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Abstract: Parvalbumin expressing (PV+) GABAergic interneurons are fast spiking neurons that
provide powerful but relatively short-lived inhibition to principal excitatory cells in the brain. They
play a vital role in feedforward and feedback synaptic inhibition, preventing run away excitation in
neural networks. Hence, their dysfunction can lead to hyperexcitability and increased susceptibility
to seizures. PV+ interneurons are also key players in generating gamma oscillations, which are
synchronized neural oscillations associated with various cognitive functions. PV+ interneuron are
particularly vulnerable to aging and their degeneration has been associated with cognitive decline
and memory impairment in dementia and Alzheimer’s disease (AD). Overall, dysfunction of PV+
interneurons disrupts the normal excitatory/inhibitory balance within specific neurocircuits in the
brain and thus has been linked to a wide range of neurodevelopmental and neuropsychiatric disorders.
This review focuses on the role of dysfunctional PV+ inhibitory interneurons in the generation of
epileptic seizures and cognitive impairment and their potential as targets in the design of future
therapeutic strategies to treat these disorders. Recent research using cutting-edge optogenetic and
chemogenetic technologies has demonstrated that they can be selectively manipulated to control
seizures and restore the balance of neural activity in the brains of animal models. This suggests
that PV+ interneurons could be important targets in developing future treatments for patients with
epilepsy and comorbid disorders, such as AD, where seizures and cognitive decline are directly
linked to specific PV+ interneuron deficits.

Keywords: parvalbumin interneurons; neurological disorders; epilepsy; Alzheimer’s disease; seizures;
cognitive deficits; optogenetics; chemogenetics; designer receptor exclusively activated by Designer
Drugs (DREADDs)

1. Introduction
1.1. PV+ Interneuron Function in the Brain

Parvalbumin-positive (PV+) interneurons are a specific type of gamma-aminobutyric
acid containing (GABAergic) inhibitory neuron found throughout the brain (see [1–4]
for comprehensive reviews on different types of cortical, hippocampal, and cerebellar
GABAergic neurons). GABAergic interneurons are essential in regulating the firing of the
principal excitatory neurons in the central nervous system. They also play an important
role in cortical sensory plasticity during development and adulthood [5,6]. Single-cell
transcriptomics has revealed evolutionary conservation of regulatory networks during
inhibitory interneuron development in humans and animals [7,8]. Clearly, proper functional
connectivity and plasticity of neuronal networks within the developing and mature brain
are dependent on a highly efficient and precisely coordinated GABAergic signaling system.

PV+ GABAergic interneurons comprise 30–50% of all inhibitory interneurons and
represent the largest subpopulation of inhibitory cells in the cortex (for recent reviews
see [9,10]). They express the calcium-binding protein parvalbumin. The other major in-
hibitory groups, based on the biochemical markers they express, are somatostatin (SOM)
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and vasointestinal peptide (VIP) interneurons [11]. These three classes of inhibitory in-
terneurons are thought to account for 80–90% of all inhibitory neurons. The PV+ inhibitory
interneurons are primarily fast spiking neurons that mostly target the somata and proximal
dendrites of their target principal excitatory cells, and also other inhibitory cells including
themselves [12–18]. They provide powerful but relatively short-lived inhibition [14,19–22],
and play a vital role in feedforward and feedback synaptic inhibition, preventing run away
excitation in neural networks [23–27]. They are also critical to the generation of gamma
oscillations, a type of high-frequency neuronal oscillation linked to working memory and
other cognitive processes including sensory perception and attention [28–30].

1.2. PV+ Interneuron Dysfunction in the Brain

Dysfunction of PV+ inhibitory interneurons has been implicated in various neurologi-
cal disorders due to their crucial role in maintaining the balance between excitation and
inhibition in the brain. Disruption of the normal excitatory/inhibitory (E/I) balance within
specific neurocircuits in the brain has been linked to epilepsy [26,27,31], neurodevelopmen-
tal disorders [32], and neuropsychiatric conditions, including attention deficit hyperactivity
disorder (ADHD), autism spectrum disorders, depression, anxiety, schizophrenia, bipolar
disorder, and addiction [33–37]. Furthermore, dysfunctional inhibitory interneurons have
been implicated in the pathogenesis of neurodegenerative diseases linked to aging [38].
Fast spiking PV+ GABAergic interneurons are particularly vulnerable to aging due to
their high metabolic demands. Hence, PV+ interneuron deficits and degeneration have
also been associated with cognitive decline and memory impairment in dementia and
Alzheimer’s disease (AD). Interestingly, epileptic activity is frequently associated with
AD, and seizures can hasten cognitive decline in AD patients [39]. One of the proposed
mechanisms of epileptogenesis in AD is selective impairment of GABAergic interneurons
in the hippocampus and parietal cortex [40].

The focus of the current review is on recent research into the role of dysfunctional PV+
inhibitory interneurons in the generation of epileptic seizures and cognitive impairments.
The interrelationship between AD pathology and epileptic excitotoxicity is considered. New
insights gleaned from recent cutting-edge techniques such as optogenetics, chemogenetics,
and genetic manipulations are discussed. This review also examines the potential of
targeting PV+ interneurons to alter brain physiology and counter brain dysfunction in
disorders such as epilepsy and AD in future therapeutic approaches.

