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Abstract: An early diagnosis of cancer is fundamental not only in regard to reducing its mortality
rate but also in terms of counteracting the progression of the tumor in the initial stages. Breast cancer
(BC) is the most common tumor pathology in women and the second deathliest cancer worldwide,
although its survival rate is increasing thanks to improvements in screening programs. However, the
most common techniques to detect a breast tumor tend to be time-consuming, unspecific or invasive.
Herein, the use of untargeted hydrophilic interaction liquid chromatography−mass spectrometry
analysis appears as an analytical technique with potential use for the early detection of biomarkers
in liquid biopsies from BC patients. In this research, plasma samples from 134 BC patients were
compared with 136 from healthy controls (HC), and multivariate statistical analyses showed a clear
separation between four BC phenotypes (LA, LB, HER2, and TN) and the HC group. As a result,
we identified two candidate biomarkers that discriminated between the groups under study with a
VIP > 1 and an AUC of 0.958. Thus, targeting the specific aberrant metabolic pathways in future
studies may allow for better molecular stratification or early detection of the disease.

Keywords: early diagnosis; breast cancer; mass spectrometry; hydrophilic interaction liquid
chromatography; liquid biopsy; metabolomics

1. Introduction

Breast cancer (BC) ranks as the second most common cause of cancer-related deaths
in women overall [1–3]. In 2023, BC was the most frequently diagnosed cancer in women,
accounting for 31% worldwide [4,5], and the second in Spain for both sexes combined [6]
To date, mammography screening is the only effective method for detecting the disease
with a high true positive rate, decreasing mortality rates by 41%; nevertheless, it also
has disadvantages, such as the cost-expensive resources, exposure to radiation, the breast
compression and the final biopsy of the tissue [7–9].

It is currently well-known that the behavior of the tumor, prognosis and, therefore, the
treatment of BC vary depending on the tumor’s characteristics. Indeed, BC stratification
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based on the tumor grade, stage and histopathological and molecular characteristics plays a
crucial role in determining the rate of survival [10]. Given that histological classification did
not reflect the molecular heterogeneity of the disease, the lesions are currently categorized
based on standard immunophenotypic analyses considering their mitotic index (ki67),
overexpression of estrogen receptors (ER), progesterone receptors (PR), and the human
epidermal growth factor receptor 2 (HER2) [11].

Using these molecular markers, BC is mainly classified into three subtypes: hormone
receptor (HR)-positive, HER2-positive, and triple-negative breast cancer (TNBC) [11–13].
Thus, BC is not a single homogeneous disease but rather a collection of molecularly and
clinically diverse subtypes. These subtypes differ in their biological characteristics, clinical
behaviors, and responses to treatment. Understanding these subtypes is crucial for tailoring
therapeutic strategies, predicting prognosis, and improving patient outcomes. Therefore,
there is an urgent need to establish more personalized-based strategies to define non-
invasive, cost-effective methods for an early detection of BC molecular subtypes which
may ultimately lead to a more accurate prognosis, relapse detection, tailored follow-up and
therapy selection.

In this sense, metabolomics offers a powerful and versatile approach for studying
the molecular heterogeneity of BC and identifying its distinct subtypes based on their
unique metabolic profiles. By unraveling the complex interplay of metabolic pathways and
molecular networks associated with different subtypes, metabolomics can contribute to the
development of personalized therapeutic strategies and the discovery of novel biomarkers
for early detection and monitoring of breast cancer. This molecular pattern could be
defined as the metabolomic signature or potential biomarker profile to be detected and
analysed in liquid biopsies for early diagnosis of the disease. Several studies have already
explored the possibility of using metabolite panels as biomarkers for early diagnosis, tumor
characterization and clinical outcome prediction [14–16]. Hence, human body fluids such as
saliva, urine, serum and plasma have been re-discovered as an excellent source of potential
biological markers and, therefore, are analyzed to discover a metabolic profile that may
reflect the systemic dysregulation in BC patients’ metabolisms.

