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Abstract: Antimicrobial peptides (AMPs) are promising candidates for new antibiotics due to their
broad-spectrum activity against pathogens and reduced susceptibility to resistance development.
Deep-learning techniques, such as deep generative models, offer a promising avenue to expedite
the discovery and optimization of AMPs. A remarkable example is the Feedback Generative Adver-
sarial Network (FBGAN), a deep generative model that incorporates a classifier during its training
phase. Our study aims to explore the impact of enhanced classifiers on the generative capabilities
of FBGAN. To this end, we introduce two alternative classifiers for the FBGAN framework, both
surpassing the accuracy of the original classifier. The first classifier utilizes the k-mers technique,
while the second applies transfer learning from the large protein language model Evolutionary Scale
Modeling 2 (ESM2). Integrating these classifiers into FBGAN not only yields notable performance
enhancements compared to the original FBGAN but also enables the proposed generative models
to achieve comparable or even superior performance to established methods such as AMPGAN
and HydrAMP. This achievement underscores the effectiveness of leveraging advanced classifiers
within the FBGAN framework, enhancing its computational robustness for AMP de novo design and
making it comparable to existing literature.

Keywords: antimicrobial peptides (AMP); protein function classification; gated recurrent neural
networks; k-mers; protein transfer learning; generative adversarial networks

1. Introduction

Antimicrobial peptides (AMPs) are small proteins that are naturally produced by many
organisms, including humans, as part of their innate immune response to infections [1].
AMPs are promising candidates for new antibiotics, as they have broad-spectrum activity
against a wide range of pathogens and are less prone to resistance development [2]. How-
ever, the design and optimization of synthetic AMPs present formidable challenges. The
vast sequence space of potential peptide candidates, coupled with the complex interplay
between sequence, structure, and function, make traditional experimental approaches to
AMP discovery time-consuming and resource-demanding [3]. In this context, the intro-
duction of deep-learning techniques provides a promising opportunity to speed up the
discovery of AMPs [4,5].

In recent years, there has been significant interest in utilizing deep-learning techniques
for developing new antimicrobial peptides (AMPs) [6–9]. A notable study by Gupta and
Zou [6] demonstrated successful AMP design through Generative Adversarial Networks
(GANs) [10], specifically introducing the Feedback GAN (FBGAN) model. As depicted in
Figure 1, FBGAN generates synthetic DNA sequences encoding proteins with antimicrobial
properties, utilizing three neural networks: a generator, a discriminator, and a classifier.
The generator creates synthetic peptide sequences while the discriminator evaluates them,
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distinguishing between real and generated peptides. Through adversarial training, the
generator improves its ability to produce sequences indistinguishable from real peptides.
Nevertheless, the critical aspect of the FBGAN framework for optimizing AMP function-
ality lies in the incorporation of a classifier. This classifier plays a pivotal role in guiding
the training process toward generating sequences with a high likelihood of being AMPs.
Specifically, it evaluates the generated sequences to determine whether they exhibit AMP
properties or not. Sequences with scores above a threshold of 0.8 are fed back into the
discriminator’s dataset, replacing previous sequences. This feedback mechanism plays
a crucial role in directing the training process toward producing sequences with a high
probability of being AMPs. However, determining the exact extent to which the classifier
influences the quality and effectiveness of de novo peptide design remains a crucial ques-
tion. Hence, this study aims to investigate the pivotal role of the classifier by examining how its
performance impacts the overall quality of newly designed peptides.

Figure 1. General FBGAN pipeline. The feedback loop during training replaces real data with
synthetic data over time.

In light of this objective, starting from the FBGAN classifier as our baseline, we
propose two alternative classifiers, each surpassing the other in performance. This gradual
approach enables us to assess how incremental improvements in classifier quality influence
the de novo design. It is important to note that state-of-the-art AMP classifiers heavily
rely on sophisticated feature extraction and selection techniques (e.g., [11–19]), along with
complex architectures such as graph transformers (e.g., sAMPpred-GAT [20]). While these
classifiers excel in accuracy, they are not well-suited for integration into generative models
due to their heavy computational demands and complexity. In contrast, our objective is
to utilize lightweight yet accurate classifiers that seamlessly integrate into the generative
framework, such as the proposed classifier of FBGAN, which solely relies on primary
sequence information. Notably, the FBGAN classifier employs Gated Recurrent Units
(GRUs) [21] and a simplistic representation, encoding protein sequences into numerical
sequences based on DNA base indices ({A:1, T:2, C:3, G:4}), potentially overlooking crucial
structural and functional aspects (see Figure 1).

In this work, we explore two alternative classifiers that also rely solely on the primary
sequence to provide more comprehensive representations capable of capturing the intricate
structural and functional information within protein sequences, (i) we utilize the k-mers
technique [22], a robust bioinformatics method that segments the sequence into subsequences
of length k, effectively capturing local structural and functional properties, and (ii) we
investigate transfer learning with Evolutionary Scale Modeling 2 (ESM2) [23], a pre-trained
large protein language model. ESM2 is trained on extensive protein data, enabling it to
learn representations or embeddings of protein sequences that capture rich structural and
functional information. While previous studies have employed the k-mers technique on
amino acid sequences [15,17], to the best of our knowledge, this work marks the first
application of the k-mers technique specifically to DNA sequences for AMP classification.
The evaluation results demonstrate that the k-mers representation surpasses the simplistic
numerical encoding used in the FBGAN classifier, striking a better balance between model
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and data size. On the other hand, the ESM2 approach outperforms both the initial simplistic
representation and the k-mers-based approach.

Subsequently, these classifiers are integrated into the FBGAN architecture, yielding
two alternative models: FBGAN-kmers and FBGAN-ESM2. We evaluate the performance
of these proposed models, comparing them not only against the original FBGAN but
also against top-performing methods for AMP generation, namely AMPGAN [7] and
HydrAMP [9]. Moreover, to ensure a fair and unbiased evaluation process in the perfor-
mance of the generative models, we utilize external classifiers. In particular, the perfor-
mance of each generative model in generating AMPs with high probability is validated
through CAMPR4 server [19]. This external platform for AMP classification is equipped
with various classifiers, including Support Vector Machine (SVM), Random Forest (RF),
and Artificial Neural Network (ANN) models. By leveraging these external classifiers, we
aim to minimize biases that may arise from the excessive tuning of our models to specific
training data, therefore enhancing their generalization to new or unseen data. This multi-
classifier approach contributes to robustness and reliability in computationally predicting
antimicrobial peptides. Overall, our assessment with CAMPR4 demonstrates that both
FBGAN-kmers and FBGAN-ESM2 exhibit superior performance compared to FBGAN,
underscoring the significance of a more accurate classifier. Furthermore, the proposed
alternative models outperform HydrAMP and compete favorably against AMPGAN.

