03 (s, 1H, CHO).
NMR (150 MHz, CDCl3): δ 115.7 (J = 25.0 Hz, C3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 138.9 (C1
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 164.4
(J = 237.5 Hz, C4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 184.6 (CHO). HRMS (EI): m/z [M]+ calcd for C16H11N2OF: 266.0855;
found: 266.0855.

3.3.3. 3-(4-Chlorophenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4c

Yellow solid (89%). Rf = 0.48 (hexane/EtOAc, 7:3), m.p. 138–140 ◦C. FT-IR (ATR) νmax
3124, 1668, 1519, 1505, 1225, 1092, 1012, 957, 836, 813, 751, 727, 684 cm−1. NMR (600 MHz,
CDCl3): δ 7.40 (t, J = 7.7 Hz, 1H, H-4

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 3 
 

 

posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.47 (d, J = 8.7 Hz, 2H, H-3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.52 (t, J = 7.7 Hz, 2H.
H-3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.78 (d, J = 7.7 Hz, 2H, H-2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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), 7.83 (d, J = 8.7 Hz, 2H, H-2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 8.53 (s, 1H, H-5), 10.03
(s, 1H, CHO). NMR (150 MHz, CDCl3): δ 119.7 (C2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 122.5 (C4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 128.1 (C4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 128.9 (C3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 138.9 (C1

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 3 
 

 

posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 153.2 (C3

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 3 
 

 

posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 184.4
(CHO). HRMS (EI): m/z [M]+ calcd for C16H11N2OCl: 282.0560; found: 282.0560.

3.3.4. 3-(4-Bromophenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4d

Yellow solid (74%). Rf = 0.44 (hexane/EtOAc, 7:3), m.p. 140–141 ◦C. FT-IR (ATR)
νmax 3126, 1672, 1522, 1503, 1225, 1074, 1008, 813, 758, 684 cm−1. NMR (600 MHz, CDCl3):
δ 7.40 (t, J = 7.8 Hz, 1H, H4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.51 (t, J = 7.8 Hz, 2H, H3

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 3 
 

 

posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.62 (d, J = 8.4 Hz, 2H, H3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

),
7.74–7.80 (m, 4H, H2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

, H2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 8.52 (s, 1H, H5

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 3 
 

 

posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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), 10.03 (s, 1H, CHO). NMR (150 MHz, CDCl3):
δ 119.9 (C2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 184.5 (CHO). HRMS (EI): m/z [M]+ calcd
for C16H11N2OBr: 326.0055; found: 326.0050.

3.3.5. 3-(4-Iodophenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4e

Light brown solid (73%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 161–162 ◦C. FT-IR (ATR)
νmax 3114, 1669, 1597, 1519, 1216, 1056, 1003, 975, 812, 757, 684 cm−1. NMR (600 MHz,
CDCl3): δ 7.41 (t, J = 8.1 Hz, 1H, H4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.78 (d, J = 8.1 Hz, 2H, H2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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), 7.84 (d, J = 8.4 Hz, 2H, H3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 8.53 (s, 1H, H5
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 10.04
(s, 1H, CHO). NMR (150 MHz, CDCl3): δ 95.5 (C4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 119.8 (C2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 122.5 (C4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 132.0 (C5

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 3 
 

 

posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 153.3 (C3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 184.4
(CHO). HRMS (EI): m/z [M]+ calcd for C16H11N2OI: 373.9916; found: 373.9907.

3.3.6. 4-(4-Formyl-1-Phenyl-1H-Pyrazol-3-yl)Benzonitrile 4f

Light brown solid (80%). Rf = 0.66 (hexane/EtOAc, 1:1), m.p. 157–159 ◦C. FT-IR
(ATR) νmax 3125, 2831, 2224, 1683, 1519, 1505, 1455, 1399, 1210, 1055, 841, 752, 684 cm−1.
NMR (600 MHz, CDCl3): δ 7.43 (t, J = 7.7 Hz, 1H, H4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.54 (t, J = 7.7 Hz, 2H, H3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.76
(d, J = 8.5 Hz, 2H, H3

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 3 
 

 

posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.78 (d, J = 7.7 Hz, 2H, H2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 8.08 (d, J = 8.5 Hz, 2H, H2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 8.56 (s,
1H, H5
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 183.6 (CHO). HRMS (EI): m/z [M]+ calcd for C17H11N3O: 273.0902;
found: 273.0904.