The analytical technique chosen for a metabolomic experiment depends both on
the sample type and the approach of the study [17–19]. Herein, the metabolomic study
presented consists of an untargeted liquid chromatography−high resolution mass spectrom-
etry (LC−HRMS) approach, with the final goal being to assess the utility of the hydrophilic
interaction chromatography (HILIC) separation technique to find new candidate biomark-
ers in plasma samples of breast cancer patients. The application of HILIC for bioanalytical
LC−HRMS provides us with a more original methodology for the detection of highly polar
and hydrophilic substances in biological samples.

2. Results
2.1. LC−HRMS Metabolomic Analysis

A non-targeted metabolomic analysis of plasma samples based on a HILIC method
coupled to MS in negative electrospray (ESI–) mode is herein exposed. After setting the
generic parameter for chromatographic separation and MS detection, we obtained some
specific metabolomic fingerprints from the study groups. Figure 1 shows the representative
total ion current (TIC) chromatograms of the QCs in comparison with the gradient elution.

Under the study conditions, we expected to mostly retain polar analytes, as the highly
hydrophilic stationary phase column used has been designed to that end (as previously
demonstrated [20–22]). Moreover, using a high organic content mobile phase (MP) allowed
us to remove the highly polar contaminants to clean the column. As can be observed,
HILIC TIC chromatograms of the QCs show different elution profiles related to the polarity
of the compounds. Specifically, the most intense ions appeared at minutes (min) 1.014,
1.371 and 3.417 (Figure 1a) and decreased from minute 3.4. When comparing the TIC
chromatograms with the elution gradient graphic, it seems that the most concentrated or
highly expressed compounds eluting at early time points under the conditions of study are
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of mainly non-polar character, evidenced by the highly organic content of the MP, while
polar compounds began to elute in lower concentrations from minute 3, then increased
their concentration at 3.3 min. However, the most hydrophilic compounds show very low
intensity from minute 4 till the end of the run.
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Figure 1. Representative LC−HRMS TICs of pooled QC samples (a) in comparison with the gradient 
elution graphic (b). HILIC TIC chromatograms showed different peak profiles along the run which 
illustrate the elution of the compounds according to their polarity characteristics. * The retention 
time range where the significantly altered metabolites between breast cancer patients and healthy 
controls were found to elute *. 
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Figure 1. Representative LC−HRMS TICs of pooled QC samples (a) in comparison with the gradient
elution graphic (b). HILIC TIC chromatograms showed different peak profiles along the run which
illustrate the elution of the compounds according to their polarity characteristics. * The retention
time range where the significantly altered metabolites between breast cancer patients and healthy
controls were found to elute *.

Chemometric Analysis

Peak picking and alignment procedures were performed in order to reduce the amount
of intensity signals from unrelated ions or unreliable compounds. Based on the data from
selected peaks compared in several quality control samples (QCSs), the retention time (R.T)
window and mass tolerance were established at 2 s and 10 ppm, and a data matrix featuring
4468 peak intensities was obtained, 1754 of which were monoisotopic ions. After removing
features present in the MP, we kept 929 metabolomic signals with a CV < 30% in the
QCs, as higher variability within the same analytical replicate would not reflect a reliable
behavior within the rest of the samples. To assess the quality of the analytical system
performance, we applied the PCA and checked the QC sample clustering. In this case, after
the contamination filtering and the removal of features with an unacceptable variability,
the close clustering of the QCSs indicated that the natural behavior of the samples and
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relevant separation between the groups of study are due to biological factors (Figure 2a).
Pre-processing approaches by QC normalization of the data matrix, log transformation and
pareto scaling were chosen as the best options to obtain a normally distributed mode. The
quality of the model to discriminate between the groups of study was determined using
R2 and Q2 from the PLS-DA. In this regard, models which display R2 ≥ 0.7 and Q2 ≥ 0.4
with variance between these parameters < 0.3 have been previously reported as featuring
efficient diagnostic power [23]. In our case, the combination of significant candidate
metabolites showed high values for the goodness of prediction (R2) and the predictability
of the model (Q2), while the PLS-DA illustrated a good discrimination between the BC and
HC samples (Figure 2b and Table 1). Further analyses in larger cohorts might explain the
metabolome differences between the four BC molecular subtypes according to the TNM
staging system, as suggested by our data in Figures S1–S3 and Table S1.

