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Abstract: Studying drug-target interactions (DTIs) is the foundational and crucial phase in drug dis-
covery. Biochemical experiments, while being the most reliable method for determining drug-target
affinity (DTA), are time-consuming and costly, making it challenging to meet the current demands for
swift and efficient drug development. Consequently, computational DTA prediction methods have
emerged as indispensable tools for this research. In this article, we propose a novel deep learning
algorithm named GRA-DTA, for DTA prediction. Specifically, we introduce Bidirectional Gated
Recurrent Unit (BiGRU) combined with a soft attention mechanism to learn target representations.
We employ Graph Sample and Aggregate (GraphSAGE) to learn drug representation, especially to
distinguish the different features of drug and target representations and their dimensional contri-
butions. We merge drug and target representations by an attention neural network (ANN) to learn
drug-target pair representations, which are fed into fully connected layers to yield predictive DTA.
The experimental results showed that GRA-DTA achieved mean squared error of 0.142 and 0.225 and
concordance index reached 0.897 and 0.890 on the benchmark datasets KIBA and Davis, respectively,
surpassing the most state-of-the-art DTA prediction algorithms.

Keywords: drug-target interactions (DTI); deep learning; Bidirectional Gated Recurrent Unit (BiGRU);
Graph Sample and Aggregate (GraphSAGE); attention neural network (ANN)

1. Introduction

Exploring drug-target interactions (DTIs) is instrumental in elucidating the mecha-
nism of drug action, thereby offering valuable insights for drug design and development.
However, constrained by manpower, material resources, and financial resources, conven-
tional biological experiments like high-throughput screening struggle to achieve large-scale
applications and meet the practical requirements. Consequently, the precise and reliable
calculation predictive methods for DTIs have become a prevalent tool in DTI research.

Traditional DTI computational methods encompass molecular dynamics simulation [1]
and molecular docking [2]. Molecular docking can emulate the docking modes of protein
macromolecules and small compound molecules, thereby simulating a variety of potential
binding poses. It then calculates scoring functions to minimize the free energy at bind-
ing sites. Despite having strong biological interpretability, molecular docking requires
substantial computing resources and exhibits slow calculation speeds. Furthermore, the
limited availability of proteins with accurate 3D crystal structures restricts the applicability
of these algorithms.

In recent years, the emergence of publicly available drug and target databases has high-
lighted the potential of machine learning (ML). As a data-driven computational method,
ML effectively leverages vast amounts of data from related databases for supervised learn-
ing, thereby expanding its application prospects in drug discovery. Initial research treated
DTI prediction as a binary classification task, solely distinguishing between combination
and non-combination categories. Inspired by the methods employed in other association
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prediction studies in the field of bioinformatics [3-8], these methods incorporated phar-
macological data of drugs and targets or constructed heterogeneous networks that linked
drugs, targets, and other biological entities for prediction [9]. However, these methods
incur some degree of information loss, as well as challenges including determining the
threshold for combination and non-combination, and the lack of reliable non-combination
samples [10].

Subsequently, Tang et al. [11] proposed modeling DTI predictions as a regression task
using drug-target affinity (DTA) to precisely reflect the DTI intensity. DTA is a category
of data capable of illustrating the strength of the binding interaction between drugs and
targets. Typically, this refers to the dissociation constant (K;), inhibition constant (K;),
and half-maximal inhibitory concentration (ICsg). The lower these values are, the greater
the affinity.

Early ML-based DTA prediction methods predominantly employed traditional ML
techniques. Example of this are the Kronecker regularized least-squares (KronRLS) algo-
rithm for DTA prediction proposed by Tang et al. [11] and the gradient boosting-based
DTA prediction algorithm SimBoost [12] developed by He et al.

These methods heavily depend on intricate feature engineering and necessitate ex-
tensive expert domain knowledge. Additionally, the features extracted artificially often
encounter issues such as information loss and an inability to adapt to specific tasks. In
contrast, deep learning (DL) methods integrate feature representation learning and model
training within an end-to-end architecture, which allows for the automatic learning of
effective representations from raw drug target data, capturing potential rules of DTAs.
Consequently, these methods exhibit superior generalization capabilities on larger datasets
and have achieved significant enhancements in prediction accuracy.

Representing both drug and target as 1D sequences (i.e., the simplified molecular-
input line-entry system (SMILES) of drugs and amino acid sequences of target proteins),
commonly used DL algorithms in natural language processing (NLP) was employed in
DTA prediction, such as Convolutional Neural Networks [13-15] (CNN), Recurrent Neural
Networks [16,17] (RNN), and transformer [18,19]. The potential of attention mechanisms
was also explored [20,21]. Theoretically, these algorithms can extract DTA-related features
automatically from the raw full target residue sequence in the absence of protein binding
pocket structure. DeepDTA [13] proposed by Oztiirk et al. is the earliest DL-based DTA
prediction algorithm, which adopts CNN to learn representations from drug SMILES and
amino acid sequences of target protein separately, then concatenates them and predicts
DTAs through a fully connected network. Zhao et al. propose AttentionDTA [20], which
introduces two attention mechanisms based on DeepDTA to focus on the important parts
of protein (drug) sequences according to drug (protein) sequences. MT-DTI [19] proposed
by Shin et al. utilizes a multilayer bidirectional transformer to encode drug SMILES to
capture long-distance relationships between atoms in drugs. MGPLI [18] proposed by Wang
et al. uses both character-level and fragment-level features and adopts a transformer-CNN
encoder to extract high-level drug and target features followed by highway feedforward
layers to solve feature redundancy.