3.3.7. 3-(4-Nitrophenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4g

Light brown solid (90%). Rf = 0.34 (hexane/EtOAc, 7:3), m.p. 163–165 ◦C (Lit.
163–164 ◦C [64]). FT-IR (ATR) νmax 3127, 1677, 1597, 1525, 1506, 1339, 1206, 1070, 854,
757, 709, 685 cm−1. NMR (600 MHz, CDCl3): δ 7.44 (t, J = 7.6 Hz, 1H, H4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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), 7.55 (t,
J = 7.6 Hz, 2H, H3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.81 (d, J = 7.6 Hz, 2H, H2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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), 8.35 (d,
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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), 8.58 (s, 1H, H5
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 10.09 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ
119.7 (C2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 122.9 (C4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 148.1 (C4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 151.3 (C3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 183.6 (CHO). HRMS (EI): m/z [M]+ calcd for
C16H11N3O3: 293.0800; found: 293.0798.

3.3.8. 1-Phenyl-3-(p-Tolyl)-1H-Pyrazole-4-Carbaldehyde 4h

Light brown solid (67%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 115–117 ◦C. FT-IR (ATR)
νmax 3122, 2834, 2782, 1737, 1668, 1599, 1517, 1218 cm−1. NMR (500 MHz, CDCl3): δ 2.44 (s,
3H, Me), 7.32 (d, J = 7.2 Hz, 2H, H3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.39 (t, J = 7.5 Hz, 1H, H4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.51 (t, J = 7.5 Hz, 2H,
H3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.72 (d, J = 7.2 Hz, 2H, H2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.80 (d, J = 7.5 Hz, 2H, H2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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), 8.54 (s, 1H, H5
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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), 10.05 (s,
1H, CHO). NMR (125 MHz, CDCl3): δ 21.3 (Me), 119.8 (C2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 122.5 (C4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

),
185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109.

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i

Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 ◦C (Lit.
120–122 ◦C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1.
NMR (500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3),
7.34 (d, J = 8.5 Hz, 2H, H3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.38 (t, J = 7.4 Hz, 1H, H4

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 3 
 

 

posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.51 (tm, J = 7.7 Hz, 2H, H3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

),
7.74 (dm, J = 8.5 Hz, 2H, H2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.79 (dm, J = 7.7 Hz, 2H, H2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 8.54 (s, 1H, H5
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 10.06 (s,
1H, CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 130.8 (C5
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 139.0 (C1
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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145.6 (C4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263;
found: 276.1261.

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j

Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 ◦C (Lit.
100–102 ◦C [64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956,
838, 784, 752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H,
H3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.39 (t, J = 7.5 Hz, 1H, H4

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 3 
 

 

posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.51 (t, J = 7.8 hz, 2H, H3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-
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fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 
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3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-
4,5-Dihydrooxazoles 6a-j

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was added
to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen atmosphere
at rt. The mixture was stirred at 25 ◦C for 3 h. The residue was filtered under vacuum
and washed with isopropanol-water (1:1). Finally, it was recrystallized with acetone/ethyl
acetate (1:1) to form the title compound 6.

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 ◦C. FT-IR (ATR) νmax
3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz,
DMSO-d6): δ 2.41 (s, 3H, H5
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145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 
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7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, H4),
7.37 (t, J = 7.5 Hz, 1H, H4
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tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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therapy against multi-drug-resistant species of the Candida genus. 

. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 7.63 (d, J = 1.7 Hz, 1H,
H2), 7.70–7.75 (m, 2H, H2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 7.88 (d, J = 8.0 Hz, 2H, H2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 71.7 (C5), 89.3 (C4), 117.3 (C4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
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(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
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(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 
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3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
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MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-
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the multi-drug resistance that has developed in many such species. The current findings 
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the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 
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ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 28 of 36 
 

 

(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 131.7 (C1
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 139.1 (C1
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 151.5 (C3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 159.4 (C2).
HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 443.1306.

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 ◦C. FT-IR (ATR) νmax
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6):
δ 2.41 (s, 3H, H5
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t,
J = 8.0 Hz, 1H, H4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.41 (tm, J = 8.0 Hz, 2H, H3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.47 (d, J = 8.0 Hz, 2H, H3
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 7.52 (t,
J = 8.0 Hz, 2H, H3
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the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 
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(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 7.86 (d,
J = 8.0 Hz, 2H, H2
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dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 71.8
(C5), 89.3 (C4), 116.1 (J = 25.0 Hz, C3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 129.5 (C5
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 129.9 (C3

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 28 of 36 
 

 

(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 130.1 (J = 12.5 Hz, C2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 132.9 (C1
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 139.1
(C1
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 150.5 (C3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 159.5 (C2), 163.5 (J = 250.0 Hz, C4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

). HRMS (EI): m/z [M]+
calcd for C25H20N3O3FS: 461.1209; found: 461.1209.