The contributions of this paper are summarized below:

• Introduce two alternative classifiers based on k-mers and transfer learning with ESM2
for identifying AMPs, surpassing the baseline FBGAN classifier in performance.

• Propose two alternative generative models, FBGAN-kmers and FBGAN-ESM2, that
confirm superior performance compared to FBGAN, highlighting the significance of
incorporating advanced classifiers.

• Compare FBGAN-kmers and FBGAN-ESM2 with existing state-of-the-art methods for
AMP generation, demonstrating competitive performance.

The rest of the paper is organized as follows: Section 2 presents the results of our
comparative evaluation, including the performance of the proposed FBGAN-kmers and
FBGAN-ESM2 classifiers compared to the baseline FBGAN classifier and the state-of-the-art
generative models AMPGAN and HydrAMP. Section 3 discusses the implications of the
results, highlighting the significance of classifier accuracy in de novo peptide design efficacy.
Section 4 provides details on the materials, datasets, models, and methodologies used in
the study, while Section 5 concludes with a summary of the key findings and suggestions
for future research.

2. Results
2.1. Performance of Classifiers

This section evaluates the performance of the proposed models in terms of classifica-
tion accuracy. Each proposed model is measured against the FBGAN classifier. The results
presented in Figure 2 indicate that for every k-value, the models outperform the FBGAN
classifier. However, the performance of the model for k = 5 is suboptimal. One potential
reason the model exhibits poorer performance compared to the k = 2, k = 3, and k = 4
models could be due to overfitting. As reported in Table 1, with over 200K parameters, the
k = 5 model may have too much capacity relative to the dataset’s size and could quickly
memorize the training data instead of learning generalizable features. In addition to the
poorer classification accuracy of the k = 5 model, we also observed a higher variability in
its performance across multiple runs. This suggests that this model is unable to generalize
well to new data. It is worth noting that the complexity of the model should ideally align
with the size of the dataset, ensuring a proportional relationship between model complexity
and dataset scale. Thus, the observed limitations might stem from the dataset’s relatively
modest size rather than inherent flaws in the model’s design.
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Figure 2. Average classification accuracy for each proposed model and FBGAN classifier. The
standard deviation is reported in parentheses.

Table 1. Network parameters for the proposed k-mers-based, transfer learning-based, and FBGAN
classifier.

FBGAN k-Mers-Based Classifier ESM2-Based

Classifier k = 2 k = 3 k = 4 k = 5 Classifier

Input size 4 16 64 256 1024 480

Layers 2 GRUs and
1 Dense

1 GRU and
1 Dense

1 GRU and
1 Dense

1 GRU and
1 Dense

1 GRU and
1 Dense 2 Dense

Hidden states 128 64 64 64 64 128
Learning rate 0.001 0.001 0.001 0.001 0.001 0.001

Dropout 0.3 in both
layers 0.3 0.2 0.3 0.3 0.2

Batch size 64 64 8 64 32 16
Total number
of parameters 198.9 K 15.8 K 25.0 K 61.9 K 209.4 K 61.8 K

On the contrary, the k = 2, k = 3, and k = 4 models exhibit higher classification
accuracy and lower variability, indicating that they are more stable and reliable in their
predictions. Evidently, the k-mers-based models have significantly fewer parameters (see
Table 1 and Section 4 for more details) than FBGAN classifier demonstrating not only
the superior accuracy of the k-mers-based models but also the significance of minimizing
unnecessary model complexity.

In terms of precision, recall, and F1-score, as presented in Table 2, the FBGAN classifier
achieves a moderate performance with a relatively stable precision but exhibits a significant
variability in the recall. This indicates that the classifier’s sensitivity to true positive
instances is poor, which can potentially influence the overall success rate and efficiency of
the de novo design of feedback-based generative models. On the contrary, the k-mers-based
models consistently outperform the FBGAN classifier across all k-values for every metric,
underscoring the superior performance of our approach. Notably, our models achieve
the highest classification accuracy and precision for k = 2, while for k = 4, the highest
recall and F1-score is attained. The k = 4 model exhibits a lower standard deviation
among different runs, indicating greater stability in its performance. By capturing more
comprehensive structural and functional information from the sequences, the k = 4 model
learns robust representations that are less sensitive to variations in the training process.
Therefore, we select the k = 4 model as the optimal choice for further experimentation and
integration within the FBGAN framework.
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Table 2. Performance evaluation of the work of FBGAN classifier and the proposed classification
schemes, in terms of average classification accuracy, precision, recall, and F1-score. The standard
deviation among different runs is included in parentheses.

FBGAN
k-Mers

ESM2
k = 2 k = 3 k = 4 k = 5

Accuracy 81.4 (7.0) 85.7 (1.4) 85.6 (1.5) 85.3 (1.0) 82.3 (7.2) 91.5 (0.7)
Precision 82.3 (2.8) 84.3 (2.1) 83.8 (1.8) 82.9 (1.9) 81.7 (5.1) 90.6 (2.3)

Recall 80.5 (18.7) 87.7 (3.1) 88.3 (3.2) 89.1 (1.8) 85.0 (18.9) 92.7 (1.7)
F1-score 79.2 (16.8) 85.8 (1.5) 85.9 (1.6) 85.9 (0.8) 80.8 (17.1) 91.6 (0.6)

Regarding the ESM2 classifier, we observe that it stands out among the rest. This
classifier not only achieves a remarkable 10% increase in accuracy compared to the FB-
GAN classifier but also has significantly less variation in its results. Having around 61.8K
parameters (Table 1), which is comparable to the k = 4 model but less than half of the FB-
GAN classifier’s parameters, underscores the effectiveness of transfer learning in capturing
nuanced patterns within the data. Overall, in terms of performance ranking, the FBGAN
classifier serves as the baseline, followed by the k = 4 model, with the ESM2 classifier
emerging as the top performer.