2. PV+ Interneuron Dysfunction in Epilepsy

Epilepsy comprises a broad spectrum of disorders involving unprovoked seizures.
The generation of epileptic seizures is characterized by bursts of hypersynchronous firing
of neurons leading to hyperexcitability within brain networks. The International League
Against Epilepsy (ILAE) defines an epileptic seizure as: “a transient occurrence of signs and/or
symptoms due to abnormal excessive or synchronous neuronal activity in the brain” [41–43]. For
a diagnosis of epilepsy, an individual must have had at least two unprovoked seizures
more than 24 h apart or one unprovoked seizure with an increased probability (≥60%) of
having another seizure over the next 10 years [42,44]. Seizures are catgorised into focal
onset, generalized onset, and unknown onset according to ILAE 2017 classification of
epilepsies [42,45]. The term focal replaces the old terminology of ‘partial’ and refers to
seizures that start in one area of the brain or in a group of cells in one side of the brain.
Generalized seizures encompass both hemispheres of the brain, with groups of cells on
each side of the brain affected simultaneously. Comorbidities are common in patients
with epilepsy, and include neurological, neuropsychiatric, and neurobehavioral disorders
(for recent reviews see [36,46–48]). The bidirectional relationship between epilepsy and
comorbid psychiatric disorders has been well established through multiple animal and
human studies [49]. Epilepsy is associated with a higher incidence of depression, anxiety,
and suicidal thoughts. Conversely, patients with depression and anxiety are at increased
likelihood of experiencing epilepsy later in life.
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Impaired inhibition has been a consistent finding in human patients and animal
models of epilepsy [50–52]. PV+ inhibitory interneuron dysfunction, in particular, can lead
to increased susceptibility to seizures due to the crucial role they play in regulating the
synchronization of neuronal firing critical for maintaining the balance between excitation
and inhibition in the brain. Alterations in the number, morphology, and/or function of
PV+ interneurons have been reported in different types of epilepsy [53]. Such changes can
lead to a decrease in inhibitory tone and exacerbate hyperexcitability, contributing to the
generation and propagation of epileptic activity. Therefore, it might seem intuitive and
logical that an increase in the firing of inhibitory interneurons would effectively decrease
network activity and thus have an overall anti-epileptic effect. However, research in human
subjects and animal models with epilepsy indicates that the role of inhibitory interneurons
in controlling network hyperexcitability is more complex than this [54–56]. In the following
sections, the impact of PV+ inhibitory interneuron dysfunction in the generation of different
types of epileptic seizures is considered in more detail, with an emphasis on the underlying
cellular and molecular mechanisms that are causal rather than a consequence of altered
brain function.

2.1. The Role of PV+ Interneuron Dysfunction in Absence-Seizures

Absence seizures are a type of generalized, nonconvulsive epileptic seizure, most
common in children aged 3 to 14 years. In childhood absence epilepsy (CAE), seizures
are identified by bilateral synchronous 3–4 Hz spike-wave discharges (SWDs) on the
electroencephalogram (EEG), coincident with a lack of consciousness termed ‘absences’ [57].
Absence seizures are brief (a few seconds in duration) but frequent (up to hundred/day)
episodes, during which the child is unaware, stops what he or she is doing, and appears to
stare into space. Rodent models of CAE also display SWDs and concomitant behavioral
arrest. Absence seizures are known to arise from altered E/I dynamics within the cortico-
thalamocortical (CTC) network [58–62]. However, the underlying cellular and molecular
mechanisms that cause the switch from normal physiological oscillations in the CTC
network to pathological SWDs during absence seizures are not fully understood and
appear to be multifactorial as evidenced by the different potential causative mechanisms
identified in different rodent animal models, and the different responses to anti-epileptic
drugs (AEDs) in humans [63]. Approximately one third of children with absence seizures
are pharmaco-resistant.