3.4.3. (4S*, 5S*)-5-(3-(4-Chlorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6c

White solid (85%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 200–203 ◦C. FT-IR (ATR) νmax
2921, 1610, 1504, 1454, 1302, 1292, 1144, 1121, 811, 757, 688 cm−1. NMR 1H (600 MHz,
DMSO-d6): δ 2.41 (s, 3H, H5
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 5.82 (d, J = 6.3 Hz, 1H, H5), 5.94 (dd, J = 6.3, 1.7 Hz, 1H,
H4), 7.37 (t, J = 7.5 Hz, 1H, H4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.47 (d, J = 8.5 Hz, 2H, H3
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 7.54 (t, J = 7.5 Hz, 2H, H3

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 3 
 

 

posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 
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DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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MIC 5 in the presence of a base without heating, which resulted in short reaction times, 
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pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 7.87 (d, J = 7.5 Hz, 2H, H-2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 
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MIC 5 in the presence of a base without heating, which resulted in short reaction times, 
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pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-
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the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

). NMR 13C (150 MHz, DMSO-d6):
δ 21.2 (C5
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 71.7 (C5), 89.2 (C4), 117.4 (C4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 127.1 (C4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 129.6 (C5
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 129.7 (C2

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 3 
 

 

posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 130.6 (C1

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 3 
 

 

posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 133.6
(C4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 150.2 (C3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for
C25H20N3O3ClS: 477.0914; found: 447.0912.

3.4.4. (4S*, 5S*)-5-(3-(4-Bromophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6d

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 224–226 ◦C. FT-IR (ATR) νmax
3084, 2922, 1608, 1502, 1317, 1245, 1148, 1122, 1084, 907, 813, 753, 658 cm−1. NMR 1H
(600 MHz, DMSO-d6): δ 2.41 (s, 3H, H5
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 5.80 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5,
1.7 Hz, 1H, H4), 7.37 (t, J = 7.5 Hz, 1H, H4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.47 (d, J = 7.5 Hz, 2H, H3

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 28 of 36 
 

 

(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 
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the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 
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3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
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Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

,
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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4. Conclusions 
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tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 
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DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

). NMR 13C (150 MHz, DMSO-d6): δ
21.2 (C5
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 71.7 (C5), 89.3 (C4), 117.4 (C4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 118.7 (C2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 122.3 (C4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

),
129.7 (C5
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 130.0 (C2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 139.1



Int. J. Mol. Sci. 2024, 25, 5091 28 of 35

(C1

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 3 
 

 

posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 150.3 (C3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 159.5 (C2). HRMS (EI): m/z [M]+ calcd for C25H20N3O3BrS:
521.0409; found: 521.0397.

3.4.5. (4S*, 5S*)-5-(3-(4-Iodophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6e

White solid (35%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 209–211 ◦C. FT-IR (ATR) νmax
1610, 1504, 1316, 1146, 1124, 1081, 1064, 812, 752 cm−1. NMR 1H (500 MHz, DMSO-d6):
δ 2.41 (s, 3H, H5
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 5.80 (d, J = 6.5 Hz, 1H, H5), 5.92 (da, J = 6.5 Hz, 1H, H4), 7.37 (t, J = 7.5 Hz,
1H, H4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.47 (d, J = 8.0 Hz, 2H, H3
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
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In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 7.86 (d, J = 8.0 Hz, 2H, H2
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the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 
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the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 
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(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 
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tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

). NMR 13C (125 MHz, DMSO-d6): δ 21.2 (C5
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 71.7 (C5), 89.2 (C4), 95.5 (C4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 118.6 (C2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 129.6 (C5
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 131.2 (C1
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 137.8 (C3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 150.4 (C3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 159.4 (C2).
HRMS (EI): m/z [M]+ calcd for C25H20N3O3IS: 569.0270; found: 569.0265.

3.4.6. (4S*, 5S*)-4-(1-Phenyl-4-(4-Tosyl-4,5-Dihydrooxazol-5-yl)-1H-Pyrazol-3-yl)
Benzonitrile 6f

White solid (69%). Rf = 0.51 (hexane/EtOAc, 1:1), m.p. 191–193 ◦C. FT-IR (ATR) νmax
2.47 (s, 3H, H5
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 6.03 (dd, J = 6.5, 2.0 Hz, 1H, H4), 6.07 (d, J = 6.5 Hz, 1H, H5), 7.43 (t,
J = 7.5 Hz, 1H, H4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.54 (d, J = 8.0 Hz, 2H, H3
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 7.60 (t, J = 7.5 Hz, 2H, H3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 8.01–8.04 (m, 2H, H2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
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(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 
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3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 
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4. Conclusions 
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Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 
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White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
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(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

). NMR 13C (125 MHz, DMSO-d6): δ 21.4 (C5““), 72.7 (C5), 90.8
(C4), 112.4 (C4““), 119.2 (C4‘), 119.4 (CN), 119.4 (C2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

),
130.40 (C5
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 133.6 (C3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 137.4 (C1
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 150.5 (C3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 160.0 (C2). HRMS (EI): m/z [M+] calcd para C26H20N4O3S: 468.1256;
found: 468.1245.

