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Abstract: Dipeptidyl peptidase 4 (DPP4) inhibitors can effectively inhibit the activity of DPP4, in-
creasing the concentrations of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic
polypeptide (GIP), which allows for them to effectively contribute to the reduction of blood sugar
levels. Leu-Pro-Ala-Val-Thr-Ile-Arg (LPAVTIR) and Leu-Pro-Pro-Glu-His-Asp-Trp-Arg (LPPEHDWR)
were the two peptides with the strongest inhibitory activity against DPP4 selected from silkworm
pupa proteins. In this study, four systems were established: Apo (ligand-free DPP4), IPI (IPI-bound
DPP4), LPAVTIR (LPAVTIR-bound DPP4), LPPEHDWR (LPPEHDWR-bound DPP4), and Gaussian
accelerated molecular dynamic (GaMD) simulation was conducted to investigate the mechanism of
action of two inhibitory peptides binding to DPP4. Our study revealed that the LPAVTIR peptide
possessed a more stable structure and exhibited a tighter binding to the Ser630 active site in DPP4,
thus exhibiting a favorable competitive inhibition effect. In contrast, the LPPEHDWR peptide caused
the horizontal α-helix (residues 201–215) composed of Glu205 and Glu206 residues in DPP4 to disap-
pear. The spatial arrangement of active sites Ser630 relative to Glu205 and Glu206 was disrupted,
resulting in enzyme inactivation. Moreover, the size of the substrate channel and cavity volume
was significantly reduced after the binding of the inhibitory peptide to the protein, which was an
important factor in the inhibition of the enzyme activity. A similar effect was also found from IPI (our
positive control). By stabilizing the active site of DPP4, the IPI peptide induced the disappearance
of the horizontal α-helix and a notable reduction in the active cavity volume. In conclusion, our
study provided a solid theoretical foundation for the inhibitory mechanisms of IPI, LPAVTIR, and
LPPEHDWR on DPP4, offering valuable insights for advancing the development of drug targets for
type 2 diabetes.

Keywords: inhibitory peptide; dipeptidyl peptidase 4 (DPP4); Gaussian accelerated molecular
dynamics simulation; conformational changes; MM-PBSA

1. Introduction

Type 2 diabetes accounts for nearly 90% of the estimated 537 million cases of diabetes
worldwide and is the most common type of diabetes [1]. It is characterized by the devel-
opment of insulin resistance, which leads to pancreatic beta cell failure and ultimately to
blood sugar dysregulation [2]. The main risk of diabetes is that high levels of blood sugar
over a long period can lead to several complications, such as blindness, nerve damage, and
renal failure [3].

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide
(GIP) are enteric-derived peptide hormones released by small intestinal enteroendocrine
cells (EECs). They play a crucial role in maintaining glucose homeostasis by stimulating
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insulin secretion from pancreatic β-cells and inhibiting the release of glucagon [4]. Dipep-
tidyl peptidase 4 (DPP4), a highly specific serine protease, selectively cleaves peptides
or dipeptides featuring alanine or proline in the penultimate position at the N-terminal
of a hormone, resulting in the inactivation of the peptide. DPP4 plays a pivotal role in
degrading GLP-1 and GIP, thus hindering their ability to exert hypoglycemic effects [5].

Dipeptidyl peptidase 4 (DPP4) inhibitors enhance the body’s ability to control its
blood glucose by increasing the activity level of the hormone glucagon in the body. Their
mechanism of action is different from any of the existing oral hypoglycemic agents. They
control elevated blood glucose by triggering insulin secretion from the pancreas, inhibiting
glucagon secretion, and signaling the liver to reduce glucose production [6,7].

Unfortunately, the various synthetic drugs used to treat type II diabetes (DPP4 in-
hibitors) typically cause more serious side effects [8], gastrointestinal adverse reactions [9],
allergic reactions [10], skin-related side effects [11], and musculoskeletal disorders. How-
ever, DPP4 inhibitors have been found in foods, including milk, fish, wheat gluten, beans,
and eggs, which are all natural protein sources, and their proteins may be degraded and
release various DPP4 inhibitory peptides [12–16].