2.2. Performance of Generative Models

In this section, we assess the performance of the proposed models, namely FBGAN-
kmers and FBGAN-ESM2, in comparison to the baseline FBGAN, as well as the state-of-the-
art AMPGAN and HydrAMP. The goal is to provide a thorough analysis of the proposed
models’ efficacy in AMP design, shedding light on the impact of the classifier and their
comparative strengths and capabilities relative to existing methodologies. The evaluation
process involves generating 5000 sequences for each model and assessing them based on
all the metrics given in Section 4.3.2.

As illustrated in Figure 3, our models exhibit superior performance over FBGAN and
HydrAMP in terms of normalized edit distance. Both FBGAN-kmers and FBGAN-ESM2
display a closer alignment in edit distance between the generated and real data. This
underscores the effectiveness of our models in capturing the statistical essence of real data.
Evidently, FBGAN-ESM2 produces sequences that are closer to the distribution of real data,
emphasizing that the quality of the classifier directly impacts the statistical properties of the
generated data. AMPGAN also performs remarkably well, indicating its competitiveness
in this metric.

Table 3 presents the diversity and similarity percentages among the generated se-
quences. It is noteworthy that FBGAN-kmers demonstrates a similarity level comparable to
FBGAN, whereas FBGAN-ESM2 exhibits a 5.9% lower similarity. This difference highlights
the distinct capabilities of FBGAN-ESM2, attributed to its integration of the ESM2 classifier,
which enhances its ability to generate diverse sequences with diminished similarity. In
addition, AMPGAN performs on par with FBGAN-ESM2, indicating comparable similarity
percentages despite differences in their underlying architectures. This implies that both
models adeptly grasp the intricacies of sequence generation, albeit employing different
mechanisms. Regarding diversity, Table 3 indicates that all models, except HydrAMP,
produce unique sequences. However, despite its tendency to generate recurring sequences,
HydrAMP surprisingly shows the lowest sequence similarity. Plausible reasons for this
behavior include potential overfitting or a bias towards specific motifs within HydrAMP’s
generation process. Possible explanations for this occurrence could involve the likelihood
of overfitting or a preference towards particular motifs inherent in the generation process
of HydrAMP.
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Figure 3. Normalized with-group edit distance distribution for real and generated data.

Table 3. Percentage of diversity and sequence similarity.

Diversity Sequence Similarity

Real Data 98.5% 24.3%
FBGAN 100% 33.5%

FBGAN-kmers 100% 33.4%
FBGAN-ESM2 100% 27.6%

AMPGAN 100% 26.8%
HydrAMP 98.9% 21.7%

Furthermore, the effectiveness of each generative model was verified using the
CAMPR4 server [19], an external platform equipped with diverse classifiers such as Support
Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN) models
for AMP prediction. Table 4 outlines the classifier performance in predicting the percentage
of generated AMPs among the 5000 sequences produced by the generative models. It
is evident that the performance varies across different classifiers. Specifically, for the RF
classifier, AMPGAN outperforms the other models by a significant margin. However, when
considering the SVM and ANN classifiers, FBGAN-ESM2 emerges as the top-performing
model. This suggests that evaluating the effectiveness of the generative models may be
influenced by the underlying classifier used for AMP prediction. Moreover, the findings
reveal that the RF classifier identifies a greater proportion of sequences as AMPs across all
generative models. Considering the average performance across all classifiers, AMPGAN
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and FBGAN-ESM2 demonstrate comparable average prediction rates; however, AMPGAN
exhibits a significantly higher standard deviation.

Table 4. Percentage of predicted AMPs with CAMPR4 platform equipped with Support Vector Machine
(SVM), Random Forest (RF), and Artificial Neural Network (ANN) models for AMP prediction. The best
performance per classifier is highlighted in bold, and the standard deviation is reported in parentheses.

CAMPR4

RF SVM ANN Average among Classifiers

FBGAN 33.5% 31.4% 32.9% 32.6% (0.8)
FBGAN-kmers 61.8% 53.8% 49.7% 55.1% (5.0)
FBGAN-ESM2 59.1% 55.5% 58.9% 57.8% (1.6)

AMPGAN 64.6% 53.8% 56.6% 58.3% (4.5)
HydrAMP 58.8% 52.6% 32.9% 48.1% (11.0)

Figure 4 offers insights into the proportion of peptides classified as AMPs by RF, SVM,
and ANN concurrently, with probability P(AMP) > 0.5 shown in the right graph and
P(AMP) > 0.8 in the left one, respectively. It is important to note that the RF classifier
achieves 86.5% accuracy, followed by SVM at 84.1% and ANN at 82.2% in classifying real
AMPs on the CAMPR4 database [19]. Therefore, inherent biases or limitations within these
classifiers may impinge upon the accuracy, therefore necessitating cautious interpretation
of the results. Notably, FBGAN-kmers and FBGAN-ESM2 demonstrate superior perfor-
mance over FBGAN in both total AMP generation and the production of AMPs with high
probability (P(AMP) > 0.8). This underscores the significance of classifier performance
in enhancing both the quantity and quality of generated AMPs. On the other hand, while
AMPGAN and FBGAN-ESM2 yield a comparable number of AMPs overall, AMPGAN
stands out for its capacity to generate AMPs with high prediction quality (P(AMP) > 0.8).

Figure 4. Fraction of generated peptides classified as positive by every classifier of CAMPR4 (RF,
SVM, and ANN) with probabilities P(AMP) > 0.5 (right) and P(AMP) > 0.8 (left), respectively.