3.4.7. (4S*, 5S*)-5-(3-(4-Nitrophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6g

White solid (63%). Rf = 0.52 (hexane/EtOAc, 1:1), m.p. 235–236 ◦C. FT-IR (ATR) νmax
3174, 1618, 1598, 1547, 1504, 1303, 1245, 1150, 1118, 1076, 909, 845, 752, 724, 681 cm−1. NMR
13C (125 MHz, DMSO-d6): δ 2.40 (s, 3H, H5
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 5.91 (d, J = 6.5 Hz, 1H, H5), 5.96 (dd, J = 6.5,
1.7 Hz, 1H, H4), 7.40 (t, J = 7.5 Hz, 1H, H4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.46 (d, J = 8.0 Hz, 2H, H3
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 7.56 (t, J = 7.5 Hz,
2H, H3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.64 (d, J = 1.5 Hz, 1H, H2), 7.78 (d, J = 8.0 Hz, 2H, H2
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 7.89 (d, J = 7.5 Hz, 2H,
H-2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 8.02 (d, J = 8.9 Hz, 2H, H2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 71.7 (C5), 89.3 (C4), 118.1 (C4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
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(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 129.8 (C3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 130.0 (C5
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

),
138.2 (C1
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 147.5 (C4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 159.5 (C2). HRMS (EI): m/z
[M+] calcd para C25H20N4O5S: 488.1154; found: 488.1157.

3.4.8. (4S*, 5S*)-5-(1-Phenyl-3-(p-Tolyl)-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6h

White solid (71%). Rf = 0.55 (hexane/EtOAc, 1:1), m.p. 177–178 ◦C. FT-IR (ATR) νmax
2920, 1612, 1547, 1504, 1316, 1296, 1149, 1117, 903, 814, 754, 659 cm−1. NMR 13C (125 MHz,
DMSO-d6): δ 2.40 (s, 3H, Me), 2.42 (s, 3H, H5
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.89 (dd, J = 6.5,
1.7 Hz, 1H, H4), 7.31–7.38 (m, 3H, H4
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the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 
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White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
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4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.45 (d, J = 8.0 Hz, 2H, H3

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 28 of 36 
 

 

(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 7.51 (t, J = 7.7 Hz,
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 3 
 

 

posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 7.86 (d, J = 7.7 Hz, 2H, H2

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 3 
 

 

posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
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MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 
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White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
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(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 
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Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 71.8 (C5), 89.3 (C4), 117.2 (C4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
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(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 129.3 (C1
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 132.9 (C1
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 138.1
(C4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 151.5 (C3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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), 159.3 (C2). HRMS (EI): m/z [M+] calcd para
C26H23N3O3S: 457.1460; found: 457.1465.
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3.4.9. (4S*, 5S*)-5-(3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6i

White solid (67%). Rf = 0.59 (hexane/EtOAc, 1:1), m.p. 176–178 ◦C. FT-IR (ATR) νmax
3130, 2969, 1737, 1618, 1307, 1148, 1114, 758, 658 cm−1. NMR 1H (500 MHz, DMSO-d6):
δ 1.24 (t, J = 7.7 Hz, 3H, CH3CH2), 2.41 (s, 3H, H5
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 2.69 (q, J = 7.7 Hz, 2H, CH3CH2), 5.80
(d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.36 (t, J = 7.7 Hz, 1H, H4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 
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2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 
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(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.40
(d, J = 7.8 Hz, 2H, H3
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compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 7.53 (tm, J = 7.7 Hz, 2H, H3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 7.62
(sa, 1H, H2), 7.62–7.64 (m, 2H, H2
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4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 7.86 (d, J = 7.7 Hz, 2H,
H2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 
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White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
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4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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). NMR 13C (125 MHz, DMSO-d6): δ 15.6 (CH3CH2), 21.2 (C5

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 28 of 36 
 

 

(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 28.1
(CH3CH2), 71.8 (C5), 89.3 (C4), 117.3 (C4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 
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3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
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Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 
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(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 
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MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 
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fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 
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the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 
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dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 
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(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 
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(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 
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MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 
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(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 
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In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 129.4 (C5
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
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2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 
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(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 132.9 (C1
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 139.2 (C1
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 151.6 (C3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 

. 

), 159.5 (C2). HRMS (EI): m/z [M+] calcd para C27H25N3O3S:
471.1617; found: 471.1614.