Drugs can also be represented as 2D molecular graphs, which is advantageous for cap-
turing the topological structures of drug molecules. Consequently, numerous researchers
have integrated encoders designed for sequence and Graph Neural Networks (GNN),
developing various DTA prediction algorithms. Nguyen et al. proposed GraphDTA [22],
which employed the open-source cheminformatics software RDKit (version 2023.3.3) [23]
to transform SMILES of drugs into molecular graphs. Subsequently, they utilized four
types of GNN: GCN (Graph Convolutional Network), GAT (Graph Attention Network),
GIN (Graph Isomorphism Network), and a combined GAT-GCN architecture to generate
drug representations. Lin introduced DeepGS [24], which employs Smi2Vec and Prot2Vec
to encode target sequences respectively. Subsequently, it utilizes GAT and Bidirectional
Gated Recurrent Unit [25] (BiGRU) to learn the multimodal representations of drugs. Both
GraphDTA and DeepGS still use CNN to learn target representations.
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In this study, we proposed a novel algorithm based on Graph Sample and Aggregate
(GraphSAGE) [26], BiGRU, and Attention Neural Network (ANN) for DTA prediction,
named GRA-DTA. Target protein sequence representations are learned using an attention-
based BiGRU which can maintain context, thereby learning the sequence representation
of target proteins and emphasizing crucial sections related to DTA in extended protein
sequences. Meanwhile, to harness the topological information of drugs, drug molecules are
modeled as graphs, of which representations are learned via GraphSAGE. Subsequently, an
ANN is applied to capture the varying attention weights of each specific drug-target pair
by merging drug and target representations and then obtaining the representations. Finally,
representations of drug-target pairs are fed into fully connected layers and continuous
values of unknown DTAs are predicted. Experiments on domain benchmark datasets
demonstrate that GRA-DTA exhibits high accuracy and surpasses baseline methods. The
contributions of this article are delineated below:

(1) We propose a new DTA prediction algorithm, GRA-DTA, based on soft attention-based
BiGRU, GraphSAGE, and ANN.

(2) We conduct comparative experiments on benchmark datasets to substantiate the
efficacy of the proposed algorithm. Additionally, we conduct ablation experiments
to demonstrate the significance of individual modules. Furthermore, we assess the
performance of GRA-DTA across three experimental scenarios of cold start. The case
study focused on the COVID-19 target proves the application prospect of GRA-DTA
in drug repurposing.

2. Results
2.1. Experimental Setting

We introduce Davis and KIBA for evaluation of GRA-DTA. In the experiment, the
datasets were first partitioned into two segments by a ratio of 5:1 for training and indepen-
dent testing.

We deployed the experiment on the NVIDIA 3090 with 8 GB memory. The optimizer
was Adam optimizer with a learning rate set to 2 x 10~*. For the smaller Davis datasets,
the batch size was set to 128. In the case of the larger KIBA datasets, the batch size was 256.
The number of training epochs was set to 600, and a dropout rate of 0.2 was applied.

Several key hyperparameters, including the layer of in BIGRU and the layer of Graph-
SAGE, determine the model structure and thus impact the overall performance. To identify
the optimal parameter settings, five-fold cross-validation (5-CV) was conducted using the
smaller Davis dataset. Specifically, the training set was further randomly split into five
folds of equal size, with each fold alternately used as the validation set, and the remaining
four folds used as the training set. The average of the five-fold results served as final
performance for a particular hyperparameter combination.

The specific hyperparameter settings are illustrated in Table 1.

Table 1. Hyperparameter settings of GRA-DTA.

Hyperparameter Value

Epochs 600

Batch size 128 (Davis), 256 (KIBA)
Learning rate 2 x 1074
Optimizer Adam

Dropout rate 0.2

Layer of BiGRU 2

Layer of GraphSAGE 3

Node embedding dimension of drug molecular encoder {32, 64, 128, 256}
Hidden-state dimension of target protein encoder {32, 64, 128, 256}
Dimension of drug and target representations {64,128, 256}

Bold: optimal parameters for the best performance.
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2.2. Comparison with Other Algorithms

To showcase the effectiveness and advancement of GRA-DTA, we have chosen five
state-of-the-art DL algorithms as baselines: DeepDTA, MT-DTA, DeepGS, GraphDTA, and
MGPLL For a fair comparison, baseline algorithms followed the same training—testing
split methodology as GRA-DTA. We evaluated the performance of algorithms with the
mean squared error (MSE), concordance index (CI), and the regression toward the mean
index (r2,), whose calculation formulas are given in Section 4.2. The comparative results
are presented in Table 2 and Figure 1.

Table 2. Comparative results of GRA-DTA and baseline algorithms.