Figure 2. (a) The clustering of the QC samples in the middle of both sets of samples in the PCA
shows a good natural separation between the groups under study: breast cancer (BC) and healthy
controls (HC). The PLS-DA score plots based on the LC−HRMS of plasma samples from BC suggest
metabolome differences in comparison with the HC group (b).

Table 1. Statistical validation of the PLS-DA models based on the comparison of breast cancer (BC) to
healthy controls (HC).

PLS-DA
Comparison

Explained
Variation (%)

#
Components Accuracy R2 Q2

BC-HC 64.3 5 0.973 0.890 0.842

BC: breast cancer patients; HC: healthy controls; #: number; R2 and Q2 parameters showed that no over-fitting
was observed, and these models are acknowledged for successful discernment between HC and BC patients.

2.2. Selection of Potential Biomarkers

Potential biomarkers were detected within the groups using univariate and multi-
variate analyses. First selection criteria by t-test (p corrected value by false discovery rate
[FDR] < 0.05) and fold change (> 2) allowed for the detection of 347 differentially expressed
metabolic features between the BC and HC samples. Second selection criteria, based on the
VIP values > 1, estimated the importance of each selected variable in the PLS-DA model
projection. As a result, 27 out of the 77 molecular signals that met the conditions in the
whole BC cohort were selected for biomarker evaluation, model creation and identification
(Tables 2 and S2).
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Table 2. List of candidate metabolites selected for further identification and their respective p-value,
fold change, VIP score and AUC.

m/z R.T
(min)

p-Value
(FDR)

Fold Change
(BC/HC) VIP AUC

391.1514 1.03 2.24 × 10−59 0.06 1.67 0.97
970.1298 3.19 1.29 × 10−49 0.13 2.05 0.93
1012.111 3.16 8.67 × 10−56 0.14 2.41 0.94
948.2027 3.16 3.53 × 10−49 0.15 2.07 0.93
529.0881 2.82 3.73 × 10−22 0.17 1.15 0.83
780.9692 2.82 9.43 × 10−23 0.18 1.14 0.84
445.1282 2.81 2.16 × 10−22 0.19 1.19 0.83
948.8976 2.82 4.53 × 10−23 0.19 1.14 0.84
958.3061 3.29 6.52 × 10−42 0.2 1.79 0.91
890.3257 3.26 1.82 × 10−39 0.22 1.91 0.91
818.3999 3.15 3.25 × 10−34 0.26 2.13 0.90
822.3952 3.14 8.79 × 10−31 0.27 2.1 0.89
744.4759 3.14 6.02 × 10−30 0.29 2.26 0.90
508.8292 2.56 1.93 × 10−20 0.31 1.31 0.85
431.1842 1.09 6.84 × 10−16 2.15 1.16 0.75
448.1705 1.08 2.99 × 10−16 2.64 1.06 0.77
914.2331 3.96 1.71 × 10−18 5.58 1.2 0.86
969.2408 3.98 7.03 × 10−18 6.26 1.1 0.87
674.7234 3.23 1.74 × 10−19 6.59 1.01 0.84
395.0961 4 3.86 × 10−22 6.92 1.05 0.88
303.923 3.9 1.92 × 10−22 8.44 1.25 0.86
674.726 3.51 8.03 × 10−39 15.02 1.01 0.92
684.7542 3.21 6.63 × 10−42 28.11 1.37 0.93
754.7421 3.34 1.03 × 10−48 88.94 1.62 0.93
516.8156 3.14 7.53 × 10−37 112.86 1.37 0.92
752.7279 3.14 3.28 × 10−48 123.83 1.58 0.94
500.8534 3.24 4.12 × 10−45 246.87 1.7 0.94

m/z: mass/charge ratio; R.T: retention time; FC: fold change > 2 indicates that the average normalized peak area
ratio in breast cancer (BC) samples is larger than that in healthy controls (HC); FC < 0.5 indicates that the average
normalized peak area ratio in HC is larger than that in BC samples; VIP: variable of importance in projection;
AUC: area under the receiver-operating characteristic curve.

2.2.1. Identification of Potential Biomarkers

According to the data collected during the chromatography and MS analysis (accurate
mass, R.T and MS/MS patterns), we could achieve a tentative identification with levels of 2
and 3 (according to the Shymansky classification [24]) of two candidate metabolites (Table 3).
The molecular formula per candidate was provided by comparison of the experimental
fragment interpretation against several spectral data bases, as mentioned in methodology.