3.4.10. (4S*, 5S*)-5-(3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6j

White solid (62%). Rf = 0.51 (hexane/EtOAc, 1:1), m.p. 188–190 ◦C. FT-IR (ATR) νmax
1614, 1530, 1505, 1456, 1294, 1258, 1147, 1120, 901, 833, 756 cm−1. NMR 1H (500 MHz,
DMSO-d6): δ 2.41 (s, 3H, H5
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 3.84 (s, 3H, OMe), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.91 (dd,
J = 6.5, 2.0 Hz, 1H, H4), 7.12 (d, J = 8.0 Hz, 2H, H3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 7.52 (t, J = 7.5 Hz, 2H, H3
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 
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White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
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(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 7.86 (d, J = 7.5 Hz, 2H, H2
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 55.3 (OMe), 71.9 (C5), 89.2 (C4), 114.5
(C4
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
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In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 129.4 (C5
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 

the multi-drug resistance that has developed in many such species. The current findings 

suggest the merit of continuing to design new inhibitors of the lanosterol 14-⍺ demethyl-

ase enzyme, taking 6a-j as lead compounds in order to propose a more effective antifungal 

therapy against multi-drug-resistant species of the Candida genus. 
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 132.9 (C1
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(C1’’’), 128.8 (C2’’’), 129.4 (C3’’’), 129.7 (C3’’), 130.8 (C5’), 139.1 (C1’’), 139.3 (C4’’’), 154.9 
(C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O: 262.1106; found: 262.1109. 

3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 

°C [64]). FT-IR (ATR) νmax 3123, 2964, 2823, 1738, 1670, 1598, 1506, 1216, 754 cm−1. NMR 
(500 MHz, CDCl3): δ 1.29 (t, J = 7.7 Hz, 3H, CH2CH3), 2.73 (c, J = 7.7 Hz, 2H, CH2CH3), 7.34 
(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 

), 139.2 (C1
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posterior addition of ergosterol (+). The black bars indicate the 100% growth of yeasts cultured in 

the absence of both an inhibitor (−) and ergosterol (−). The yeasts were cultured at 37 °C for 24 h and 

the optical density was determined in a microplate photometer at 620 nm. Values are expressed as 

the average of three independent assays. In all cases, p < 0.001 compared to the growth observed 

without any inhibitor (Student’s t-test). 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 

White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 

DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 

H4), 7.37 (t, J = 7.5 Hz, 1H, H4 ″ ), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 

Hz, 1H, H2), 7.70–7.75 (m, 2H, H2  ′″  ), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 

2H, H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 

(C4), 117.3 (C4 ′ ), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 

(C5’), 129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 

(C4’’’’), 151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; 

found: 443.1306. 

4. Conclusions 

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-

tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the Van 

Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and Tos-

MIC 5 in the presence of a base without heating, which resulted in short reaction times, 

high compound purity, and high yields. The molecular docking study revealed that com-

pounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference 

compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus 

fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds. 

Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated 

that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed, 

similar to what has been previously documented in the literature for fluconazole. This is 

the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in 

silico study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Can-

dida species. Additionally, it is one of the few reports dealing with the effect of dihydroox-

azoles on a wide spectrum of Candida spp., despite the importance of such a study given 
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3.3.9. 3-(4-Ethylphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4i 
Light brown solid (55%). Rf = 0.55 (hexane/EtOAc, 7:3), m.p. 116–117 °C (Lit. 120-122 
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(d, J = 8.5 Hz, 2H, H3’’’), 7.38 (t, J = 7.4 Hz, 1H, H4’’), 7.51 (tm, J = 7.7 Hz, 2H, H3’’), 7.74 
(dm, J = 8.5 Hz, 2H, H2’’’), 7.79 (dm, J = 7.7 Hz, 2H, H2’’), 8.54 (s, 1H, H5’), 10.06 (s, 1H, 
CHO). NMR (125 MHz, CDCl3): δ 15.5 (CH2CH3), 28.7 (CH2CH3), 119.7 (C2’’), 122.4 (C4’), 
127.8 (C4’’), 128.3 (C3’’’), 128.6 (C1’’’), 128.9 (C2’’’), 129.6 (C3’’), 130.8 (C5’), 139.0 (C1’’), 
145.6 (C4’’’), 154.9 (C3’), 185.3 (CHO). HRMS (EI): m/z [M]+ calcd for C18H16N2O: 276.1263; 
found: 276.1261. 

3.3.10. 3-(4-Methoxyphenyl)-1-Phenyl-1H-Pyrazole-4-Carbaldehyde 4j 
Brown solid (68%). Rf = 0.42 (hexane/EtOAc, 7:3), m.p. 132–134 °C (Lit. 100-102 °C 

[64]). FT-IR (ATR) νmax 3123, 1669, 1600, 1519, 1455, 1258, 1226, 1174, 1042, 956, 838, 784, 
752, 685 cm−1. NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, OMe), 7.03 (d, J = 8.6 Hz, 2H, H3’’’), 
7.39 (t, J = 7.5 Hz, 1H, H4’’), 7.51 (t, J = 7.8 hz, 2H, H3’’), 7.77–7.82 (m, 4H, H2’’, H2’’’), 8.52 
(s, 1H, H5’), 10.04 (s, 1H, CHO). NMR (150 MHz, CDCl3): δ 55.3 (OMe), 114.2 (C3’’’), 119.7 
(C2’’), 122.4 (C4’), 123.9 (C1’’’), 127.8 (C4’’), 129.6 (C3’’), 130.3 (C2’’’), 131.2 (C5’), 139.1 
(C1’’), 154.5 (C3’), 160.6 (C4’’’), 185.1 (CHO). HRMS (EI): m/z [M]+ calcd for C17H14N2O2: 
278.1055; found: 278.1054. 