Silkworm pupae (Bombyx mori) are byproducts of cocoon extraction and constitute
60% of the mass of dried cocoons. Bombyx mori is rich in protein, presenting a high-quality
natural protein. The development of bioactive peptides is a good direction for the ap-
plication of silkworm pupa proteins [17]. Leu-Pro-Ala-Val-Thr-Ile-Arg (LPAVTIR) and
Leu-Pro-Pro-Glu-His-Asp-Trp-Arg (LPPEHDWR) were identified as the two peptides with
the strongest inhibitory activity of DPP4, with IC50 values of 192.47 µM and 261.17 µM, re-
spectively [18]. The enzyme kinetic data suggest that these two peptides have a mixed-type
DPP4 inhibition pattern [18]. However, the precise mechanism underlying the inhibition of
DPP4 by these two peptides remains unclear.

Gaussian accelerated molecular dynamic (GaMD) simulation is a robust computational
technique, which provides simultaneous unconstrained, enhanced sampling and free
energy calculations of biomolecules [19]. GaMD simulation has a wide range of applications
in biological systems, including studying protein–ligand binding [20], studying the effects
of inhibitors on protein structure [21], identifying binding sites [22], and elucidating drug
pathways [23]. Beforehand, GaMD simulations were employed to investigate the inhibition
mechanism of enzymes related to peptide inhibition [24]. Ile-Pro-Ile (IPI) has been reported
to be the most potent DPP-IV inhibitory peptide (IC50 = 5 µM) [25]. Therefore, we selected
IPI as a positive control.

In this study, we performed 500 ns GaMD simulation of four systems, Apo (ligand-free
DPP4), LPAVTIR (LPAVTIR-bound DPP4), LPPEHDWR (LPPEHDWR-bound DPP4), to
deeply investigate the molecular mechanisms of the inhibition of the inhibitory peptides.
The results of the GaMD simulation was analyzed to obtain the sites of interaction between
the inhibitory peptide and DPP4, and the microscopic changes of protein conformation
after binding, which will provide ideas for the development of related drugs.

2. Results and Discussion
2.1. The Binding Mode of Inhibitors to DPP4

DPP4 is a dimer, and each subunit consists of two domains, an α/β-hydrolase domain
and an eight-bladed β-propeller domain. The serine-protease active triad includes Ser630,
Asn708, and His740. The blue structures in the figures are inhibitory peptides, and the
orange parts are residues that hydrogen bond with inhibitory peptides. The molecular dock-
ing results of DPP4 and the two inhibitory peptides are shown in Figure 1A,B. Inhibitory
peptide LPAVTIR forms a hydrogen bond network with Tyr48, Ser209, Glu205, Tyr547 of
DPP4; carbon–hydrogen bonds with Glu205, Glu206, Gly741; amide–pi stacked interac-
tions with His748; and pi–alkyl interactions with Phe357, Trp629, Tyr666, His748, Tyr752
(Figure S1). This docking result indicates that LPAVTIR binds to the cavity region involved
in protein-catalyzed core interactions. Inhibitory peptide LPPEHDWR forms hydrogen
bonds with Asn562 of DPP4 and with Lys554; carbon–hydrogen bonds with Glu205, Gln553;
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alkyl interactions with Tyr48, Arg560, and Ala564; and pi–anion interactions with Ala545
(Figure S2), which indicates that LPPEHDWR is also involved in protein-catalyzed core
interactions. According to the docking results, it is observed that both inhibitory peptides
bind to the active site of DPP4. By comparing the other docking sites and evaluating the
binding energies, it can be inferred that both complexes have a stable structure, indicating
their suitability as initial conformations for MD simulation.
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Figure 1. (A) The hydrogen bonds between the inhibitory peptide LPAVTIR and DPP4. (B) The
hydrogen bonds between the inhibitory peptide LPPEHDWR and DPP4.