In the stargazer mouse model, which exhibits SWD and behavioral arrest similar to
humans, absence seizures are linked to impaired PV+ interneuron function within CTC
microcircuits [64–73]. The CTC network comprises reciprocally connected glutamatergic
relay neurons in the thalamus and pyramidal cells in the cortex, which allows for bidirec-
tional communication between these two regions. Sensory information is relayed from
the periphery through the ventroposterior (VP) thalamus to the somatosensory cortex
via thalamocortical (TC) projections from the relay neurons. Pyramidal cells in the cor-
tex send corticothalamic (CT) projections back to the relay neurons in the VP thalamus.
PV+ interneurons are strategically positioned in the cortex to provide strong feedforward
inhibition to pyramidal cells when activated by TC projections. In the thalamus, PV+
interneurons are located in a thin shell of tissue surrounding the VP nucleus called the
reticular thalamic nucleus (RTN). They receive collaterals from both the CT and TC projec-
tions and provide feedforward inhibition to the relay neurons via the CT-RTN-VP pathway
and feedback inhibition via TC-RTN-VP route (see [73] Fig.1). The CT-RTN-VP pathway is
more dominant than the direct CT-VP route due to stronger synaptic excitation at CT-RTN
connections [74]. The stronger CT-RTN synaptic strength allows feed-forward inhibition
provided by PV+ interneurons to overcome direct cortical excitation of relay neurons. The
thalamic relay neurons fire high-frequency bursts of action potentials when T-type calcium
channels are activated. Generation of normal physiological oscillations within the CTC
network arise via a sequence of feedforward inhibition from the RTN interneurons to
VP relay neurons, leading to T-type calcium current dependent post-inhibitory rebound
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bursts of action potentials in the relay neurons, and then subsequent feedback inhibition
via activation of RTN inhibitory interneurons by TC collaterals [75–77]. Thus, normal
physiological oscillations within the CTC network require finely tuned firing of thalamic
and cortical neurons within CTC microcircuits. Pathological oscillations, which appear
as SWDs on the EEG, arise when the firing of these neurons is disrupted and the balance
between excitation and inhibition is altered [58,59].

In the monogenic stargazer mouse model of absence epilepsy, firing of PV+ interneu-
rons within CTC microcircuits is impaired due to a loss of α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptors (AMPARs) at their input synapses. AMPARs mediate
the majority of glutamatergic fast excitatory synaptic neurotransmission in the brain. The
stargazer carries a mutation in the CACNG2 gene encoding a transmembrane AMPAR
regulatory protein subunit (TARP γ2) also known as stargazin [78,79], which is responsible
for trafficking AMPARs into synapses and modulating their function [80–87]. Stargazin
is selectively expressed in PV+ interneurons in the cortex and thalamus [88,89]. Hence,
there is a selective loss of AMPARs specifically at synaptic inputs onto PV+ interneurons
in the somatosensory cortex [65–67] and at CT-RTN synapses in the thalamus [64,68], re-
sulting in PV+ interneuron dysfunction and impaired feedforward inhibition within the
CTC network. PV+ interneurons in RTN predominantly express AMPARs that contain
the GluA4 subunit [90]. The Gria4 knockout mouse, which lacks GluA4-AMPARs, also
displays thalamic hyperexcitability, SWDs, and absence seizures [74]. Paz et al. [74] used
optogenetics to dissect the cellular and microcircuit mechanisms underlying network hy-
perexcitability in Gria4−/− mice. Channelrhodopsin-2 (ChR2) was virally injected into
either the somatosensory cortex or the VP thalamus to allow selective optical stimulation
of CT or TC axonal terminals, respectively, within the sensory thalamus. The strength of
specific synaptic connections was measured by: (1) recording from individual relay neurons
in VP while shining blue light on ChR2-labelled CT axonal terminals (CT-VP pathway); or
(2) recording from RTN inhibitory interneurons while activating TC axonal terminals in
animals where the VP thalamus was intact (VP-RTN); or (3) recording from RTN inhibitory
interneurons after excision of the VP region and activating CT terminals (CT-RTN) (see [74]
Figs. 4, 5, S2). These experiments demonstrated that absence of GluA4 (hence loss of
GluA4-AMPARs) caused the strength of the CT-RTN synapse to be weakened and conse-
quentially CT-RTN-VP feed-forward inhibition to be impaired. In contrast, both the CT-VP
and VP-RTN pathways were unaffected. The direct CT-VP pathway thus became dominant,
leading to hyperexcitation of relay neurons in VP. This then led to hyperexcitation of PV+
interneurons in RTN via the VP-RTN route, which allowed feedback inhibition of the relay
neurons and thus subsequent post-inhibitory rebound bursts of action potentials; ultimately
this sequence of events led to hypersynchronous pathological oscillations. Collectively,
these data from the stargazer and Gria4−/− models of absence epilepsy indicate that loss
of feedforward inhibition from PV+ interneurons contributes to pathological SWDs and
absence seizures in these mice.

However, while there is clear evidence from monogenic mouse models that impaired
feedforward inhibition onto the principal excitatory neurons in the CTC network (cortical
pyramidal cells and thalamic relay neurons) is one potential underlying mechanism for the
generation of absence seizures, research from polygenic rat models indicates other cellular
and molecular mechanisms can also contribute to the generation of SWDs. GABAergic
inhibition can be phasic (mediated by synaptic GABA receptors) or tonic (mediated by
extrasynaptic GABA receptors). Studies using the Genetic Absence Epilepsy Rat from
Strasbourg (GAERS) have shown that increased tonic inhibition in the VP thalamus, medi-
ated by extrasynaptic GABAA receptors in relay neurons, is crucial in governing seizure
genesis in this rodent model [91,92]. Enhanced tonic inhibition in the GAERS is due to
compromised GABA uptake by a malfunction in the astrocytic GABA transporter GAT-1
leading to constitutively higher GABA levels in the thalamus, but not somatosensory cortex
(for review see [62]). Maheshwari and Noebels [60], in their review of monogenic models
of absence epilepsy, suggested a framework involving fast feedforward disinhibition as
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one common mechanism that could lead to increased tonic inhibition in the cortex and/or
thalamus. Under this scenario, enhanced tonic inhibition causes hyperpolarization in the
principal cells, which deinactivates T-type calcium channels and leads to reciprocal burst
firing within the thalamocortical loop.