Dataset Algorithm MSE | CIt 2,1
DeepDTA 0.261 0.878 0.630

MT-DTA 0.245 0.887 0.665

Davic DeepGS 0.252 0.882 0.686
Graph-DTA 0.242 0.881 0.673

MGPLI 0.218 0.884 0.620

GRA-DTA 0.225 0.897 0.715

DeepDTA 0.194 0.863 0.673

MT-DTA 0.152 0.882 0.738

DeepGS 0.193 0.860 0.684

KIBA Graph-DTA 0.165 0.877 0.741
MGPLLI 0.159 0.891 0.753

GRA-DTA 0.142 0.890 0.784

Bold: best value; underlined: second-best value; 1: larger values representing better performance; |: smaller
values representing better performance.
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Figure 1. Performance comparison of GRA-DTA and baseline algorithms.

On the Davis dataset, GRA-DTA achieves the second lowest MSE, surpassed only by
MGPLI. For CI 7%, it achieves a performance improvement of 0.01 and 0.029 compared
to the suboptimal methods. On the KIBA dataset, GRA-DTA achieves a performance
improvement of 0.017 and 0.031 on MSE and r2,, respectively, while CI is only 0.01 lower
than MGPLL

2.3. Ablation Experiments

To ascertain the efficacy of each component of GRA-DTA and to discern the primary
factors that impact performance, we undertook an ablation study.

In this section, GraphDTA is employed as our baseline. In contrast to GraphDTA,
GRA-DTA replaces the CNN encoder for target protein sequences with soft attention-based
BiGRU, uses GraphSAGE instead of GIN as drug molecule graph encoder, and learns
drug-target pair representation by ANN rather than simple concatenation. We conduct
ablation experiments by gradually removing components of GRA-DTA. The following are
variants of our algorithm:
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GRA_no_att: remove the soft attention module from the original framework and
directly input the flattened BiGRU output into a linear layer to derive the representation of

the target protein.

GRA_no_ann: remove the ANN module from the original framework and simply
concatenate the representations of drugs and targets to predict DTA.
GRA_no_att_ann: remove both the ANN module and soft attention module from the

original framework.

The results of the ablation experiments are presented in Table 3 and Figure 2.

Table 3. Results of ablation experiments for GRA-DTA.

Dataset Variant MSE | CIt 2,1
GRA 0.225 0.897 0.715

GRA_no_att 0.227 0.893 0.709

Davis GRA_no_ann 0.228 0.894 0.695
GRA_no_att_ann 0.230 0.886 0.695

Graph-DTA 0.242 0.881 0.673

GRA 0.142 0.890 0.784

GRA_no_att 0.145 0.887 0.779

KIBA GRA_no_ann 0.147 0.888 0.771
GRA_no_att_ann 0.153 0.886 0.762

Graph-DTA 0.165 0.877 0.741

Bold: best value; underlined: second-best value; 1: larger values representing better performance; |: smaller

values representing better performance.

Davis Davis
0.30 0.92-
0.28 0.90-
(1) 0.26 0.881
72} I I‘LE
= 024 0.861
0.22 0.844
0.20 0.82-
& & & &
NS S
B > o _Q./ s - & Fd g o
F 3 el S F > o o &
g Q?@s < S 0@@5 S
I &
KIBA KIBA
0.20 0.904
0.18 0891
[ 0.16
2 T 0.881 o E
= 014
0.12 0871
0.10 086
™ & & $ Ay \x N & & <
9& 0? o?\\ \3\\ Q& .0& ‘39 o(/b(\ \\?\\ »0&
OQX' Q_,Y’? s &? @é\ Gzy q}"sg? (\Q/b @é\\
[CI o € < & W o
& &

Davis
0.72
0.70
TN
0.684
0.66
0.64
0.62
PR G P
‘?*'o &7 Qo? {}(&? ‘\2{\0
S Aadd ; .
F O@QXJ\O/ o
€
KIBA
0.80
0.78
0.764
0.74
0.72
0.70
L R S A &
MM T TS
P 7 S ¥
&F & PO T
1 S
€

Figure 2. Results of ablation experiments for GRA-DTA.

In general, the overall trend of experimental results on Davis and KIBA datasets, as
depicted in Figure 2, indicates that the removal of any individual component leads to
a degradation in prediction performance. Notably, the full GRA-DTA delivers superior

predictive performance.
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The GRA_no_att_ann outperforms Graph-DTA, which is ascribed to the capacity of
BiGRU to capture the context dependency of protein long sequences more effectively than
CNN, which solely learns local features of sequences. The GRA_no_ann with soft attention
decreases the MSE by 0.002 and increases the CI by 0.008 on the Davis dataset, decreases
the MSE by 0.006, and increases the CI by 0.002 on the KIBA dataset, which is because the
attention mechanism focused on important parts of DTA in long sequences of proteins.
The GRA_no_att with ANN decreases the MSE by 0.03 and increases the CI by 0.007 on
the Davis dataset, decreases the MSE by 0.08, and increases the CI by 0.001 on the KIBA
dataset. The reason for the performance improvement is that the ANN considers different
contributions of different features and dimensions.