2.2. Structural Stability and Dynamic Properties of the Four Systems

DPP4 comprises an α/β hydrolase structural domain and an eight-bladed β propeller
structural domain; we analyzed these two domains separately in this study. To evaluate
the stability of the simulation, the root mean square deviation (RMSD) of the CA atoms
was calculated (Figure 2). In the results, the RSMD values of the α/β-hydrolase domains
of the four systems are all stable around 1 Å, which means that the part of this domain has
no obvious fluctuation.
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Figure 2. (A) Variation of RMSD values of the α/β-hydrolase domains of the four systems. (B) Rela-
tive frequency distribution of RMSD of the α/β-hydrolase domains of the four systems. (C) Variation
of RMSD values of the eight-bladed β-propeller domain of the four systems. (D) Relative frequency
distribution of RMSD of the eight-bladed β-propeller domain of the four systems.
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In the eight-bladed β-propeller domain, the mean RMSD values for the four systems
(Apo, IPI, LPAVTIR, and LPPEHDWR) were 1.69 Å, 1.81 Å, 1.67 Å, and 2.05 Å, respectively,
with standard deviations of 0.19 Å, 0.21 Å, 0.20 Å, and 0.32 Å. The LPPEHDWR system
exhibits an average RSMD of 2.05 Å, a value considerably higher than observed in the
other three systems. This suggests that the LPPEHDWR system experiences significant
fluctuations and may have undergone structural changes. we observed that the RMSDs in
each MD trajectory reached equilibrium, indicating that all the systems studied were stable
and could be used for a subsequent analysis.

The radius of gyration (Rg) was employed to assess changes in protein compactness
within the simulation. In the Apo and LPAVTIR systems, the Rg values of the α/β hydrolase
structural domains fluctuate around 18.85 Å, while the Rg values for LPPEHDWR have a
slight decline during the simulation (Figure 3A,B). In the eight-bladed β-propeller domain,
the mean Rg values for the four systems (Apo, IPI, LPAVTIR, and LPPEHDWR) were
23.84 Å, 23.59 Å, 24.10 Å, and 23.65 Å, respectively, with standard deviations of 0.12 Å,
0.11 Å, 0.10 Å, and 0.21 Å. Rg for LPPEHDWR significantly decreased accompanied by
notable fluctuations in standard deviation, which suggests that the binding of LPPEHDWR
to DPP4 enhances protein compactness (Figure 3C,D).
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of RG of the eight-bladed β-propeller domain of the four systems.

The soluble surface area (SASA) was used to predict the number of residues in the
exposed regions (surface) and the hydrophobic core (buried) of the protein. The SASA
values of the systems during the 500 ns MD are depicted in Figure 4. In the case of the
α/β hydrolase structural domain, the SASA values for the four systems were slightly
lower (Figure 4A,B), which can be attributed to the binding of the hydrophobic inhibitor in
this region, indicating strong binding. In the eight-bladed β-propeller domain, the mean
SASA values for the four systems (Apo, IPI, LPAVTIR, and LPPEHDWR) were 19,477.78 Å2,
19,709.62 Å2, 19,989.47 Å2, and 18,815.23 Å2, respectively, with standard deviations of
386.35 Å2, 422.75 Å2, 350.50 Å2, and 489.98 Å2. In the LPPEHDWR system, the SASA was
markedly lower, measuring 18,815.23 Å2, significantly lower than the average value of
19,477.78 Å2 in the Apo system (Figure 4C,D). These SASA results were consistent with the
changes observed in Rg, suggesting that the binding of the inhibitory peptide LPPEHDWR
may have induced conformational changes in the protein.
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In conclusion, all systems remained stable after the 500 ns MD simulation and can be
utilized for further investigations.

2.3. Flexibility Analysis of DPP4 Protein

The root mean square fluctuation (RMSF) values can be used to assess the flexibility
of amino acid residues. Figure 5A illustrates the RMSF values of Cα atoms in DPP4 for
the four systems. By combining the data, we identified regions with significant differences
in the fluctuation of amino acid residues among the four systems, highlighted as the red
region in the figure. These regions are residues 201–215, residues 238–252, and residues
738–748, as shown in Figure 5B. Residues 201–215 form horizontally helical structures
containing Glu205 and Glu206, crucial for the spatial arrangement of the active site Ser630,
influencing pre-peptide cleavage. Residues 738–748 also interact closely with the active site.
Residues 238–252 constitute an extended arm and exhibit the highest degree of fluctuation,
potentially playing a role in protein volume changes. Given their close relationship with
protein activity, these three regions were selected for further analysis.
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2.4. Comparison of the Conformational Changes of the Four Systems