Table 3. Differential tentative identified metabolites between breast cancer (BC) patients and healthy
controls (HC).

m/z R.T
(min) Molecular Formulae Adduct Tentative ID Mass Error

(ppm)

948.2027
C31H50N7O19P3S [M-H] 3-isopropenylpimeloyl-CoA

1.63.2 C30H48N7O17P3S [M+HCOO]− 2,6-Dimethylheptanoyl-CoA

914.2331 4.0 C41H43NO20 [M+HCOO]−

6-{[2-(4-{[3-({3,4-dihydroxy-4-[(1H-
indole-3-carbonyloxy)methyl]oxolan-2-

yl}oxy)-4,5-dihydroxy-6-
(hydroxymethyl)oxan-2-yl]oxy}phenyl)-
4-oxo-3,4-dihydro-2H-1-benzopyran-7-

yl]oxy}-3,4,5-trihydroxyoxane-2-
carboxylic acid

3

m/z: mass/charge ratio; R.T: retention time; ID: identification.
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2.2.2. Biomarkers’ Evaluation

ROC curves were used to evaluate the classification and diagnostic power of the can-
didate metabolites. In this case, univariate ROC curves per each candidate were performed
in order to assess their potential clinical utility in terms of AUC; the AUC values obtained
ranged from 0.7 to 0.9. Considering that AUC values greater than 0.75 indicate a feasible
predictor model, the identified metabolites of Table 3 were selected for model creation by
further multivariate analyses.

2.2.3. Model Creation

Due to the multifactorial character of cancer, a multivariate model may improve levels
of discrimination and confidence by combining multiple individual potential biomarkers.
In this regard, we applied UVA and MVA criteria to combine the two identified candidate
biomarkers, and we obtained an AUC of 0.958 (95% CI: 0.927–0.987) for BC diagnostic
capability (Figure 3).
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Figure 3. (a) Multivariate ROC curve plots from the average of 100 cross-validations for the model
combination of two tentatively identified candidate metabolites. (b) Classification using the average
of predicted probabilities of each group of samples provided a confusion matrix where 110 BC
patients were correctly classified and 23 were misclassified; 128 HC were correctly classified and two
were misclassified.

3. Discussion

Lately, the utilization of mass spectrometry-based techniques to detect metabolic
profiles in blood has emerged as a selective and sensitive tool to improve diagnosis of
malignant diseases, including several types of cancers (such as colorectal, gastroenterologi-
cal or pancreatic cancers) [25–28]. Specifically, metabolomic analyses of BC have widely
demonstrated that metabolic dysregulation in cancer might be detected in a simple and
cost-effective manner which may yield potential biomarkers of the disease behavior after
further validation. As an example, untargeted metabolomics have previously shown that
altered molecular pathways related to BC initiation involve the biosynthesis of unsaturated
fatty acids, aminoacyl-tRNA biosynthesis, carnitine metabolisms, phenylalanine, tyrosine
and tryptophan biosynthesis, as well as nicotinate and nicotinamide metabolisms [16,29,30].
Moreover, this strategy could also be used in the search for predictive and prognostic
biomarkers when combined with temporal statistical methods that may reinforce its high
value as a tool for deciphering cancer behavior [14]. However, targeted metabolomic
strategies conducted to determine the diagnostic performance of the huge amount of
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metabolomic data found by these approaches are scarce, using quite small sample sizes for
the validation sets [31,32].