Direct evidence that loss of feedforward inhibition from functionally impaired PV+
interneurons can induce SWD and absence seizures has been provided by the use of
Designer Receptor Exclusively Activated by Designer Drug (DREADD) technology [93,94].
Focal silencing of PV+ interneurons within cortical or thalamic feedforward microcircuits
in non-epileptic mice using inhibitory Gi-DREADDs induced SWD-like oscillations on the
EEG, which were associated with behavioral arrest and absence seizures [93]. Furthermore,
selectively activating feedforward PV+ neurons (using excitatory Gq-DREADDs), following
pentylenetetrazol (PTZ) induced seizures, either prevented SWDs and absence seizures
or suppressed their severity [94]. Importantly, other studies [95–98] have shown that
transplantation of interneuron precursor cells derived from the medial ganglionic eminence
(MGE) into the cortex of young and adult mice reduces or abolishes seizures in genetic
mice models of epilepsy; GABAergic interneurons originate in the MGE. Collectively, these
studies provide evidence that feedforward disinhibition in CTC microcircuits (through
dysfunctional PV+ interneurons) is one causative mechanism for the generation of SWDs
and absence seizures.

2.2. The Role of PV+ Interneuron Dysfunction in Other Types of Epileptic Seizures

Disruption of the development and/or function of PV+ interneurons has also been
linked to defective inhibitory GABAergic neural circuits underlying the pathogenesis of
several other types of epilepsy. The most common type of focal onset seizure in humans
is temporal lobe epilepsy (TLE), which affects approximately fifty million people globally.
TLE is usually diagnosed in the first two decades of life (see [99] for a recent review of
the epidemiology of TLE, and its pathophysiology, diagnosis, and management). TLE is
associated with malfunctioning of the hippocampus years after an initial insult due to
changes in GABAergic interneuron circuits [100–102]. Common risk factors for developing
TLE later in life are traumatic brain injuries during birth or infections such as encephalitis
or meningitis during childhood. Prolonged febrile seizures are also a common risk factor
for TLE. Most patients with TLE have pronounced loss of neurons in limbic brain regions,
including the hippocampus, on autopsy. The neurodegeneration in the hippocampus is
known as hippocampal sclerosis and affects up to 70% of TLE patients.

PV+ interneurons are selectively lost in the hippocampus/subiculum region in both
human patients and animal models of TLE [103–105]. Recently, Drexel et al. [102] demon-
strated that sustained inhibition of GABA release from PV+ interneurons in the hippocam-
pal CA1/subiculum region was sufficient to induce hyperexcitability and spontaneous
recurrent seizures (SRS) in mice. They used tetanus toxin (virally delivered) to selectively
and permanently inhibit GABA release from PV+ interneurons without destroying them.
Hence, mice developed epilepsy without signs of neurodegeneration, mimicking non-
lesional TLE in patients. Drexel et al. [102] also tested the impact of transient inhibition
of GABA release from PV+ interneurons using DREADD technology. They selectively
expressed the inhibitory designer receptor hM4Di in PV+ neurons to silence them for
less than two hours. While this reduced the seizure threshold, it did not induce acute or
recurrent seizures. Overall, the study by Drexel et al. [102] highlights the importance of
inhibition mediated by PV+ interneurons in the hippocampus/subiculum and identifies
the chronic loss of GABA release from dysfunctional PV+ interneurons as a potential
mechanism in the development of TLE. In another study [106], GABAergic interneurons in
the hippocampus were selectively ablated to test if focal interneuron lesions cause acute
seizures as in status epilepticus (SE) and/or chronic epilepsy (i.e., persistent SRS). In this
study, Gad2-ires-Cre knock-in mice (which have Cre recombinase expression directed to
GAD2 positive neurons), were injected in the CA1 region with an adeno-associated virus
containing the diphtheria toxin (DT) receptor. DT was subsequently injected to induce a
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focal ablation of GABAergic interneurons specifically in this brain region. All mice with
DT-induced interneuron lesions had SRS but not SE; selective interneuron ablation rarely
led to persistent SRS (i.e., epilepsy). Collectively, these studies [102,106] provide strong
evidence that focal ablation or inactivation of GABAergic interneurons can lead to transient
SRS in adult mice. However, the reported lack of persistent SRS in the Spampanato and
Dudek study [106] could have been because recordings from interneuron-ablated mice
were only conducted for a period ranging from 17–73 days (average of 35 days) after treat-
ment. Other mouse studies have shown that SRS can occur months after the initial brain
injury; in humans there can be latent periods of up to several years before the development
of epilepsy. Hence, caution needs to be applied when interpreting data regarding the
persistence of SRS based on a relatively short seizure recording period, which may not
have been long enough to detect latent SRS as evidence for epileptogenesis. Interestingly,
chemogenetic activation of hippocampal PV+ interneurons (transgenetically transduced
with the excitatory DREADD muscarinic receptor hM3Dq) attenuated seizures in vivo in
acute and chronic rodent models of TLE [107]. Overall, these data provide evidence that
PV+ interneurons within the hippocampus could be a potential target for the treatment
of TLE.