Protein secondary structure studies play a crucial role in molecular dynamics simula-
tion. Figure 6 illustrates the changes in secondary structure for residues 201–215. Likewise,
Figure S3 displays the three-dimensional structural variations of residues 738–748 confor-
mations, with red indicating Apo, yellow indicating IPI, green representing the LPAVTIR
system, and blue representing the LPPEHDWR system. It can be seen that the α-helix of
residues 738–748 disappears around 300 ns of the simulation in the LPPEHDWR system,
and the corresponding structural changes are shown in Figure S3.
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For a clearer understanding of the α-helix alterations in residues 201–215 during
the simulation, please consult Figure 6, where their corresponding structural changes
are illustrated. Additionally, Table 1 presents the probability of α-helices’ occurrence
throughout the simulation. Specifically, the residue 201–215 reveals an α-helix appearance
probability of 99.78% in the Apo system, 38.41% in the IPI system, 80.34% in the LPAVTIR
system, and 6.68% in the LPPEHDWR system. Notably, the LPAVTIR system modestly
reduces the α-helix, the IPI system significantly diminishes the α-helix, and the LPPEHDWR
system almost eliminates this helical segment. The spatial arrangement of the active site
Ser630 in relation to Glu205 and Glu206 is a crucial feature influencing the cleavage of pre-
peptides. Consequently, the disappearance of the horizontal α-helix leads to the disruption
of the spatial arrangement between site Ser630 and Glu205/Glu206, affecting the enzymatic
activity of DPP4. This particular structural change is believed to contribute to the inhibition
of DPP4.
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Table 1. Probability of α-helix.

System Residues 197–207 Residues 738–747

Apo 99.78% 87.81%
IPI 38.41% 94.58%

LPAVTIR 80.34% 91.10%
LPPEHDWR 6.68% 57.82%

2.5. Dynamics Cross-Correlation Matrix and Principle Component Analysis

The dynamical cross-correlation matrix (DCCM) analyses of all Cα atoms are pre-
sented in Figure 7A–D. Positive regions are depicted in cyan, indicating correlation mo-
tions between residue Cα atoms, while negative regions are shown in pink, representing
anti-correlation motions. In particular, the red rectangle within the figure highlights the
interaction between residues 238–252 and the active site.
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Comparatively, the IPI and LPPEHDWR systems exhibit a darker color than the Apo
system, suggesting that the former experiences greater fluctuations during the MD simula-
tion, leading to significant structural changes. Notably, the negative correlation observed
between motions of residues 238–252 and 201–215 implies that the former undergoes nega-
tively correlated motions about the active cavity position. This suggests that the extended
arm region might approach the active cavity and assume a closed state.

The result of the simulation was subjected to cluster analysis, resulting in 10 distinct
classes. To investigate whether inhibitory peptide binding affected the conformational
change in the active site of DPP4, the active site cavity volume of 10 average protein
structures obtained from a cluster analysis for four systems were calculated using the online
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server CASTp3.0 [26], and the results were presented in Table 2 and Figure 8. Compared to
the Apo group, the other three systems showed a decrease in active cavity volume, with
greater reductions in the IPI and LPPEHDWR systems. The measured cavity volumes of the
Apo, IPI, LPAVTIR, and LPPEHDWR systems were 11,510.64 Å3, 11,133.39 Å3, 11,275.55 Å3,
and 11,079.26 Å3, respectively, with standard deviations of 489.73 Å3, 847.61 Å3, 805.07 Å3,
and 756.91 Å3. The LPPEHDWR system had a significantly smaller volume and smaller
variance of the active cavity of the DPP4 protein compared to the other systems.

Table 2. The cavity volume of the four systems.

Structure Cavity Volume (Å3)
(Apo)

Cavity Volume (Å3)
(IPI)

Cavity Volume (Å3)
(LPAVTIR)

Cavity Volume (Å3)
(LPPEHDWR)