3.4. General Procedure for the Synthesis of (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-
Tosyl-4,5-Dihydrooxazoles 6a-j 

The corresponding 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (0.806 mmol) was 
added to a solution of TosMIC (0.969 mmol) and KOH (0.969 mmol) under nitrogen 
atmosphere at rt. The mixture was stirred at 25 °C for 3 h. The residue was filtered under 
vacuum and washed with isopropanol-water (1:1). Finally, it was recrystallized with 
acetone/ethyl acetate (1:1) to form the title compound 6. 

3.4.1. (4S*, 5S*)-5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazole 6a 
White solid (81%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 184–185 °C. FT-IR (ATR) νmax 

3090, 1610, 1502, 1453, 1315, 1294, 1149, 1121, 902, 753, 658 cm−1. NMR 1H (600 MHz, 
DMSO-d6): δ 2.41 (s, 3H, H5’’’’), 5.81 (d, J = 6.5 Hz, 1H, H5), 5.93 (dd, J = 6.5, 1.7 Hz, 1H, 
H4), 7.37 (t, J = 7.5 Hz, 1H, H4’’), 7.44–7.60 (m, 7H, H3’’, H3’’’, H4’’’, H3’’’’), 7.63 (d, J = 1.7 
Hz, 1H, H2), 7.70–7.75 (m, 2H, H2’’’), 7.77 (d, J = 8.0 Hz, 2H, H2’’’’), 7.88 (d, J = 8.0 Hz, 2H, 
H2’’), 8.87 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.7 (C5), 89.3 (C4), 
117.3 (C4’), 118.6 (C2’’), 127.0 (C4’’), 128.0 (C2’’’), 128.8 (C4’’’), 129.0 (C2’’’’), 129.2 (C5’), 
129.5 (C3’’’), 129.7 (C3’’), 129.9 (C3 ⁗ ), 131.7 (C1’’’), 132.9 (C1’’’’), 139.1 (C1’’), 145.5 (C4’’’’), 
151.5 (C3’), 159.4 (C2). HRMS (EI): m/z [M]+ calcd for C25H21N3O3S: 443.1304; found: 
443.1306. 

3.4.2. (4S*, 5S*)-5-(3-(4-Fluorophenyl)-1-Phenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-
Dihydrooxazole 6b 

White solid (86%). Rf = 0.48 (hexane/EtOAc, 1:1), m.p. 228–230 °C. FT-IR (ATR) νmax 
1610, 1502, 1303, 1292, 1219, 1145, 1119, 839, 762, 669 cm−1. NMR 1H (600 MHz, DMSO-d6): 
δ 2.41 (s, 3H, H5’’’’), 5.79 (d, J = 6.5 Hz, 1H, H5), 5.92 (dd, J = 6.5, 1.7 Hz, 1H, H4), 7.37 (t, J 
= 8.0 Hz, 1H, H4’’), 7.41 (tm, J = 8.0 Hz, 2H, H3’’’), 7.47 (d, J = 8.0 Hz, 2H, H3’’’’), 7.52 (t, J 
= 8.0 Hz, 2H, H3’’), 7.61 (d, J = 1.7 Hz, 1H, H2), 7.71-7.79 (m, 4H, H2’’’, H2’’’’), 7.86 (d, J = 
8.0 Hz, 2H, H2’’), 8.86 (s, 1H, H5’). NMR 13C (150 MHz, DMSO-d6): δ 21.2 (C5’’’’), 71.8 (C5), 
89.3 (C4), 116.1 (J = 25.0 Hz, C3’’’), 117.3 (C4’), 118.6 (C2’’), 127.1 (C4’’), 128.2 (C1’’’), 129.3 
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HRMS (EI): m/z [M+] calcd para C26H23N3O4S: 473.1409; found: 473.1413.

3.5. In Silico Analysis of 1,3-Diphenyl-1H-Pyrazole-4-Carbaldehydes 4a-j and (4S*, 5S*)-5-(1,3-
Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazoles 6a-j

The toxicological and physicochemical properties of 1,3-diphenyl-1H-pyrazole-4-
carbaldehydes 4a-j and (4S*, 5S*)-5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-tosyl-4,5-dihydrooxa-
zoles 6a-j were evaluated on the OSIRIS DataWarrior V.4.7.2 program (http://www.
organicchemistry.org/prog/peo/ accessed on 2 February 2024) [39]. The drug-like and
pharmacokinetic properties were assessed with the SwissADME server platform [40]. The
physicochemical properties were analyzed based on Lipinski’s rules, considering Log P
value, molecular weight, hydrogen bond donors, and hydrogen bond acceptors [65].