2.4. Performance Evaluation on Cold Start Scenarios

Prior experiments randomly split the training and testing sets, resulting in an overlap
of drugs and targets between testing and training sets. However, DTA prediction algorithms
are typically employed for screening novel candidate compounds and target discovery
in real-world drug discovery. The algorithms must predict the affinity of drugs (targets)
without any known affinity, which implies that there is no overlap between the drugs
or targets in the testing set and the training set. To accomplish this task, the algorithm
must possess robust generalization capabilities to discover potential patterns in DTI. We
establish three cold-start scenarios to evaluate the efficacy of the GRA-DTA in practical
application scenarios.

Cold drug scenario: the drugs present in the training dataset are absent from both the
validation and testing sets.

Cold Target scenario: the targets present in the training dataset are absent from both
the validation and testing sets.

Cold drugs-target scenario: both the drugs and targets present in the training set are
absent from validation and testing sets.

In this section, we select GraphDTA and MGPLI, which exhibit optimal performance
under a random partition as our baselines. In each experiment, the training set, validation
set, and testing set are split by a ratio of 8:1:1. To ensure the stability of our experimental
results, we repeat the experiment five times, averaging the values to obtain the final result
and employ the same method for dividing the training-testing sets across all methods. The
experimental results of all methods under cold start scenarios are presented in Table 4 and
Figure 3.

Table 4. Performance comparison of GRA-DTA and baseline algorithms on cold start scenarios.

. Davis KIBA
Scenario

Algorithm MSE | CIt 2,1 MSE | CIt 2,1

GraphDTA 0.557 0.735 0.157 0.349 0.761 0.444

cold-drug MGPLI 0.895 0.584 0.002 0.50 0.725 0.265
GRA-DTA 0.578 0.725 0.121 0.337 0.765 0.466

GraphDTA 0.439 0.770 0.393 0.519 0.651 0.278

cold-target MGPLI 0.457 0.792 0.352 0.531 0.673 0.247
GRA-DTA 0.376 0.827 0.453 0.435 0.692 0.355

GraphDTA 0.656 0.607 0.030 0.473 0.647 0.181

cold-target-drug MGPLI 0.654 0.556 0.032 0.640 0.611 0.051
GRA-DTA 0.560 0.690 0.101 0.441 0.657 0.228

Bold: best value; underlined: second-best value; 1: larger values representing better performance; |: smaller
values representing better performance.

GRA-DTA outperforms in all scenarios except for the cold-drug scenario on the Davis
dataset. This discrepancy may be caused by the limited number of unique drugs (68), which
may lead to insufficient model training. However, under cold target and cold drug-target
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scenarios, our algorithm shows an overall improvement of 10.7% and 13.5% in MSE and CI

compared to suboptimal methods.
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Figure 3. Performance comparison of GRA-DTA and baseline algorithms on cold start scenarios.

The experimental results on the KIBA dataset are more representative, with GRA-DTA
showing an overall improvement of 4.7%, 11.1%, and 4.1% in MSE and CI compared to
suboptimal methods under cold-drug, cold-target, and cold target-drug scenarios. The
significant performance under the cold-target scenario suggests that our algorithm is more
effective at capturing protein features.

2.5. Case Study

We also undertake a case study focused on COVID-19 to further assess the efficacy
of GRA-DTA in practical drug repurposing. We chose SARS-CoV-2 3C-like protease [27]
(3CLpro) as the target. This cysteine protease is crucial in genome replication and the
expression of coronaviruses, and it has emerged as a significant target for drug development
and antiviral research.

We chose 84 antiviral drugs that have been approved for marketing and 3 unrelated
drugs, namely Artemisinin, Penicillin, and Aspirin. SMILE strings of the 87 drugs obtained
from PubChem were combined with the amino acid sequences of 3CLpro obtained from
Uniprot to form drug-target pairs, which were input into the GRA-DTA trained based on
the larger KIBA dataset.

Table 5 provides a partial view of the prediction results. Among the top 10 drugs
predicted by our GRA-DTA with the highest affinity to 3CLpro, 6 have been confirmed to
have a certain therapeutic effect on COVID-19 by relevant literature research.

Table 5. Ranks of the top 10 antiviral drugs and 3 unrelated drugs predicted by GRA-DTA.