In this work, we addressed the discovery of new potential biomarkers in liquid biopsies
of breast cancer patients by using an untargeted HILIC-HRMS-based metabolomic and
negative ionization. Our main goal is to assess this strategy for that purpose; thus, under
the study conditions, we could observe that most of the significantly altered compounds
between the BC and HC groups eluted from minute 3 to minute 4, which would correspond
to those analytes with intermediate polarity. In contrast, compounds that eluted at early
times, covering a quite short R.T. range (from minute 1 to minute 2), would correspond
to non-polar analytes, as evidenced by the percentage content of the MP at that time
range [21,22]. In this sense, when analyzing TIC chromatograms of the QCSs under study,
clear differences appeared in the elution range according to the compounds’ polarity
characteristics. To discriminate the metabolites that significantly differed between the HC
and BC patients, UVA and MVA were performed. After a series of data pre-processing
approaches, the model obtained displayed an efficient diagnostics power with low variance
between the R2 and Q2 from the PLS-DA, as well as high individual and multivariate
values of the AUC. Specifically, a great number of polar compounds eluting from minute
3 to minute 3.5 were found to have differential expressions between the study groups,
although, at first sight, the polar TIC intensities did not seem to be as high as the non-
polar compounds. This result would suggest that non-polar compounds were highly
expressed in plasma samples, while polar compounds appeared with lower intensity. In
this regard, it should be noted that the following limitations were found when using the
HILIC ESI—mode coupled to HRMS: (1) the detection of non-polar components near to the
void volume; (2) that most of the significantly altered mass signals were obtained at similar
retention times, so it could be possible that a pattern ion fragmented at the ionization
source, producing the rest of the fragment ions.

Nevertheless, the significance of a metabolite as a biomarker is not directly related
with its intensity or concentration in a sample. Low concentrated metabolites with low TIC
intensities could be of significant biological importance, as their expressions differ enough
between the groups of study, i.e., the HC and the BC patients.

Concerning the identification of specific potential biomarkers, the molecular properties
based on accurate mass, the MS/MS spectra and R.T allowed us to define a tentative empir-
ical formula for two candidate metabolites (m/z: 948.2027, R.T: 3.2 min and m/z: 914.2331,
R.T: 4 min). As previously reported, by using the formic acid content in the MP, we observed
the occurrence of intense [M-H] and [M+HCOO]− ions under negative ESI and acidic condi-
tions [33]. Despite the limited evidence for direct implications in cancer development of the
long fatty acids (3-isopropenylpimeloyl-CoA and the 2,6-Dimethylheptanoyl-CoA) and the
carboxylic acid (6-{[2-(4-{[3-({3,4-dihydroxy-4-[(1H-indole-3-carbonyloxy)methyl]oxolan-2-
yl}oxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-4-oxo-3,4-dihydro-2H-1-
benzopyran-7-yl]oxy}-3,4,5-) identified in our work, it is well-established that alteration
of cellular metabolism is a hallmark of cancer [34]. In this sense, previous research has
shown that aberrant lipid metabolism in cancer could potentially affect processes such
as the tumorigenesis or immune evasion of breast cancer [35]. In fact, certain derivates
of the coenzyme A have been implicated in processes relevant to cancer development,
while our tentatively identified candidates, the 3-isopropenylpimeloyl-CoA and the 2,6-
Dimethylheptanoyl-CoA, might be involved in metabolic pathways related to cancer
metabolism, such as the biotin biosynthesis or the beta-oxidation of branched-chain fatty
acids [36–39]. Furthermore, regarding the carboxylic acid identified in our study, al-
though no direct implication of this compound with BC has been reported yet, it has been
shown that hydroxycarboxylic acid receptors are important for controlling the balance of
lipid/fatty acid metabolism in breast cancer cells [40]. Therefore, targeting the specific
metabolic or signalling pathways involving these identified molecules and validating the
molecular alterations in a bigger cohort of BC patients would be critical to deciphering the
direct role of these novel candidate metabolites in BC initiation.
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4. Materials and Methods
4.1. Sample Collection and Preparation

Plasma samples of two experimental groups were analysed in this research: 136 samples
from healthy controls (HC) and 134 samples from breast cancer patients. The HC group
consisted of Caucasian subjects consecutively recruited from the general community in the
same period of time with a body mass index (BMI) in the normal to overweight range aged
18−63 years old. The BC patients were also Caucasians; the majority of them were overweight
or obese with an age range between 25 and 84 years old (Table 4). The sample collection from
these patients was carried out before starting any therapeutic treatment. Samples were obtained
at the University Hospital of Jaén with the written informed consent of all the participants and
the approval of the ethics committee.

Table 4. Characteristics of the two groups of study: breast cancer patients (BC) and healthy controls (HC).