3.6. Multiple Sequence Alignment and Generation of a 3D Model of the CYP51 of Candida spp.
through Homology Modeling

The sequences of the lanosterol 14α-demethylase enzymes (CYP51) were down-
loaded from the NCBI database (http://www.ncbi.nlm.nih.gov accessed on 2 February
2024) [66] for C. albicans AATCC 10,231 (CYP51Ca), C. auris (CYP51Cau), C. dubliniensis
CD36 (CYP51Cdu), C. glabrata CBS138 (CYP51Cg), C. haemulonii (CYP51Cha), and C. krusei
ATCC 6358 (CYP51Ckr). The percentage of identity of each of the CYP51 sequences of
Candida spp. with the CYP51 protein of C. albicans (CYP51Ca) complexed with posaconazole
at the active site (PDB code: 5FSA) was determined with the BLASTp (protein query-protein
database) server. Three-dimensional models were elaborated with the sequences of CYP51
proteins of Candida spp. by using the homology modeling technique on the Modeller
10.4 program [67]. The crystallized structure of the CYP51 enzyme from C. albicans (PDB
code: 5FSA) served as a template for the construction of the models. Once the amino acid
sequences were aligned to build 15 3D models for each of the different Candida species,
the model with the lowest energy was selected. The quality of the model chosen for each
Candida species was validated on the PROCHECK [49] online server. The 3D models of
CYP51 were validated with the VERIFY3D [68] and PROCHECK [49] programs in order
to check the stereochemical quality of the Ramachandran plots that show the amino acid
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residues in the allowed regions. The analysis of the structural alignment of 3D models of
CYP51Cau, CYP51Cdu, CYP51Cg, CYP51Cha and CYP51Ckr was carried out using Pymol
Version 3.0 for windows https://pymol.org/ accessed on 22 February 2024. The six selected
CYP51 models of Candida spp. were overlapped on the Discovery Studio Visualizer [69].

3.7. Molecular Docking of the Compounds on the CYP51 Enzymes of Candida spp.

On the AutoDock4 program, the docking of 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-tosyl-
4,5-dihydrooxazoles 6a-j and 1,3-diphenyl-1H-pyrazole-4-carbaldehydes 4a-j was carried
out at the active site of the CYP51 enzymes of C. albicans, C. auris, C. dubliniensis, C glabrata,
C. haemulonii, and C. krusei [70]. The CYP51 enzymes of C. auris, C. dubliniensis, C. glabrata,
C. haemulonii, and C. krusei were modeled by using the crystallized CYP51 protein of
C. albicans (PDB code: 5FSA) as a template. The proteins were processed by adding
hydrogen atoms to the polar atoms (considering a pH of 7.4) and assigning the Kollman
charges. The water molecules were removed and the proteins were optimized on the
Nanoscale Molecular Dynamics (NAMD) program [71]. The 3D structure of fluconazole
20 was downloaded from the ZINC 15 database [72]. The 5-(1,3-diphenyl-1H-pyrazol-4-
yl)-4-tosyl-4,5-dihydrooxazoles 6a-j and 1,3-diphenyl-1H-pyrazole-4-carbaldehydes 4a-j
were sketched in two dimensions with ChemSketch (https://www.acdlabs.com/resources/
freeware/chemsketch/ accessed on 12 January 2024) and converted into 3D mol2 format on
the Open Babel GUI program [73]. Fluconazole and the test ligands were optimized with
PM6 on Gaussian 98 software to obtain the minimum energy conformation for the docking
studies [74]. Molecular docking simulations were carried out on AutoDock version 4.2 [70]
with the following grid dimensions: 62 × 54 × 62 Å3 for C. albicans and C. dubliniensis;
62 × 56 × 62 Å3 for C. auris, C. glabrata, and C. haemulonii; and 72 × 52 × 62 Å3 for
C. krusei. The grid center values found for each of the CYP51 enzymes of the Candida spp.
were as follows: C. albicans (X = 195.4, Y = −3.3, and Z = 33.3), C. auris (X = 99.0, Y = −4.5,
and Z = 37.0), C. dubliniensis (X = 195.4, Y = −3.4, and Z = 33.3), C. glabrata (X = 195.4,
Y = −3.3, and Z = 33.5), C. haemulonii (X = 195.4, Y = −3.4, and Z = 33.3), and C. krusei
(X = 193.4, Y = −3.9, and Z = 33.40). The hybrid Lamarckian genetic algorithm was applied
for minimization, utilizing default parameters. Out of the 100 docking runs performed, the
conformation with the lowest binding energy (kcal/mol) was selected for all subsequent
simulations. AutoDockTools was used to prepare the script and files as well as to visualize
the docking results, which were edited on the Discovery Studio Visualizer [69].