Finally, AMPs with P(AMP) > 0.8 are selected for each generative model, and the
amino acid composition and several physiochemical features like charge, pI, aromaticity,
and hydrophobicity are calculated. The analysis of amino acid composition across each
model is provided in Figure 5. When compared to real protein sequences, each model
exhibits unique amino acid frequency distributions, suggesting differential capture of se-
quence features. While amino acids A, G, and L consistently emerge as prevalent across all
models, notable differences exist in the frequencies of other amino acids. For example, mod-
els like AMPGAN and HydrAMP demonstrate elevated frequencies of amino acids K and R,
potentially indicating a focus on sequences with higher charge or involvement in secondary
structure. Conversely, amino acids C, D, and E, associated with charge, as well as K and
R, contributing to hydrophobicity and amphiphilicity, exhibit relatively lower frequencies
across most models. These differences may reflect the diverse training data and model
architectures employed, highlighting the need for careful consideration of model-specific
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characteristics when interpreting predictions or generating synthetic sequences. Moreover,
we utilize the Kullback–Leibler Divergence (KLD) scores to quantify the statistical closeness
of amino acid compositions between real and generated protein sequences. Lower KLD
scores, such as those observed for FBGAN (0.065), FBGAN-kmers (0.068), and FBGAN-
ESM2 (0.061), suggest relatively small differences in amino acid composition between the
real and generated sequences. This indicates that the generated sequences closely resemble
the real ones in terms of their amino acid composition. On the other hand, higher KLD
scores, such as those for AMPGAN (0.24) and hydrAMP (0.21), indicate that the generated
sequences diverge more from the amino acid composition of the real sequences. Figure 6 de-
picts the average value for these features for every generative model, real AMP sequences,
and randomly generated protein sequences. The higher charge of the generated sequences
compared to the average for real ones suggests that the generated sequences possess an ele-
vated proportion of basic amino acids, potentially enhancing their electrostatic interactions
with bacterial membranes, a key factor in antimicrobial activity. Notably, FBGAN-ESM2
exhibits the highest charge among the generative models studied, indicating its potential
for producing AMPs with strong antimicrobial properties. Considering pI, AMPGAN
achieves higher average values compared to the rest, with HydrAMP and FBGAN-ESM2
following. As the pI of a molecule is the pH at which it carries no net electrical charge due
to the equal numbers of positive and negative charges present on its constituent amino
acids, these models might exhibit increased solubility under physiological pH conditions,
which could enhance the stability and bioavailability of the peptide. HydrAMP stands out
with remarkably elevated average aromaticity compared to real data, contrasting with the
other models whose performance aligns closely with real data in this aspect. This notable
difference is very close to that observed in random sequences, suggesting a potential lack
of meaningful correlation between its generated sequences and real data in this particular
aspect. Lastly, the hydrophobicity ratio is notably lower for FGBAN-based models. This
divergence suggests that peptides generated by FGBAN-based models possess a reduced
hydrophobic character compared to those generated by AMPGAN and HydrAMP, possibly
impacting their interaction with hydrophobic regions of bacterial membranes and, hence,
their antimicrobial activity.
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Figure 5. Amino acid composition for each model. The red bars mark amino acids contributing to
charge, hydrophobicity, amphiphilicity, and secondary structure.
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Figure 6. Average physiochemical features. The red dashed horizontal line indicates the average
value of each feature of the real AMPs.

3. Discussion

The primary objective of this study is to investigate the impact of advanced classifiers
on the quality and efficacy of de novo AMP design. Specifically, the study aims to ascertain
whether more accurate classifiers improve AMP generation within the FBGAN framework.

The introduction of two novel alternative classifiers, based on the k-mers technique and
transfer learning with ESM2, showcases remarkable improvements in classifier performance
compared to the baseline FBGAN classifier. The hierarchical approach adopted, with
incremental enhancements in classifier quality, provides valuable insights into the impact
of classifier performance on AMP design efficacy. Specifically, the k-mers-based classifier
demonstrated superior performance over the baseline FBGAN classifier, achieving higher
classification accuracy, precision, recall, and F1-score across various k-values. However, it
was observed that the performance of the k = 5 model was suboptimal, potentially due to
overfitting resulting from excessive model complexity. This underscores the importance
of selecting an optimal k-value to balance model complexity and generalization ability.
The k = 4 model was selected as a robust classifier with minimum standard deviation
among independent runs. Furthermore, the ESM2 classifier emerged as the top performer,
achieving a substantial increase in accuracy compared to the baseline FBGAN classifier
of 10% while maintaining a significantly lower parameter count. This highlights the
effectiveness of transfer learning in capturing nuanced patterns within AMP sequences.

Integration of these advanced classifiers into the FBGAN architecture leads to major
performance improvements in AMP generation. Notably, both FBGAN-kmers and FBGAN-
ESM2 outperformed the baseline FBGAN model and exhibited closer alignment in edit
distance between generated and real data, indicating their effectiveness in capturing the
statistical essence of real-world AMP sequences. Specifically, FBGAN-ESM2 produced
sequences that were closer to the distribution of real data, emphasizing the impact of
the classifier on the statistics of generated sequences. Furthermore, both FBGAN-kmers
and FBGAN-ESM2 exhibited superior performance compared to state-of-the-art methods
such as HydrAMP. They also demonstrated comparable effectiveness to AMPGAN. This
comparative analysis underscores the critical importance of classifier quality in terms of
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accuracy, with FBGAN-kmers and FBGAN-ESM2 consistently surpassing the baseline
FBGAN model, with FBGAN-ESM2 emerging as the most promising among them.

The evaluation using the CAMPR4 platform, which utilizes three AMP classifiers, RF,
SVM, and ANN, reveals interesting trends in AMP prediction across different classifiers.
AMPGAN emerged as the top performer, particularly with the RF classifier, showcasing
its effectiveness in generating sequences with AMP characteristics. On the other hand,
FBGAN-ESM2 demonstrated remarkable consistency across multiple classifiers, indicating
its robustness and reliability in producing high-quality AMP candidates. This consistency
underscores the effectiveness of transfer learning that enables the extraction of rich and
meaningful features, enhancing the overall quality and reliability of generated AMP candi-
dates. Moreover, FBGAN-kmers and FBGAN-ESM2 demonstrated superior performance
over FBGAN in both total AMP generation and the production of high prediction quality
AMPs (P(AMP) > 0.8). This once again underscores the significance of classifier perfor-
mance in enhancing both the quantity and quality of generated AMPs. While AMPGAN
and FBGAN-ESM2 yielded a comparable number of AMPs overall, AMPGAN stood out
for its proficiency in generating AMPs with high prediction quality (P(AMP) > 0.8).