2.3. Conclusions on the Role of PV+ Interneuron Dysfunction in Epilepsy

The role of dysfunctional GABAergic signaling in the generation, regulation, and pro-
gression of epileptic seizures is complex. Studies from human patients and rodent models
indicate multiple different mechanisms that may contribute to the initiation and progression
of generalised and focal seizures in different brain regions. Some researchers [106] have
posited a ‘two-hit model’ whereby more than one mechanism may be needed to induce
progressive epilepsy in TLE e.g., certain genetic susceptibilities may be required apart from
loss of GABAergic inhibition. Also, different mechanisms may come into play at different
stages of disease pathogenesis. Nevertheless, from the preceding discussion of recent
research into the cellular and molecular mechanisms underlying CAE (an example of a ge-
netic, generalized onset epilepsy) and TLE (the most common type of focal epilepsy) there
is compelling evidence for dysfunctional GABAergic signaling, and specifically impaired
PV+ interneuron function, in the initiation and generation of seizures in CAE and TLE.
Interestingly, mutation of the SCN1A gene, which encodes the α-subunit of the neuronal
sodium channel NaV1.1 that is concentrated in the initial axon segment of PV+ GABA
interneurons, reduces their excitability [108]. SCN1A is one of the most common epilepsy
genes in humans. SCN1A mutant mouse models exhibit epileptic seizures due to reduced
excitation of PV + interneurons and resulting hyperexcitation in several brain regions [109].
Collectively, these data provide evidence that PV+ interneuron dysfunction plays a central
role in the pathogenesis of epilepsy. Furthermore, the recent application of DREADD and
optogenetic technology to selectively manipulate PV+ interneuron function in vitro and
in vivo to control seizure activity in various animal models of epilepsy [93,94,110–114],
provides optimism that precision targeting of specific PV+ interneurons may offer future
treatment strategies for epileptic patients with genetic mutations affecting PV+ neuron
development and function.

3. PV+ Interneuron Dysfunction in Alzheimer’s Disease (AD)

While many genetic risk factors and early biomarkers have been identified for AD, the
primary causal factor(s) responsible for initiating the cognitive decline in patients with AD
remain highly controversial. Although toxic plaques and tangles correlate with progressive
neuropathology, the ‘Amyloid Cascade Hypothesis’ [115,116], which proposes that depo-
sition of the amyloid-β (Aβ) peptide in the brain is the primary underlying cause for the
symptoms and progressive cognitive impairment in AD, has been hotly debated [117–119].
This has mainly been due to the repeated failure of clinical trials targeting Aβ over the
past three decades, and also the extremely modest cognitive benefits (which are also highly
controversial) achieved by recent monoclonal anti-amyloid drugs such as Aducanumab,
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Lecanemab, and Donanemab [120–124]. Furthermore, renowned longitudinal studies (e.g.,
The Nuns Study [125] and The +90 study [126]) have also demonstrated a lack of correlation
between amyloid plaque formation in the brains of some aged patients on post-mortem
and their known cognitive status prior to death [125–128].

PV+ inhibitory interneuron dysfunction has now been identified as one of the ear-
liest pathophysiological perturbations in AD [129]. Altered E/I balance and impaired
GABAergic signaling are known risk factors for AD [130,131]. Disruptions in circuit activity
emerge before Aβ deposition in AD animal models and human patients. Furthermore,
clinical evidence reveals an elevated comorbidity of epilepsy with AD [39]. Alzheimer’s
patients are known to experience significantly more epileptic seizures than age-matched
controls [40,132], and the prevalence of epilepsy prior to cognitive decline in AD sufferers
has been reported to be over seventeen times higher than reference populations [133]. The
reported incidence of epileptic seizures in AD patients varies depending on how the data
have been collected; in closely monitored cohorts, rates as high as 64% have been found,
whereas large scale epidemiological studies indicate that unprovoked seizures occur in
10–22% of patients with AD. Late-onset epilepsy and epileptiform activity can precede cog-
nitive deterioration in AD by several years. Adult-onset epilepsy has even been proposed
as a potential risk factor for later dementia and its presence has been shown to predict a
faster disease progression (see [134] for a recent review of epilepsy in late-onset AD).