GOLD program version 5.6.3 https://www.ccdc.cam.ac.uk/solutions/software/gold/
accessed on 29 March 2024, was used to prepare the receptor for docking. For this study,
the protein binding site was identified within (15 Å) of the reference ligand. The number of
produced poses was set to 50 and the number of predetermined postures was fixed. We
employed the configuration model of the ChemScore kinase scoring function. As a scoring
function, ChemScore fitness DG is employed, which represents the total free energy change
that occurs on ligand binding. The findings were stored as .mol2 files.

3.8. In Vitro Experiments
3.8.1. Strains for the Antifungal Susceptibility Tests

The strains for the antifungal susceptibility tests were C. albicans ATCC 10231,
C. glabrata CBS138, C. dubliniensis CD36, C. krusei ATCC 14423, C. auris Monterrey, and
C. haemulonii ENCB87. They were stored at –70 ◦C in 50% (vol/vol) of glycerol and recovered
in yeast extract-peptone-dextrose (YPD) medium (1% yeast extract, 2% casein peptone,
and 2% dextrose) under orbital shaking at 120 rpm and 37 ◦C, to serve as the inoculum in
the assays.

3.8.2. Antifungal Activity of the Pyrazole and Dihydrooxazole Derivatives on Candida spp.

The antifungal activity of the pyrazole derivatives 4a-j against Candida spp. was
evaluated with the CLSI M27-A3 microdilution method [75]. Fluconazole 20 (the antifungal
reference drug) and the pyrazole 4a-j and dihydrooxazole derivatives 6a-j were examined
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at concentrations of 6.4 to 0.0125 µg/mL. The diluent was RPMI 1640 medium (Sigma-
Aldrich, St. Louis, MO, USA) for 20 and DMSO for the two series of test compounds. To
avoid an inhibitory effect by DMSO, it was employed at less than 10% of the total volume.
For the preparation of the inoculum of Candida spp., the optical density was adjusted on
a spectrophotometer to 620 nm, followed by a 1:1000 dilution with RPMI medium. The
96-well microplates were inoculated with 100 µL of yeast suspension. RPMI served as the
sterility control and DMSO without any antifungal compound as the growth control. The
microplates were incubated at 37 ◦C for 24 h, and upon completion of this, the time growth
was quantified by optical density on a Multiskan™ GO microplate spectrophotometer
at 620 nm. The reported values of yeast growth are expressed as the averages of three
independent assays.

3.8.3. Rescue of the Growth of Candida spp. by Adding Ergosterol

To verify that pyrazole 4a-j and dihydrooxazole derivatives 6a-j affect the viability of
Candida spp. by inhibiting ergosterol synthesis, a growth rescue experiment was performed.
A total 100 µL of one of the solutions of the compounds prepared in RPMI 1640 medium
(Sigma-Aldrich) was added to each well of a 96-well microplate, followed by the addition
of 80 µL of a yeast suspension adjusted to 1–5 × 106 CFU/mL and diluted 1:1000 with
RPMI 1640 medium (Sigma-Aldrich). Subsequently, of a stock ergosterol solution was
added, which was prepared by dissolving 120 µg/mL in Tween 80/ethanol (1:1). The final
ergosterol concentration in each well was 12 µg/mL. The controls used were yeast cells
grown in the absence of an inhibitor and those grown in the presence of the inhibitor only
(without adding ergosterol) [60,61].

4. Conclusions

In the current contribution, the synthesis of new 5-(1,3-diphenyl-1H-pyrazol-4-yl)-
4-tosyl-4,5-dihydrooxazoles 6a-j was described. The synthetic design focused on the
Van Leusen reaction between a series of 1,3-diaryl-1H-pyrazole-4-carbaldehydes 4a-j and
TosMIC 5 in the presence of a base without heating, which resulted in short reaction
times, high compound purity, and high yields. The molecular docking study revealed that
compounds 4a-j and 6a-j have better binding energy values than fluconazole (the reference
compound). The in vitro testing showed better antifungal activity for 4a-j and 6a-j versus
fluconazole, which is evidenced by lower MIC70 and MIC90 values for the test compounds.
Thus, the in silico and in vitro data correlated well. Growth rescue assays demonstrated
that 4a-j and 6a-j interfere with ergosterol synthesis in the six Candida species analyzed,
similar to what has been previously documented in the literature for fluconazole. This is
the first report, to our knowledge, on the synthesis, in vitro antifungal activity, and in silico
study of the binding affinity of the series of dihydrooxazoles 6a-j in relation to Candida
species. Additionally, it is one of the few reports dealing with the effect of dihydrooxazoles
on a wide spectrum of Candida spp., despite the importance of such a study given the multi-
drug resistance that has developed in many such species. The current findings suggest the
merit of continuing to design new inhibitors of the lanosterol 14-α demethylase enzyme,
taking 6a-j as lead compounds in order to propose a more effective antifungal therapy
against multi-drug-resistant species of the Candida genus.
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