Rank Drug Structure PubMed ID Rank Drug Structure PubMed ID
? p 32227493 [28]; 'g‘
1 Ribavirin i o{ﬁ:‘ 34991982 [29]; 8 Acyclovir ?“‘10 0 36101854 [31]
v 34916812 [30] b4
y TR A ‘ »
2 Didanosine wa A > 35785294 [32] 9 Entecavir } 83 -
? v
(o) b
3 Zalcitabine  { Ia":@ - 10 Abacavir by X v 33916747 [33]
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4 Peramivir %{J J - 67 Artemisinin %"% g‘o' b -
9 2 L
1Y 2y
3 4
. ~4$, o 33168456 [34]; . v
5 Etravirine .Ogo(}‘g X 35409412 [35] 79 Penicillin ;@y xd -
6 Taribavirin v‘!o sﬁ‘ - 87 Aspirin -
L Iy
2
7 Methisazone 01 Soer i 32278693 [36]
|
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Ribavirin, with top-ranked predicted affinity, is a guanosine analog that disrupts
the replication of RNA and DNA viruses. The second-ranked Didanosine is an ino-
sine/adenosine/guanosine analog, both of which were initially used to treat infection
of human immunodeficiency virus (HIV). According to the Fifth Edition of the Treatment
Protocol, the Chinese government has recommended the use of Ribavirin for the treatment
of COVID-19 [28]. There are also studies proving that the median effective concentra-
tion (ECsp) value of Didanosine against SARS-CoV-2 in vitro exceeds that of Remdesivir,
which has been approved for the treatment of COVID-19 [32]. The 3D pose of the ligand-
protein binding state between the two drugs, including Ribavirin (PubChem CID: 37542)
and Didanosine (PubChem CID: 135398739) with 3CLpro (PDB ID: 7NXH), is plotted in
Figure 4.

Didanosine

Ribavirin

drug 3CLpro residues involved in interactions

Figure 4. Three-dimensional pose of ligand-protein binding state between drugs ((left): Ribavirin with
a binding energy of—7.35 kcal/mol; (right): Didanosine with a binding energy of—b5.08 kcal /mol)
and target 3CLpro, where cyan part is drug molecule and yellow part is target protein, in which
residues that interact with the drug are represented in green. Yellow dashed line is hydrogen bond
between residues and drug atoms, and number in black represents bond length (A).

The ranks of 3 unrelated drugs we added are 67, 79, and 87 among the 87 drugs, which
is consistent with reality and proves the reliability of our algorithm in drug repositioning.

3. Discussion

In this study, we introduce a novel DL-based algorithm GRA-DTA for DTA predic-
tion, and conducted comparative experiments between GRA-DTA and state-of-the-art DL
algorithms on the benchmark datasets Davis and KIBA.

To provide further insight into the performance of GRA-DTA, Figure 5shows the
distribution of prediction results for test samples on the Davis dataset and KIBA dataset,
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where the X-axis and Y-axis represent the predicted values and actual affinity values of
identical samples. The red solid line delineates the linear fit to the scatter points, and the
black dottedline is y = x representing perfect prediction. It can be seen that the scatters
are densely distributed around the black dashed line on both datasets, and the red solid
line coincides with the black dashed line, which indicates that the algorithm has good
predictive performance. We also calculated the spearman correlation coefficient of our
model, which is 0.712 on Davis dataset and 0.883 on KIBA dataset.

Davis KIBA
114
2161 »
Q’ 10+ § ,:‘,-.r
] < 14/ S
§ 9 2 & 14 h
g 84 ) e B é s o
= Sally S 12 v
5 71 ‘S ReET gl
& s = .
G} Ly g =
6] 3 210
- 5
5 =iz ¢
5.6 7 8 9 10 11 o 12 14 16
Predicted value Predicted value

Figure 5. Relationship between prediction value of GRA-DTA and ground truth. For Davis dataset,
linear fit result (red solid line) has slope of 0.998 and intercept of 0.036. For KIBA dataset, linear
regression result (red solid line) has slope of 1.005 and intercept of —0.07. the black dotted line is
y = x representing perfect prediction.

According to the evaluation results presented in Section 2.2, GRA-DTA demonstrates
competitive performance against baseline algorithms. This is primarily attributed to
the fact that DeepDTA, MT-DTA, and MGPLI only utilize drug SMILES, whereas GRA-
DTA employs the molecular graph representation of drugs, thus avoiding the loss of
topology information in the molecular structure. Additionally, GraphDTA and DeepGS
solely employ a CNN encoder for target protein feature extraction. However, since CNNs
can only capture local correlations in sequences and protein sequences are lengthy, a
simple CNN fails to adequately capture the contextual dependencies in protein sequences.
GRA-DTA utilizes a soft attention-based BiGRU, which is more adept at capturing long
sequence features and aggregates the target protein sequence features using a soft attention
mechanism to amplify the significance of residue features strongly correlated with DTA
in the target protein sequence. Moreover, unlike all baseline algorithms, which simply
concatenate the feature vectors of drugs and targets for DTA prediction, GRA-DTA uses an
ANN to fuse the representations of drugs and targets, thereby contributing to enhancing
prediction performance.

It is also observed that MSE on the Davis dataset is always worse than that on the
KIBA dataset, which indicates that it is more challenging to obtain an ideal MSE on
the Davis dataset. This difficulty arises due to the label distribution on this dataset is
concentrated around a smaller value of five, and the number of samples with small label
values significantly exceeds that of those with large values. Consequently, the algorithm is
prone to predict a minor affinity and fall into local optimums. As illustrated in Figure 5, the
distribution of dots above and below y = x is not balanced, with more dots being above the
y = X. This suggests that more predicted affinity is smaller than actual affinity. Moreover,
the KIBA dataset is approximately four times larger than the Davis dataset. Therefore,
the KIBA dataset can provide a more comprehensive and diverse data distribution, which
enables the model to be trained more effectively, enhancing its generalization capabilities
and mitigating the risk of overfitting. So, it showed superior performance in MSE, a metric
that accurately quantifies the numerical discrepancy between the predicted and actual
affinities. In conclusion, to enhance the prediction accuracy on the Davis dataset, well-
designed mechanisms are needed to prevent the model from prematurely converging to
an unbalanced state. Controlling the complexity of the model to predict overfitting is also
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important. Furthermore, it also can be seen that the CI on the KIBA dataset is marginally
lower than that on the Davis dataset for all algorithms, which can be attributed to the labels
on the KIBA dataset being characterized by minimal differences and low discrimination.
This makes it challenging to promote CI, which focuses on assessing the ranking capabilities
of algorithms.