Further examination of the physiochemical features of high-quality generated AMPs
provided valuable insights into their potential antimicrobial efficacy. Specifically, FBGAN-
ESM2 demonstrated a higher charge, indicating potentially enhanced electrostatic interac-
tions with bacterial membranes, while AMPGAN exhibited greater solubility at physiologi-
cal pH, potentially improving stability and bioavailability. When considering parameters
like pI and aromaticity, FBGAN-ESM2 achieved results comparable to AMPGAN that
closely aligned with real data, suggesting similar solubility at physiological pH, poten-
tially enhancing peptide stability and bioavailability. Finally, the hydrophobicity ratio was
slightly lower for FBGAN-based models, particularly FBGAN and FBGAN-kmers. This
implies that peptides generated by FBGAN-based models may possess reduced hydropho-
bicity compared to those generated by AMPGAN and HydrAMP, potentially impacting
their interaction with hydrophobic regions of bacterial membranes and, thus, their antimi-
crobial activity.

4. Materials and Methods
4.1. Datasets

To provide a fair comparison, this work utilizes the datasets established by Gupta
and Zhou [6]. The datasets consist of diverse peptide sequences sourced from various
organisms. These datasets serve as valuable resources for training and evaluating the
proposed classifiers within the FBGAN framework.

AMP Classification Dataset. The AMP classification dataset comprises 5200 pro-
tein sequences, with 2600 of these being AMPs that have been retrieved from the APD3
database [24]. The other 2600 peptides are randomly selected protein sequences from
UniProt [25] with lengths ranging from 10 to 50 amino acids.

GAN Dataset. The dataset comprises 3655 protein sequences sourced from the UniProt
database with lengths between 5 and 50 amino acids and sequence similarity greater than
0.5. This selection process aimed to capture a broad spectrum of protein lengths while
ensuring computational feasibility and effective learning within the generative models.

Dataset Preparation and Standardization

The amino acid sequences were converted into complementary DNA sequences.
This conversion involved assigning each amino acid to a corresponding codon, with
considerations for redundancy and randomness when multiple codons mapped to a single
amino acid. Furthermore, to standardize the dataset and ensure uniformity in sequence
length, all sequences were padded to a length of 156, which represented the maximum
possible sequence length within the dataset.
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4.2. Protein Sequence Representation and Classification

In this section, we present the methodology for representing protein sequences, a
crucial step in training classifiers for AMP identification. Efficiently capturing the structural
and functional information encoded within protein sequences is paramount for accurate
classification. We explore two distinct techniques for representing proteins, each with its
unique approach to encapsulating the essential features of protein sequences. These repre-
sentations aim to facilitate the classification of antimicrobial peptides with high accuracy.

4.2.1. Proposed Data Representation via K-Mers Technique

In various bioinformatics applications, including genome assembly, sequence align-
ment, and functional annotation, the use of k-mers is crucial [22]. k-mers can provide
insights into various genomic features and functions, such as identifying overlaps between
sequencing reads, predicting the function of uncharacterized sequences, and inferring
evolutionary relationships between different sequences. More specifically, k-mers are con-
tiguous subsequences of length k derived from biological sequences such as DNA. The
number of possible k-mers in a sequence is determined by the length of the sequence and
the value of k. Specifically, for a sequence of length L, the number of k-mers is L − k + 1.
Each k-mer can be composed of any combination of the four DNA nucleotides A, T, G, and
C. Therefore, the total number of possible k-mers is 4k.

The significance of k-mers can vary depending on the value of k chosen. The choice of
k value can impact the interpretability of the model. A larger k value may capture more
complex patterns in the data, but these patterns may be harder to interpret and may not
necessarily correspond to biologically relevant features. In contrast, a smaller k value may
capture simpler patterns that are easier to interpret but may not be sufficient to capture
the full complexity of the data. In this study, we chose to evaluate models with k values
ranging from 2 to 5 to assess the trade-off between model complexity and interpretability.
In more detail, the different levels of resolution and information of the selected k values
are namely,

• Dinucleotides or 2-mers (k = 2) represent pairs of adjacent amino acids in the protein
sequence. This captures short-range interactions between amino acids and provides
insights into local structural motifs such as helices and turns.

• Trinucleotides or 3-mers (k = 3), also known as a codon, are sequences of three
nucleotides that encode a specific amino acid during protein synthesis. The frequency
of each codon in a coding sequence can indicate the level of expression or translational
efficiency of a gene. Tripeptides can capture more complex local structural features,
including beta turns and secondary structure elements.

• Tetranucleotides or 4-mers (k = 4), can be used to infer the genomic signature of an
organism, which is influenced by factors such as mutation, selection, and horizontal
gene transfer [26].

• Pentanucleotides or 5-mers (k = 5) provide broader coverage of local sequence pat-
terns that may capture more diverse structural motifs and functional motifs, including
protein–protein interaction sites or substrate binding sites.

The procedure for converting DNA or protein sequences into binary vectors, a machine
learning-compatible format, involves two main steps that are described below and depicted
in Figure 7.

Generating the k-mers Dictionary. The k-mers are identified using an overlapping
sliding window approach, where a window of fixed length k is moved along the sequence
one position at a time. This process is repeated for all positions in the sequence, resulting
in a collection of k-mers. Then, a dictionary is created containing all possible k-mers that
can be derived from the input sequences. This dictionary comprises 4k unique k-mers, each
of which is assigned a unique index that is later used for one-hot-encoding.
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Dictionary 

(0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

T   A   C   C  A   G

Overlapping sliding 
window for k=2

DNA

TA
AC
CC
CA
AG

1. AA
2. CC
3. TT
4. GG
5. AT
6. TA
7. AC
8. CA

9. AG
10. GA
11. TC
12. CT
13. TG
14. GT
15. CG
16. GC

(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

One-hot-encoding representation

Zero padding to the maximum 
sequence length

(0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Figure 7. An example of the proposed DNA sequence processing and representation via the k-mers
technique for k = 2 and maximum sequence length equal to 7.