3.1. PV+ Interneuron Dysfunction as a Key Pathogenic Mechanism in AD

Evidence specifically implicating PV+ interneuron dysfunction as a key pathogenic
mechanism in AD-associated memory impairment has been provided from several animal
and human studies. PV+ interneurons are responsible for coordinating the hippocampal
network dynamics required for memory consolidation [135]. PV+ GABAergic interneuron
dysfunction has been linked to altered network oscillations in the hippocampus and medial
prefrontal cortex of a transgenic AD mouse (AppNL-G-F/NL-G-F), which models early
stages of Aβ-induced network impairments [136]. Altered gamma and theta oscillations
have also been associated with decreased numbers of hippocampal GABAergic neurons
in the TgCRND8 mouse model of AD [137], which expresses a double-mutant form of
the human APP gene. Alteration in brain network oscillations is a common finding in
transgenic mouse models of AD; altered gamma and theta oscillations and associated
cognitive deficits have been linked to selective impairment of GABAergic interneurons in
the hippocampus and parietal cortex of several AD mice [138–140]. Additionally, slow-
wave activity is severely altered in the hippocampus, neocortex, and thalamus of some AD
models [141]. Slow-wave oscillations occur during sleep and are important for integration
of information across brain regions involved in memory consolidation. In APP23xPS45
AD mice (double transgenic mice expressing a mouse/human amyloid precursor protein
and a mutant human presenilin 1), amyloid-β impairment of slow-wave propagation and
long-range circuit dysfunction can be rescued by increasing GABAergic transmission and
restoring E/I balance [141]. Hence, slow wave sleep has been proposed as a promising
intervention target for AD by some researchers [142].

Overall, the evidence from animal and human studies indicates that PV+ inhibitory
interneuron deficits and altered network activity are linked to cognitive impairments in
AD [138,143,144]. Moreover, early restoration of PV+ interneuron activity can prevent
memory loss and network hyperexcitability in some mouse models of AD [145]. However,
whether PV+ interneuron dysfunction is directly linked to causation, rather than a down-
stream consequence of AD pathogenesis, is still open to debate (see reviews [38,146,147]).

3.2. Molecular Mechanisms Underlying PV+ Interneuron Dysfunction in AD

Evidence from animal studies indicates that potentially different types of PV+ interneu-
ron dysfunction contribute to memory impairment at different stages of AD. Hypofunction
of hippocampal PV+ interneurons has been reported in APP/PS1 mice at late stages of
AD (i.e., at 7+ months in these mice). However, at three months of age, when memory
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deficits are first evident in APP/PS1 mice, hippocampal PV+ interneurons are transiently
hyperexcitable, suggesting a biphasic mechanism [38,145].

Recently, Olah et al. [148] reported a novel mechanism underlying PV+ interneuron
hypoexcitability in a mouse model of familial AD that rapidly develops severe amyloid
pathology (i.e. the 5xFAD mouse, which expresses human APP and PSEN1 transgenes
with a total of five AD-linked mutations). The hypoexcitability was found to be due to
impairments in the biophysical properties of Kv3 potassium channels, which are known to
underlie the ability of some neurons to fire action potentials at very high frequencies for
short periods of time. PV+ fast-spiking GABAergic interneurons specifically express Kv3.1
and Kv3.2. Olah et al. demonstrated that dysregulation of Kv3 channel biophysics leads
to impaired action potential generation in PV+ interneurons and dysregulation of cortical
excitability in the 5xFAD mouse model. They proposed targeting alterations in biophysical
ion channels as a potential strategy in the design of future therapies to ameliorate cortical
circuit hyperexcitability in early AD. Human genetic studies have identified mutations in
three out of the four subtypes of Kv3 channels as causal mutations linking Kv3 channel
dysfunction to brain disorders [149]. Andrade-Talavera et al. [150] were able to modulate
Kv3.1 and Kv3.2 electrophysiologically to rescue Aβ-induced desynchronization of fast-
spiking interneuron firing in an in vitro AD model and thus restore gamma oscillations.
Gamma oscillations are degraded in AD patients exhibiting cognitive impairment, with the
degree of cognitive decline correlating with the severity of gamma disruption.

There is now a growing list of human genetic mutations linking Kv3 channel dysfunc-
tion in GABAergic interneurons to a range of debilitating disorders, including AD and
epilepsy. Clatot et al. [151] used computational modelling of Kv3.2-expressing fast-spiking
PV+ GABAergic interneurons to demonstrate how the Kv3.2-Cys125Tyr variant impairs
neuronal excitability and dysregulates inhibition in cerebral cortex circuits resulting in
epileptic seizures. In another study by Yeap et al., [152], reduction of potassium channel
Kv3.4 levels was shown to ameliorate synapse loss in a mouse model of AD.

3.3. PV+ Interneuron Degeneration in AD

PV+ interneurons are known to degenerate early in AD pathogenesis [146,153]. This
has been proposed to be related to the increased energy demands required for their high fir-
ing frequencies [15,18]. PV+ GABAergic dysfunction can promote downstream changes in
Aβ and Tau pathologies associated with AD. However, the reverse is also true; an increase
in Aβ and Tau toxicity can exacerbate hyperexcitability and PV+ neuronal degeneration.
For example, toxic accumulation of Aβ peptides triggers synaptic degeneration, circuit
remodeling, and abnormal synchronization within the hippocampal networks during hu-
man TLE [39]. One mechanism that has been proposed to account for the interrelationship
between AD pathology and epileptic excitotoxicity in AD mouse models is an increase in
the neurogenesis of new immature neurons within the dentate gyrus at early stages of the
disease [154–156]. These immature cells are less likely to mature into GABAergic neurons
leading to impairments of GABA transmission [157,158]. Transplantation of GABAergic
interneuron progenitor cells into the hippocampus of APP/PS1 transgenic mice has been
shown to rescue impaired synaptic plasticity and cognitive deficits along with a suppression
of neural hyperexcitability [159].