Moreover, we identified a few limitations of GRA-DTA during our experiments.
According to the evaluation results on cold start scenarios presented in Section 2.3, it can
be seen that GRA-DTA falls behind GraphDTA on the Davis dataset in the cold-drug
scenario. This discrepancy may be caused by the limited number of unique drugs (68),
which may lead to insufficient model training. It also indicates that our proposed algorithm
has shortcomings in capturing drug features, which is our future improvement direction.
We believe that the inclusion of more additional chemical information of drugs, using
multimodal representations of drugs or introducing the utilization of pre-trained models
and transfer learning, will help to solve this problem.

4. Materials and Methods
4.1. Benchmark Datasets

In this study, we selected two commonly used benchmark datasets in DTA prediction:
Davis and KIBA.

The Davis dataset was collected by Davis et al. [37] and contains 30,056 binding affinity
values between 68 drugs and 442 target proteins, which are represented by K;. To reduce
the range of K; values, Similar to He et al. [12], we transformed K into log space and
calculated pK; as a measure of affinity.

_ K

The KIBA dataset was collected by Tang et al. [38] and then filtered and normalized
by He et al. [12]. KIBA consists of 118,254 binding affinity values expressed as KIBA scores
between 2111 drugs and 229 target proteins. The KIBA score integrates the information
contained in Kj, K, and ICs), which is calculated as shown in Equation (2) in which L; and
L; are two fixed weight parameters.

= 1Cso
Kir = 1+L;(ICs0/K;)

_ IC
Kqr = 1+Ld(1(~§§0/1<d)
Kt if ICsg and K; are present (2)
KIBA score = Ky! if ICsp and K, are present

(Ki +Ky)/2 if all present

The chemical structure information of the drugs is represented by SMILES, which
were collected from the PubChem database [39]. The primary information of target proteins
was represented by amino acid sequences, which were collected from the UniProt database.
The results of the datasets are summarized in Table 6.

Figure 6 depicts the distribution ranges of affinity values, drug SMILES length, and
amino acid sequence length in Davis and KIBA datasets. It shows that the SMILES length
of most drugs in the two datasets is <100 and the amino acid sequence length of target
proteins is <1500. The vast majority of pK; in the Davis dataset are concentrated at 5, which
corresponds to an extremely low affinity. The KIBA scores in the KIBA dataset are similarly
concentrated in the middle part with a normal distribution.

Table 6. Summary of Davis and KIBA datasets.

Davis KIBA

No. of drugs 68 2111
No. of proteins 442 229
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Table 6. Cont.

Davis KIBA
No. of binding affinities 30,056 118,254
Maximum length of drugs 103 590
Maximum length of proteins 2549 4128
The average length of drugs 64 58
The average length of proteins 788 728
Affinity Measures pKy KIBA score
Range of affinities 5.0~10.8 0.0~17.2
Davis Davis Davis
® 25,000 10 80+
'z _ 0] g
220,000 w8 a1
= % £ 607
2 2 2501
s 15,000 £ 6 u £'507
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Figure 6. Distribution ranges of affinity values, length of drug SMILES, and length of target sequences

in Davis and KIBA datasets.

4.2. Evaluation Metrics

Modeling DTA prediction as a regression task, we evaluated the performance of
algorithms with the MSE, CI, and r%r

MSE can measure the gap between the predicted affinity value and the actual affinity value.

The calculation formula for CI is as follows, where p; represents the predicted value
of the sample with a larger affinity value y;, p; is the predicted value of the sample with
a smaller affinity value y;, and Z is the normalization constant that equals the number of
data pairs with different actual affinity values.

1
Cl=— ) hpi—p)) ®)
Yi>Yj

h(.) is a piecewise function calculated as fellows.

1, x>0
05,x=0 4)
0,x<0

h(x) =

CI can evaluate the ranking ability of the algorithm, that is, whether the order of
predicted drug-target affinity is consistent with the true order. The value of CI ranges from
0to 1, and if CI > 0.5, it indicates that the algorithm performs well.

The calculation formula of 72, is as follows, where 12 and r% are the square correlation
coefficients with and without intercepts.

2 =1 (1— /12— 1) ()
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r2, evaluates the external prediction performance of the quantitative-structure activ-
ity relationship (QSAR), and r2, > 0.5 represents that the performance of the algorithm
is acceptable.