One-hot-encoding and zero-padding. This is a method for representing categorical
data as binary vectors. In this case, each k-mer in the sequence is represented as a binary
vector of length equal to the number of k-mers (1 × 4k) in the dictionary. The vector has
a value of 1 in the position corresponding to the index of the k-mer in the dictionary and
a value of 0 in all other positions. Finally, to ensure that all input sequences have the
same length, the one-hot-encoded representation is zero-padded to reach the length of the
longest sequence in the dataset, which is Lmax − k + 1. Specifically, zero vectors of size
1 × 4k are appended to the input representation to ensure uniformity in length, and that is
standardized and amenable for use in diverse machine learning models.

The combination of the two aforementioned methods is a novel representation of DNA
sequences completely different from the representation of Gupta and Zou, who utilize a
sequence of numbers based on the index of the DNA bases where {A:1, T:2, C:3, G:4}.
For example, the sequence ”TACCAG” given in Figure 7 would be simply presented as
[2, 1, 3, 3, 1, 4]. Additionally, one-hot encoding is not employed, and the sequences are
also padded to the longest sequence length in the batch. Although this approach can be
interpreted as a k-mers-based method with k = 1, it is important to note the differences in
encoding compared to the k-mers-based architectures proposed in this study.

4.2.2. Transfer Learning with ESM2

In this study, we employed ESM2-t12, a transformer-based language model with
12 layers and 35M parameters, designed for protein sequence analysis. The main reason
for selecting ESM2-t12 against other larger ESM2 variants is that it strikes a balance with
a relatively modest embedding size and a manageable number of parameters, making it
well-suited for our computational setup within the GAN architecture and aligns with the
capacity of our available computational resources. For context, the subsequent model ESM2-
t33 possesses 650 million parameters, which is significantly greater than the parameter
count of ESM2-t12. This significant increase underscores the computational demands
associated with other ESM2 variants and reinforces the suitability of ESM2-t12 for our
study’s objectives and computational constraints.

Transfer learning within the ESM2-t12 framework involves leveraging a pre-trained
neural network to discern meaningful representations or embeddings from input protein
sequences. Trained through unsupervised learning on a substantial corpus of protein
sequences, the model adeptly captures intricate features and patterns within the sequences.
Employing the self-attention mechanism and transformer architecture [27], the model effec-
tively captures long-range dependencies and intricate relationships within the sequences,
resulting in rich and informative embeddings. In our methodology, presented in Figure 8,
we begin by loading the pre-trained ESM2-t12 model and tokenizing the protein sequences
using the model’s tokenizer. These tokenized sequences are then fed into the pre-trained
model that outputs the embeddings. These embeddings, which represent the final layer rep-
resentations of the model, encapsulate both semantic and structural information inherent in
the protein sequences. To obtain a fixed-size representation for each sequence, we compute
the mean of the embeddings across the sequence length dimension. This process yields a
vector representation, or embedding, for each protein sequence, succinctly capturing its
fundamental characteristics.
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Figure 8. Overview of the transfer learning process using ESM2-t12 Model.

4.2.3. Experimental Setup

This section provides a detailed description of the neural network frameworks utilized
for each representation as well as their parameter settings (Table 1). Each framework is
developed using PyTorch, an open-source machine learning framework in Python. The
implementation on a desktop computer equipped with NVIDIA’s GPU model Quadro
P4000 demonstrates the practical feasibility of our approach.

4.2.4. Network Architecture and Parameter Tuning

FBGAN Classifier: The classifier within the FBGAN architecture is composed of two
GRU layers. The output from the second GRU layer, obtained at the final time step, is fed
into a dense output layer. The number of neurons in this dense layer is determined by
the number of output classes minus one. A sigmoid activation function is applied to the
dense layer to compute output probabilities corresponding to the positive class. Dropout
regularization is incorporated into both GRU layers to prevent overfitting. Training of the
classifier is conducted using the Adam optimizer, which optimizes the binary cross-entropy
loss function. Minibatch gradient descent is employed for training. Lastly, the neural
network’s input is a sequence of numbers based on the index of the DNA bases where
{A : 1, T : 2, C : 3, G : 4}.

k-mers-based Classifier: The architecture, provided in Figure 9, and includes a GRU
and a fully connected layer. For classification, we employed a well-established approach
using SoftMax activation, which provides probabilities for each output class. The opti-
mization process utilized the Adam optimizer with a constant learning rate, along with
exponential decay rates for the first and second moment estimates set to β1 = 0.9 and
β2 = 0.999, respectively (default values). Categorical cross-entropy and categorical accu-
racy were employed as loss function and performance measures during the training process,
respectively. Additionally, an early stopping criterion was used to terminate the training
process when the validation loss did not decrease for 60 consecutive epochs. Overfitting
occurs when the model performs well on the training data but poorly on the validation or
test data. By monitoring the validation loss and terminating the training process when the
loss does not decrease for a certain number of epochs, the approach ensures that the model
does not memorize the training data but instead learns to generalize to new data. Finally, as
discussed in Section 4.2.1, the neural network’s input is a one-hot-encoded representation
of the k-mers.

k-mers 
Dictionary 

Input DNA
 sequences

Classifier

Dense
layer

GRU
layer 

Output
layer

AMP

Not AMP

Figure 9. General proposed k-mers-based architecture with a Gated Recurrent Neural Network (GRU).

Transfer learning-based Classifier: An MLP classifier, described in Figure 10, is
designed for the classification of the protein sequence embeddings derived via the process
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of transfer learning from the ESM2 model. It consists of two fully connected layers, where
the first layer employs ReLU activation followed by dropout regularization to prevent
overfitting, and the second layer produces the final output logits. The model is trained
using the Adam optimizer with a constant learning rate, along with exponential decay rates
for the first and second moment estimates set to β1 = 0.9 and β2 = 0.999. A cross-entropy
loss function is employed, and training is performed over 30 epochs. During training,
the model with the lowest validation loss is saved. Finally, the saved model is evaluated
on a separate test set to assess its performance in terms of accuracy. This classifier offers
flexibility in adjusting parameters such as hidden layer size, dropout probability, and
learning rate, making it suitable for various protein sequence classification tasks.

Figure 10. General proposed transfer learning-based architecture with Multilayer Perceptron (MLP).