3.4. Parvalbumin and Proteins Involved in Long-Term Plasticity

Several studies have shown that long-term plasticity can be monitored through al-
tered levels of PV protein as well as activity-regulated-cytoskeletal-associated protein
(Arc/Arg3.1). For example, long-term plasticity changes following auditory deprivation
can be monitored through altered levels of Arc and PV protein in the auditory cortex and
hippocampus, which can be correlated with changes in long-term potentiation (LTP) in
hippocampal CA1 pyramidal neurons [160].

Hippocampal PV+ interneurons have been shown to play a critical role in memory
development and the maturation of the hippocampus-dependent memory system [161].
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Hippocampi show differential kinetic profiles of protein expression following learning at
different stages of development [162]. Rodent studies have shown that learning during
infancy is associated with significant increases in the levels of PV protein in the hippocampal
CA1 region. Other studies in humans, monkeys, and rats have demonstrated that PV+
interneurons are also centrally involved in driving neurocognitive maturation during
critical developmental periods. The levels of expression of both PV-mRNA and PV protein
are significantly increased from childhood to adulthood in the prefrontal cortex, which
plays a critical role in higher order cognitive aspects of memory processing and memory
consolidation (for review see [163]).

In the brain, the expression of immediate-early genes (IEGs) has been widely used
as a molecular marker for neuronal populations that undergo plastic changes underlying
formation of long-term memory (for review see [164]). During early postnatal development,
sensory regions of the brain undergo critical periods of heightened plasticity, which are
important for learning and memory and in shaping adult neural networks for sensory
perception [165]. Three IEG products and biomarkers of neuronal activation, namely c-FOS,
Arc/Arg3.1, and ZIF268 (also known as EGR1 or NGFI-A), are expressed at significantly
higher levels in the dorsal hippocampus and the medial prefrontal cortex at postnatal day
17 (PN17) compared with PN24 (juvenile age) and PN80 (young adult age) in rats [166,167].
Gao et al. [165] demonstrated that conditional removal of Arc/Arg3.1 during the first post-
natal month, which represents a critical period when this IEG is transiently up-regulated in
the hippocampus, alters oscillations in this brain region and diminishes spatial learning
capacity throughout adulthood. In the adult brain, mRNA and proteins for IEGs have low
basal expression levels but rapidly and transiently increase in response to stimulations that
evoke LTP or long-term depression (LTD).

The expression of Arc/Arg3.1 protein also changes drastically during epileptic seizures.
Arc protein is abundantly generated by neurons during epileptic seizures and affects
epileptic susceptibility in rodent models. For example, Arc expression is upregulated in
synapses of recently activated neurons of the epileptic seizure focal zone in TLE [168].
Interestingly, impaired Arc protein synthesis is also associated with other brain disorders,
which have high mutual comorbidity with epilepsy, including memory disorders, AD,
autism spectrum disorders, and schizophrenia (for a recent review see [168]).

While Arc/Arg3.1 is known to play a critical role in long-term synaptic plasticity, the
mechanisms underlying the bidirectional regulation of synaptic strength are still under
investigation. One proposed model is that Arc controls synaptic strength by regulating
AMPAR trafficking and actin cytoskeletal dynamics in dendritic spines [169]. The IEG Narp
(neuronal activity–regulated pentraxin) encodes a secreted synaptic protein that can bind
to and induce clustering of AMPARs [170]. Narp is accumulated at excitatory synapses on
PV+ interneurons where it regulates homeostatic scaling. Activity-dependent changes in
the strength of excitatory inputs on PV+ interneurons have been shown to be dependent
on Narp in acute hippocampal slices. Narp−/− mice have increased sensitivity to kindling-
induced seizures. Chang et al. [170] proposed that Narp recruits AMPARs at excitatory
synapses onto PV+ interneurons to restore the network E/I balance following episodes of
increased circuit activity. Interestingly, rat hippocampus has significantly higher levels of
AMPAR phosphorylation at the critical period PN17. Activity-dependent phosphorylation
of AMPARs is important for regulating the delivery, stabilization and function of AM-
PARs at synapses, and thus for long-term plasticity. More recently, underlying molecular
mechanisms have been identified, explaining how the CLOCK (circadian locomotor output
cycles kaput) gene protein in inhibitory interneurons participates in neuronal activity and
regulates the predisposition to epilepsy [171]. Clock genes control rhythms in physiology
and behavior. Deng et al. (2024) showed that conditional knockout of the Clock gene
in inhibitory neurons in a GAD-Cre;Clockflox/flox mouse caused upregulation of the
basal protein level of Arc. Disruption of Clock in excitatory neurons caused alterations
in cortical circuits, leading to the generation of focal epilepsy. Conversely, conditional
Clock gene knockout in inhibitory neurons (in the GAD-Cre;Clockflox/flox mouse line),
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resulted in prolonged seizure latency, significant reduction in the severity and mortality of
pilocarpine-induced seizures, and improved memory [171].