4.3. Proposed Algorithm Architecture

The proposed algorithm GRA-DTA includes three modules: drug molecular encoder,
target protein encoder, and DTA prediction modules. We represent drug molecules with
graphs and target proteins with one-hot encoding of amino acid sequences. Initially, target
representations are learned via a BIGRU and soft attention-based target protein encoder.
Ultimately, drug representations are learned via a GraphSAGE-based drug molecular
encoder. Subsequently, drug and target representations are merged by ANN and fed into
the fully connected layers to make DTA predictions. The overall architecture of GRA-DTA
is shown in Figure 7.

ol=[=
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Figure 7. Overall architecture of GRA-DTA. (A) Structure details of BiGRU, (B) process details of
soft-attention mechanism, (C) sample and aggregation details of GraphSAGE, (D) process details
of ANN.
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4.4. Target Protein Representation

For targets in the benchmark datasets, as mentioned above, the amino acid sequences
have been obtained, which are sequences of ASCII characters composed of 25 combinations
of letters, where each letter represents a specific type of amino acid. We map these letters to
integers from 0 to 24 and obtain the feature matrix X' € R LxC" of the target protein with
one-hot encoding, where L is the length of the target sequence and C' = 25 represents the
dimension of the amino acid features.

To maintain the integrity of the majority of sequence features while ensuring process-
ing efficiency, according to the statistical results of the dataset mentioned above, the target
protein sequence length is fixed to L = 1000. For target protein sequences that exceed 1000,
some parts are truncated, and those that are insufficient are padded with 0.

4.5. Drug Molecular Representation

For drugs in the benchmark datasets, as mentioned above, the SMILES have been
obtained, and RDKit was used to construct a drug molecular graph. With the atoms as the
nodes and the chemical bonds as the edges, a 2D graph G“= (V, E) of the drug molecule
was established in which V = {0;}Y is the set of atoms, E = {ej}].j\il is the set of edges, N
is the number of atoms, and M represents the number of chemical bonds. The digitized
representation of a drug molecular graph is represented by the edge index EI € R 2*M and
the node feature matrix X4 € RN Xcd, where C? = 78 is the dimension of node features.

The node features adopt the atomic characteristics adapted from DeepChem [40],
which include the atomic category (44 categories), degree of the node (0-10), hydrogen
atom quantity connected to the atom (0-10), valence of the atom (0-10), and whether the
atom has aromaticity (true or false). We use one-hot encoding to encode these categories of
features into a C? = 78-dimensional binary feature vector.

4.6. Target Protein Encoder Based on BiGRU and Soft Attention

The target feature matrix X' passes through an embedding layer to obtain the em-
bedding representation X! € R L*D', where D' is the amino acid embedding dimension.
Subsequently, BiGRU is used to extract the features of the target protein sequence as shown
in Figure 7A.

The target protein sequence is regarded as a time series X! = {x, x5... x1.},
t =1 ... L. Supposing x; is the input at time step ¢, /; is the hidden state of GRU at
time t. The hidden state at time ¢ is related to the hidden state at time t — 1, and GRU
controls the flow of information through a gating mechanism. The calculation formula of
update gate z; is as follows:

zt = o (xWy + by Uy) (6)

The calculation formula of reset gate ; is as follows:
1y = (T(thr 4+ hi_q Ur) (7)

where W, U;, W;, and U, are the learnable weight matrices. The weight matrix is a key
component of all kinds of neural networks, W, and U, determine the degree of influence
of input x; and h;_1 on output z;. Similarly, W, and U, determine the extent to which the
input x; and h;_; influence the output r;. They are learned during the training process by
the back-propagation algorithm. ¢(.) is the Sigmod activation function, so the values of z,

r+ are between 0-1. The candidate state h; is calculated as follows:

Iy = tanh(x:Wx + (riOh_1)Us) 8)
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where r¢ controls the proportion of information acquired from the historical state ;1 to the
candidate state /1;, Wy is the learnable weight matrix, tanh(.) is the tanh activation function,
and © is element-wise multiplication. The hidden state at time ¢ is calculated as follows:

hy = (1 — Zt)Ql’lt_l + ZtQ;’lJt 9)

where z; controls the proportion of currently hidden state h; to obtain information from

historical state h;_; and candidate state h;.

The information flow in GRU is unidirectional, moving solely from the previous
context to the current, while the characteristics of a segment within a protein sequence
are not exclusively linked to the preceding context. Hence, we consider introducing
BiGRU, which comprises two GRUs in opposite directions. At each time step, the input
simultaneously integrates the hidden states of these two GRUs, and the output is jointly
determined by both unidirectional GRUs. The specific calculation is as follows:

— —
l’lt = GRU(xt, ht—l)
— —
hi = GRU(xy, hy_q) (10)
—
he = hy|[hy
— —
where h; and h; are the forward and backward hidden states, respectively, | | represents
the concatenation operation, and #; is the final output at time ¢.