4.2.5. Hyperparameter Tuning

For each of the proposed classifiers, we conducted extensive experimentation and
fine-tuned the hyperparameters to maximize the model’s accuracy. Specifically, a grid
search method was used to determine the optimal values for the number of hidden states,
learning rate, batch size, and dropout. Considering the k-mers-based classifier, this process
was repeated for each k. The parameter space for each hyperparameter was as follows:

• Number of layers: {1, 2, 3}
• Hidden states: {32, 64, 128, 256}
• Learning rate: {10−5, 10−4, 10−3, 10−2, 10−1}
• Batch size: {8, 16, 32, 64}
• Dropout: {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}

The architecture and selected values for each proposed classifier, as well as the classifier
incorporated in FBGAN, are depicted in Table 1. It is worth noting that these k-mers-based
models have significantly fewer parameters than FBGAN classifier, which contains a
substantial 198.9 K parameters. Specifically, as shown in Table 1, the k = 2 model has
15.8 K parameters, the k = 3 model has 25.0 K parameters, and the k = 4 model has
61.9 K parameters. The k-mers-based models for k = 2, 3 and 4, achieve high performance
with much smaller model architectures, using less than half the number of parameters
compared to FBGAN classifier. The analysis of parameter counts not only demonstrates the
efficiency of the k-mers-based models but also underscores the significance of minimizing
unnecessary model complexity. This insight underscores the delicate balance between
model complexity and generalization capability, underscoring the importance of selecting
an optimal k-value to ensure that our models remain accurate, robust, and reliable.

It is noteworthy that, compared to the FBGAN classifier, the proposed transfer learning
and k-mers-based classification schemes exhibit a notable reduction in size for k = 2, 3,
and 4, whereas for k = 5, our model is comparable in size. One potential advantage of
our models is that they are more efficient in terms of memory usage and computational
resources required. With fewer parameters, our models can be faster and more easily
deployable than the competitive model. Additionally, our models may be less prone to
overfitting as they have fewer parameters to learn from the data.
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4.2.6. Classification and Performance Metrics

To align with the setup of the FBGAN classifier, we divided the data in a stratified
manner into three non-overlapping sets: 60% for training, 20% for validation, and 20%
for testing. The model’s performance is measured based on the lowest validation loss
achieved during training. After identifying the best-performing model, we evaluated it on
the test set to determine the final performance of the method. We repeated the classification
procedure 20 times using random data splits and reported the average performance, along
with the standard deviation. To assess the performance of the proposed architecture, we
measured its classification accuracy, precision, recall, and F1-score. These metrics provide a
comprehensive view of the model’s ability to correctly classify AMP sequences since they
take into account both true and false positive and negative predictions.

A noteworthy aspect to consider is that the performance of the FBGAN classifier is
only reported for a single run, while our evaluation involves conducting multiple runs and
computes the average performance. To provide a fair comparison, since the authors provide
their code [6], we ran every model 20 times, using random splits, and reported the average
performance. This can mitigate the impact of random fluctuations in the training and
testing data, therefore obtaining a more reliable estimate of the model’s true performance.

4.3. Feedback GAN Architecture

The Feedback GAN (FBGAN) is an extension of the Wasserstein Generative Ad-
versarial Network with Gradient Penalty (WGAN-GP) [28] that incorporates a feedback
mechanism through a classifier to enhance sample relevance with respect to the antimicro-
bial property. The FBGAN architecture consists of three components: a generator G and a
discriminator D, similar to traditional GANs, and an additional classifier. The generator G
produces synthetic data samples x from a latent noise vector z, while the discriminator D
evaluates the authenticity of these samples by assigning a probability D(x) indicating the
likelihood that x comes from the real data distribution.

The loss function of FBGAN is formulated in terms of the Wasserstein distance [29] be-
tween the distributions of real data samples Pr and generated samples Pg that is defined as:

W(Pr, Pg) = sup
∥D∥L≤1

Ex∼Pr [D(x)]−Ex∼Pg [D(x)]

where ∥D∥L is the Lipschitz “norm” of the discriminator D, and Ex∼Pr [D(x)] and Ex∼Pg [D(x)]
are the mean output of the discriminator when given real data x and generated data,
respectively. The efficient implementation of Wasserstein loss is performed through the
incorporation of a gradient penalty term. This penalty term enforces Lipschitz continuity,
therefore stabilizing training and enhancing the quality of generated samples [28]. The
overall objective function can be expressed as:

min
G

max
D

(
Ex∼Pr [D(x)]−Ex∼Pg [D(x)]

)
+ λEx̂∼Px̂

[
(∥∇x̂D(x̂)∥2 − 1)2

]
where λ is a hyperparameter that controls the strength of the gradient penalty, x̂ is sampled
uniformly along straight lines between pairs of real and generated samples, and Px̂ is the
distribution of these interpolated samples.

Finally, the classifier plays a crucial role in the FBGAN pipeline, evaluating the quality
and biological relevance of the generated sequences. It is essential to clarify that the classi-
fier operates independently of the loss function optimization process. Unlike the generator
and discriminator, which directly contribute to the adversarial training dynamics, the
classifier serves as an external evaluation tool. This means that the classifier’s assessments
are not incorporated into the formal optimization objectives of the FBGAN model. Instead,
it functions like a black box, providing feedback on the generated sequences without di-
rectly influencing the training process. The classifier can take various forms, ranging from
automated algorithms to human experts capable of assessing biological properties. Regard-
less of its specific implementation, the classifier’s feedback guides the training process by
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identifying sequences that meet predefined criteria, such as AMPs, and incorporating them
into the discriminator’s dataset for further training (Figure 1).