Collectively, these studies indicate that there is a correlation between activity-altered
levels of PV protein and Arc protein expression in brain disorders characterised by seizures
and cognitive deficits including epilepsy and AD. The Arc gene is associated with the
pathogenesis of epilepsy; conversely, synaptic Arc protein synthesis is affected by seizures.
Epileptic activation of Arc-mediated changes during seizures may affect memory consoli-
dation in epilepsy and comorbid AD. The information from these studies may be important
for developing future therapeutic strategies.

4. Targeting PV+ Interneurons in Future Treatment Strategies for Alzheimer’s Disease
and Epilepsy

Various studies suggest inhibitory interneurons, especially PV+ interneurons, are sus-
ceptible to mitochondrial impairment. Proteomic analysis using cell-type-specific in vivo
biotinylation of proteins (CIBOP) coupled with mass spectrometry to obtain native-state
proteomes of PV interneurons has revealed strong correlations between PV+ interneuron-
specific proteome signatures and progressive neuropathology in humans and mouse models
of Aβ pathology [129]. Analysis revealed unique signatures of increased mitochondrial
and metabolic proteins in response to early Aβ pathology. Recently, Olkhova et al. [172]
developed a mouse model of mitochondrial dysfunction in PV+ interneurons that has
mitochondrial and cognitive defects resembling those observed in patients. This mouse
model has the potential to be used as a drug screening platform towards discovery of
future therapeutics to treat severe neurological impairment arising from mitochondrial
dysfunction in PV+ interneurons.

Other studies have demonstrated that the destruction of PV+ interneurons, medi-
ated by microglia, plays a key role in cognitive impairments associated with systemic
inflammation [173]. Interestingly, a recent investigation into the mechanisms underlying
the beneficial effects of regular exercise for improving learning and memory functions
across multiple neurological diseases has revealed that engaging in exercise protected
parvalbumin interneurons, in a mouse model of epilepsy, via the suppression of neuroin-
flammation [174].

Glial progenitor cells have been suggested as a suitable target for future therapeutic
intervention strategies aimed at generating new GABAergic interneurons via in situ repro-
gramming [163]. Until recently, reprogramming of human glial cells remained challenging
despite the successful conversion of mouse glia into interneurons. Giacomoni et al. [175]
were able to successfully convert human stem cell-derived glial progenitor cells (hGPCs)
into functional GABAergic interneurons, within a month. The induced GABAergic neurons
exhibited complex neuronal morphologies with extensive dendritic trees and expressed
subtype-specific interneuron markers (e.g., parvalbumin). The authors proposed that these
induced interneurons could be of potential use for development of therapies for interneuron
pathologies implicated in several neurological disorders.

Finally, the development of optogenetics [110–114,176,177] and chemogenetic tech-
niques such as DREADDs [178,179] and their recent successful application, in vitro and
in vivo, to attenuate some types of epileptic seizures arising from PV+ interneuron dysfunc-
tion in rodent models [93,94,180], holds out promise that these technologies may be able to
be used in the future to treat neurological disorders in humans arising from disruption in
the development or function of PV+ GABAergic interneurons.

5. Conclusions

In conclusion, there is now compelling evidence, from in vitro and in vivo studies in
animal models and from human clinical and post-mortem data, that dysfunctional PV+
GABAergic interneurons play a central, pivotal role in neurological disorders such as
epilepsy and AD. Developmental and functional deficits in PV+ inhibitory interneurons,
leading to E/I imbalance within brain networks, may explain the interrelationship between
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epileptic seizures and cognitive impairments in AD. The comorbidity between AD and
epilepsy is now well known. Defective PV+ interneuron function may represent one under-
lying mechanism linking epileptic excitotoxicity and cognitive decline in AD pathology.
PV+ interneurons therefore offer potential targets for future therapeutic approaches in the
treatment of epilepsy and AD.

Optogenetic and chemogenetic technologies such as DREADD, which allow specific
populations of neurons to be precisely controlled (temporally and spatially), could be
used in targeted treatment strategies where selective control of PV+ interneurons firing
has been identified as an option in the treatment of patients with seizures and cognitive
deficits. Further research will need to be undertaken to clearly differentiate causative
mechanisms from downstream consequential changes and to identify which specific pop-
ulation of interneurons in the brain to target and when to manipulate them for optimum
therapeutic benefits [181,182]. The specific underlying cellular and molecular alterations
directly responsible for seizure generation and cognitive deficits in epilepsy and AD are
still under study and are highly contentious. Nevertheless, from recent emerging data, PV+
interneurons are highly attractive candidates to target in the development of future treat-
ments [183] for a range of neurological disorders involving seizures and cognitive decline.
Further research into the specific mechanisms underlying PV+ interneuron dysfunction
in neurological disorders will undoubtedly lead to the development of more precisely
targeted therapeutic interventions for treating epilepsy and AD in the future.
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