Through BiGRU, the hidden state of the target protein sequence is obtained and
denoted as H' = {hy,hy ... h}, h € R?P ', We introduce a soft attention mechanism to
focus on the key information related to DTA in the long sequence of target proteins, as
shown in Figure 7B. The attention weight vector a; of the i-th hidden state is calculated
as follows:

 ftma(a(h ) SPO0)
oy = softmax(s(h) = = T (8

where s(.) is the attention score function and is calculated as follows:
s(h;) = Ug.tanh(W,h;) (12)

where U,;, and W, are learnable weights matrices and tanh(.) is the tanh function. Finally, the
output att(H") of the attention layer is obtained by the weighted sum of inputs according
to attention weights:

L
att(H') =Y a;h; (13)
i=1

After that, we down-sample the att(H') by a linear layer, obtaining the representation
of the target protein Y! € RP. D denotes the vector dimension.

4.7. Drug Molecular Encoder Based on GraphSAGE

For the drug molecule graph G, the initial node feature is X4 = {x1, x... xn},
v =1... N. We use GraphSAGE, whose efficacy in learning molecular representations has
proven to learn the node embeddings [41].

The core idea of GraphSAGE is to sample and aggregate neighborhoods. Assuming
there is a K-layer network, for the central node v, the initial node embedding hg = Xy, In
each layer, a fixed size of neighbors Z was sampled (if the number of neighbor nodes is
less than Z, repeated sampling is performed), then the embedding of v was updated by
aggregating information from its neighboring nodes. The details of GraphSAGE are shown
in Figure 7C.
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The aggregation function is Equation (14), where hlI{\](v) € RP’ denotes the embedding

of the neighbors of v in the k-th layer, which are obtained by mean aggregation:

h’;\,(v) — mean(U(Wgoolhﬁi_l +b)) (14)
Yu; € N(v)

hlfllfl is the embedding of neighbors of v in the k—1-th layer, N(v) represents the set of
neighbors of v, W’;O o1 18 the learnable weight matrix, b is the bias term, and 0¥(.) is the ReLU
activation function. Subsequently, the node embedding of v in the k-th layer, represented
by Kk, are updated according to Equation (15):

HS < o (Wi (g [ 0) (15)

where W¥ is the learnable weight matrix and | | represents the concatenation operation.

We also conduct a batch normalization following each GraphSAGE layer activated by
a ReLU function to alleviate the vanishing or exploding gradient.

After several GraphSAGE layers, we choose global max pooling to aggregate the
learned node embeddings to learn the most significant features in the drug molecular graph
and pass it through a linear layer with the ReLU activation function to obtain the final drug
representation Y¢ € RP. D denotes the vector dimension.

4.8. DTA Prediction Based on ANN

After obtaining Yid of drug i and th of target j, prior research employed a simple con-
catenation to obtain drug-target pair representation. However, the importance of different
parts of the feature representations varies in distinct drug-target interactions. Drawing
inspiration from Cheng et al. [42], we introduce the ANN to enhance the representation of
drug-target pairs by fusing YZ-"I and Y]?, as shown in Figure 7D. This module is capable of
capturing varying attention strengths associated with dimensions of drug-target pairs.

The representation of drug-target pair V;; € RP is characterized as:

Vij = a;;0(Y{ oY) (16)

where a;; is an attention vector that can capture the importance of different dimensions.
The attention coefficient 4; ;x of the k-th (k=1,2 ... D) dimension is calculated as follows:

exp(d; ;
a; iy = softmax(d; ) = _ oK) (17)
L] L D
Ym—1€Xp(a;jm)
where 4; i is the attention score, and is calculated by:
Bk = Ua - o(Wa(YF|[YY)) (18)

where U,;, W, are learnable weight vectors, o(.) is the ReLU activation function.

Finally, the drug representation Y?, target representation Y].t, and drug-target pair
representation Vj; are concatenated and then input into two-layer fully connected networks,
each followed by a dropout to prevent overfitting and a ReLU activation function. After that,
a continuous value of predicted affinity y; is obtained through a final fully connected layer.

MSE is adopted as the loss function:

n

MSE = %Z (pi — i) (19)
i1

where p; denotes the actual affinity value and n is the number of drug-target pairs in the
training set.
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5. Conclusions

In this article, we proposed a novel algorithm called GRA-DTA to predict DTA. The
drug molecules are represented as a graph and GraphSAGE is used to learn drug represen-
tations. The target protein sequence representations are learned with soft attention-based
BiGRU to effectively focus on the global features of the long sequence. Finally, the drug
and target representations are fused by an ANN to learn the representations of drug-target
pairs and feed them into fully connected layers to obtain prediction results. Experimental
results on benchmark datasets prove that GRA-DTA exhibits commendable performance
and outperform five baseline algorithms in certain metrics. Concurrently, we also evalu-
ate GRA-DTA under three cold start scenarios, which proves its superior generalization
capability in comparison to the baseline algorithms on the KIBA dataset, as well as the cold
target and cold drug-target scenarios of the Davis dataset. Ultimately, a case study focusing
on COVID-19 target 3CLpro demonstrates the potential of GRA-DTA for real-world drug
repurposing applications.

In future work, we aim to incorporate drug fingerprint [43] features to enhance drug
information and bolster drug discrimination. Furthermore, with the advent of the robust
protein structure prediction tool AlphaFold2, we can construct a protein graph utilizing
the predicted 3D structure, which would leverage the topological features of proteins to
enhance DTA prediction.
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