Study Group BC HC

n 134 136

Age (y.o)
Median 49 (25–84) 46 (18–63)
Mean 52.05 43.75
S.D 11.62 11.2

BMI (kg/m2)
Mean 26.84 24.40
S.D 5.54 2.67

Medication
Yes 68 6
No 66 130

Stage
IA 2
IIA 54
IIB 48

IIIA 15
IIIB 6
IV 4

Not Available 5

Phenotype
LA 21
LB 64

HER2 35
TN 14

Climacteric
Premenopause 69
Perimenopause 60
Postmenopause 5

BC: breast cancer patients; HC: healthy controls; n: sample size; y.o: years old; S.D: standard deviation; BMI: body
mass index; LA: luminal A; LB: luminal B; HER2: human epidermal growth factor 2 positive; TN: triple negative.

After blood collection by usual venipuncture, samples were centrifuged for 15 min at
3000 rpm and 4 ◦C. The supernatant was carefully aspirated and stored at −80 ◦C until the
LC−HRMS analysis.

4.2. Metabolomic Analysis
4.2.1. Metabolite Extraction

All plasma samples were kept at 4 ◦C throughout the analytical process. Proteins were
removed from the samples to avoid ion suppression in the analytes of interest. Protein
precipitation was achieved using methanol 1:5 (plasma/MeOH) and shaking for 60 s.
Samples then required centrifugation at 4 ◦C and 13,300 rpm for 15 min; the supernatants
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were then lyophilized (Savant, Holbrook, NY, USA), and the dry residues were reconstituted
in 50% water/acetonitrile (AcN). These solutions were transferred to the analytical vials,
stored in the autosampler at 4 ◦C, and analyzed by LC−HRMS.

4.2.2. LC−HRMS Conditions

Chromatographic separation was performed by the Agilent Series 1290 LC system
(Agilent Technologies, Santa Clara, CA, USA) using a Waters XBridge BEH Amide column
(2.1 mm × 150 mm; Waters Corporation, Milford, MA, USA) kept at 35 ◦C. Mass detection
was achieved using an AB SCIEX Triple TOF 5600 quadrupole-time-of-flight spectrometer
(QTOF-MS) in ESI– mode (AB SCIEX, Concord, ON, USA).

The injected sample volume was 3 µL. The MP consisted of 0.1% formic acid—90:10
water/AcN (eluent A) and 0.1% formic acid—90:10 AcN/water (eluent B). The gradient elution
was performed as follows: 0–0.1 min 99% eluent B, 0.1–7 min 99% eluent B, 7–7.10 min 30%
eluent B, and 7.10–10 min 99% eluent B. The elution flow rate was 0.4 mL/min.

The in-batch sequence of the samples was established based on random number
generation to avoid any possible time dependent changes in HPLC-MS chromatographic
profiling. Blank solvents based on the MP samples and QCS were also analyzed during
the run. The QCSs were obtained by mixing small aliquots of all the biological samples
under study and systematically injected every 10 samples for further evaluation of the
stability, quality and integrity of the system [41]. The analysis of the MP influence on the
metabolomic profile of each group allows the detection of contamination either from the
solvent impurities or the extraction procedure [19].

4.2.3. Data Set Creation

Peak picking and alignment procedures precede the data set creation in order to di-
minish the non-linear shifts in both the R.T and m/z of the LC−HRMS chromatograms [42].
To this end, the R.T and m/z variability of the raw data was evaluated within the QCSs by
PeakView (PV) software (version 1.0 with Formula Finder plugin version 1.0, AB-SCIEX,
Concord, ON, USA).

MarkerView software (version 1.2.1, AB SCIEX, Concord, ON, USA) was used for
processing the LC−HRMS raw data. MarkerView (MV) allowed us to perform peak
extraction and alignment, as well as data filtering, in order to generate a data matrix with
the m/z, R.T and integrated intensity that determines each particular ion. The MV data
extraction parameters are as follows: (1) R.T length in time (minutes or min) refers to the
range of time for the peak extraction in which the analytes were eluted from the separation
column; (2) R.T and mass window are the minimum values detected in the RT range that
define a single peak; (3) R.T and m/z tolerances are the values by which a particular peak
is considered as the same feature in the peak alignment. In this study, the data extraction
parameters were set as follows: (1) R.T range 0.8–9 min, (2) R.T and mass window of
two scans and 0.02 Da for the peak extraction and (3) R.T and m/z tolerances of 0.2 min
and 10 ppm for the peak alignment. Moreover, intensity values lower than 70 cps were
established as background noise.