4.3.1. Feedback-Loop Training

During the training procedure, the learning rate is set at 0.0001 to facilitate stable
convergence, while a batch size of 64 balances computational efficiency with gradient accu-
racy. Sequences are constrained to a maximum length of 156 nucleotides (50 amino acids),
affording flexibility in generating sequences of varying lengths. The hidden dimensionality
within both the generator and discriminator is established at 512, striking a balance between
model complexity and representational capacity. Throughout 150 epochs, the model un-
dergoes iterative refinement, alternating updates between the discriminator and generator
networks. For each iteration, the discriminator is subjected to 10 training steps per epoch
while the generator undergoes a single update. The computation of losses is based on the
Wasserstein distance between the distributions of real and generated sequences, augmented
by a gradient penalty term with a coefficient of 10. Updates to the network parameters
are performed via the Adam optimizer. The evaluation of generated sequences occurs
every epoch throughout the training process. The final layer of the generator employs a
Gumbel SoftMax operation with a temperature of 0.75, replacing the traditional SoftMax,
allowing for stochastic sampling during sequence generation. When sampling from the
generator, the argmax of the probability distribution is taken to output a single nucleotide
at each position. After sampling 960 sequences (15 batches) from the generator, the external
pre-trained classifier is employed to assess their quality and biological relevance. As shown
in Figure 1, this classifier evaluates the protein sequences, focusing on identifying those
with a high probability (≥0.8) of being AMPs. Such sequences are then designated to
replace the positive real data used for training the discriminator.

4.3.2. Evaluation of AMP Generative Models

The FBGAN outperforms vanilla WGAN in generating biologically valid peptides [6].
To ensure the fidelity of FBGAN’s performance with various classifiers, the generated
sequences are further assessed. Initially, sequences are filtered based on specific criteria
to ensure the correct gene structure, beginning with the canonical start codon ’ATG’ and
ending with one of three canonical stop codons (’TAA’, ’TGA’, ’TAG’). These constraints
are outlined in FBGAN evaluation protocols; however, in this study, before any further
assessment, the ’ATG’ codon is removed from every generated sequence to prevent potential
bias introduced by the artificial inclusion of the start codon. The intra-edit distance between
the selected generated sequences and real genes is examined as a measure of sequence
fidelity. In addition, we delve into the aspects of sequence diversity and similarity, which are
pivotal in understanding the breadth and uniqueness of the generated dataset. Sequence
diversity reflects the variety of sequences produced by the generator, indicative of its
ability to comprehensively explore the sequence space. On the other hand, sequence
similarity serves as a critical metric for evaluating the fidelity of the generated sequences to
real-world data. This involves quantifying the resemblance between synthetic sequences
and authentic biological sequences. One of the algorithms commonly used to assess
sequence similarity is the Needleman-Wunsch algorithm [30]. This algorithm performs
global sequence alignment, finding the optimal alignment between two sequences based on
a scoring scheme that considers matches, mismatches, and gaps. By computing similarity
scores, such as sequence alignment scores or sequence identity percentages, the extent to
which the generated sequences mimic known biological sequences can be assessed.

Moreover, the proposed models FBGAN-kmers and FBGAN-ESM2, as well as the
original FBGAN, are evaluated against the leading generative frameworks for AMP de
novo design: AMPGAN [7] and HydrAMP [9]. AMPGAN represents a state-of-the-art
bidirectional conditional GAN [31,32] framework specifically tailored for AMP de novo
design. Its architecture utilizes generative adversarial networks (GANs) to sample AMP
sequences with unprecedented diversity. On the other hand, HydrAMP is a novel condi-
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tional variational autoencoder (cVAE) [33] model designed for AMP generation. Unlike
traditional approaches, HydrAMP integrates advanced machine learning techniques with
domain-specific knowledge to capture the complex relationship between peptide structure
and function.

The evaluation process includes generating 5000 sequences for each proposed model
and FBGAN. To evaluate AMPGAN and HydrAMP, we utilize the publicly available gener-
ated sequences provided by the authors of HydrAMP along with their code. Considering
HydrAMP, we select 5000 sequences produced from the unconstrained simulation where
the model is trained to generate peptides de novo. Moreover, in contrast to HydrAMP, we
do not perform biological filtering on the generated peptides. In particular, for each model,
we randomly select 5000 generated peptides of length less than 50 amino acids and assess
them based on the metrics discussed previously in this section. This analysis allows for a
thorough comparison of the proposed models with FBGAN, AMPGAN, and HydrAMP,
providing insights into their performance in antimicrobial peptide design. Furthermore,
the quality of every generative model is further validated using the CAMPR4 server [19],
an independent platform equipped with diverse classifiers such as Support Vector Machine
(SVM), Random Forest (RF), and Artificial Neural Network (ANN) models for AMP predic-
tion. By subjecting the FBGAN-generated sequences to the scrutiny of these classifiers, we
aim to obtain additional assurance regarding their authenticity as AMPs. This orthogonal
validation procedure not only corroborated the findings from our primary assessments but
also bolstered confidence in the fidelity of the FBGAN-generated sequences as biologically
relevant peptides. Such validation efforts are crucial for ensuring the reliability and utility
of computational methods in peptide design and discovery.

Finally, AMPs exhibit diverse physiochemical properties that contribute to their an-
timicrobial activity [34,35]. Therefore, the generated peptides classified simultaneously as
AMPs by RF, SVM, and ANN with high probability (P(AMP) > 0.8) are further scrutinized
for their similarity to real AMP sequences, leveraging physiochemical features such as
charge, isoelectric point (pI), aromaticity and hydrophobicity. AMPs often possess a net
positive charge due to an abundance of basic amino acids such as arginine and lysine,
which facilitates their interaction with negatively charged bacterial membranes [36]. The
isoelectric point (pI) of AMPs, representing the pH at which they carry no net charge,
influences their solubility and stability. Aromaticity, referring to the presence of aromatic
amino acids like phenylalanine and tryptophan, contributes to the peptide’s structural
stability and interaction with lipid membranes. Hydrophobicity, characterized by the pres-
ence of hydrophobic residues such as leucine and alanine, affects the peptide’s membrane
permeabilization and overall antimicrobial potency. Collectively, these physiochemical
features play crucial roles in determining the efficacy and selectivity of AMPs against
microbial pathogens.

5. Conclusions

The findings of this study underscore the effectiveness of advanced classifiers within
generative models for AMP design. The integration of more accurate classifiers not only
improves the accuracy and realism of generated sequences but also enhances the potential
antimicrobial efficacy of the designed peptides. The proposed generative models, FBGAN-
kmers and FBGAN-ESM2, outperform HydrAMP overall. Additionally, FBGAN-ESM2
demonstrates comparable performance to the state-of-the-art AMPGAN. Future research
will prioritize further optimization of the proposed classifier-driven generative models,
incorporating the classifiers’ impact on the loss function during training.
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