The identification of true molecular features is based on the accuracy of mass mea-
surement to group ions related to the charge-state envelope and isotopic distribution. The
minimum sample size of the groups of study was considered to filter the extraction to only
masses that appeared at least in 14 samples. The data matrix obtained was then processed.

4.2.4. Data Pre-Treatment

From the data matrix, only the extracted peaks that represented monoisotopic ions
were selected for the data pre-processing to enhance the identification of true biological
features and to reduce mass redundancy. Detection of differentially expressed mass signals
between the MP and study groups (HC and BC) allowed for filtering out the influence of
non-specific compounds or contaminants by a FC > 2 and p-value < 0.05, preserving the true
biological mass signals of the data matrix. Data pre-treatment comprises data normalization,
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filtering, transforming and scaling [43]. These steps were carried out using Metaboanalyst
6.0 (last version of the Web Server Software, Canada, RRID: SCR_015539) [44]. In order to
obtain a more Gaussian-type distribution of the data matrix, different approaches for data
normalization, scaling and transformation were assessed.

4.2.5. Analytical Validation and Outliers’ Detection

Principal components plot and partial least squares analyses were performed to ob-
serve the analytical system behavior and to detect outlier samples. Moreover, the standard
measure of relative variance or relative standard deviation (RSD) was used to detect high
variance in features within the QCSs. For untargeted analysis in biomarker discovery, the
Food and Drug Administration (FDA) proposed RSD > 30% as being sufficiently high
enough to warrant removal of those variables with unacceptable reproducibility. Model
diagnostics were determined by how well the model fit the data (R2 or goodness of fit) and
how good the predictive ability of the model (Q2 or goodness of prediction) proved to be.
Thus, cross-validation simulates the true predictive power of the model [45].

4.2.6. Data Treatment

The detection of differential metabolites between the groups of study from the data
set was processed by using the “Statistical Analysis” module of Metaboanalyst. Candidate
biomarkers were selected based on the following three principal UVA and MVA criteria:
Student t-test (p corrected value by FDR < 0.05), fold change (FC > 2) and VIP scores
according to the rule greater than one (VIP > 1).

4.2.7. Biomarkers’ Evaluation and Model Creation

Last, we assessed the predictive capability of the candidate metabolites as biomarkers by
the univariate AUC-ROC as well as in combination in a multivariate model [23]. To that purpose,
we used the module “Biomarker Analysis” in Metaboanalyst with 100 cross-validations using a
balanced Monte-Carlo sub-sampling approach and the PLS-DA algorithm.

4.2.8. Molecular Identification

The PV software (version 1.0 with Formula Finder plug-in version 1.0, AB SCIEX,
Concord, ON, Canada) was used to evaluate the LC−HRMS data obtained in LC–QTOF-
MS and to estimate the elemental formulae of pre-selected candidates based on the parent
ion mass, isotopic profile of the parent ion and the MS/MS mass spectra. A further search
for structural identification was achieved by comparison of the experimental fragmentation
with that provided in spectral databases (SIRIUS Software 5.8.6, CEU mass mediator, NIST
2014, MS/MS, MassBank, Metlin, Human Metabolome database).

5. Conclusions

The detection of 347 metabolomic features that discriminate HC and BC patients was
possible using our HILIC-HRMS strategy. Further work would be necessary in order to
set up the identification of more significant mass signals and the strategy presented here.
Nevertheless, according to our criteria, and despite the limitations found, the untargeted
LC−HRMS has been suitable in regard to detecting a metabolomic profile that successfully
discriminates between the HC and BC patients in a cost-effective and minimally invasive
way. Therefore, improvements to different LC−HRMS-based metabolomic approaches to
define a metabolomic signature related to the presence of the disease would be conclusive
in enhancing the early diagnosis of breast cancer and its molecular stratification, or to
predict the relapse after a therapy cure, hopefully leading, in the near future, towards better
and more precise treatment for this pandemic disease.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms25105098/s1.
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