1 11,147.29 12,104.116 10,964.56 9702.332
2 11,883.58 11,105.567 12,076.32 10,092.49
3 11,223.88 10,284.191 11,278.85 11,852.07
4 12,424.45 11,679.295 12,636.11 11,189.88
5 11,050.15 10,975.048 10,643.82 10,714.59
6 11,979.49 12,231.661 10,834.91 11,675.83
7 11,090.71 9507.133 10,792.91 11,934.00
8 11,018.13 11,118.331 10,538.31 10,822.76
9 11,439.93 10,604.945 10,551.95 11,704.74
10 11,848.75 11,723.584 12,437.79 11,103.90

avg 11,510.64 11,133.3871 11,275.55 11,079.26
Standard Deviation 489.73 847.61 805.07 756.91
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Next, representative structures were selected from the clustered results to measure
the diameters of the two channels by CAVER3.0 [27], and these two channels are shown
schematically in Figure 9. The diameter is the minimum of the protein channel. The
measurements are presented in Table 3, revealing that the diameter of the bottom channel
of the three systems remained relatively unchanged. Compared to the Apo system, the
other three systems exhibited a decrease in the diameter of the side channel, with the
IPI and LPPEHDWR systems experiencing a more pronounced reduction. The size of
the channel diameter plays a crucial role in substrate entry and is an important factor in
peptide inhibition.
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Table 3. The side and the bottom opening radius.

System Side Opening Radius (Å) Bottom Opening Radius (Å)

Apo 6.11 4.06
IPI 3.17 4.31

LPAVTIR 5.11 4.31
LPPEHDWR 4.31 4.04

Subsequently, a principal component analysis was performed on the systems. The
two largest eigenvalues, PC1 and PC2, were used as reaction coordinates to calculate the
relative Gibbs free energy and generate a Gibbs free energy surface (FEL). The FEL provides
valuable information about different conformational states and reveals energy barriers
between different conformations or states in the protein.

Figure 10 illustrates the free energy surface diagram of the four systems. The low-
energy conformations are displayed, highlighting changes in the 3D structure of residues
201–215 and protein solvent volumes. In the Apo system, the global energy minimum
(PC1: −34.18, PC2: −10.14) was selected as the reference for analysis (Figure 10A). The
Apo system represents the structure at the 40.6 ns time point, featuring a solvent volume
of 12,617 Å3 and exhibiting an α-helix in residues 201–215. In Figure 10B, the free energy
surface diagram of the IPI system is presented. Following comparative calculations, the
global energy minimum (PC1: −41.70, PC2: 10.27) was chosen as the reference for the
analysis. The corresponding conformation occurred at 458.1 ns, with a solvent volume of
9110 Å3. It can be seen that the solvent volume is significantly reduced and the α-helix of
residues 201–215 disappears.

In Figure 10C, the free energy surface diagram of the LPAVTIR system is presented.
Following comparative calculations, the global energy minimum (PC1: −42.68, PC2: 1.26)
was chosen as the reference for the analysis. The corresponding conformation occurred at
109.9 ns, with a solvent volume of 13,546 Å3. Figure 10D displays the free energy surface
diagram of the LPPEHDWR system. After comparative calculations, the global energy
minimum (PC1: 64.01, PC2: −27.50) was selected as the reference for the analysis. The
corresponding conformation was observed at 333.2 ns, with a solvent volume of 11,777 Å3.
The results indicate a substantial reduction in protein solvent volume and the disappearance
of the α-helix in residues 201–215 in the LPPEHDWR system. These factors are crucial for
the inhibition of DPP4.



Int. J. Mol. Sci. 2024, 25, 839 10 of 16Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 10. The free energy landscape for the following four systems: (A) Apo, (B) IPI, (C) LPAVTIR, 
and (D) LPPEHDWR. The low-energy conformations are displayed, highlighting changes in the 3D 
structure of residues 201–215 and protein solvent volumes. 

In Figure 10C, the free energy surface diagram of the LPAVTIR system is presented. 
Following comparative calculations, the global energy minimum (PC1: −42.68, PC2: 1.26) 
was chosen as the reference for the analysis. The corresponding conformation occurred at 
109.9 ns, with a solvent volume of 13,546 Å3. Figure 10D displays the free energy surface 
diagram of the LPPEHDWR system. After comparative calculations, the global energy 
minimum (PC1: 64.01, PC2: −27.50) was selected as the reference for the analysis. The cor-
responding conformation was observed at 333.2 ns, with a solvent volume of 11,777 Å3. 
The results indicate a substantial reduction in protein solvent volume and the 

Figure 10. The free energy landscape for the following four systems: (A) Apo, (B) IPI, (C) LPAVTIR,
and (D) LPPEHDWR. The low-energy conformations are displayed, highlighting changes in the 3D
structure of residues 201–215 and protein solvent volumes.

By comparison, it can be seen that the solvent volume values of both IPI and LPPE-
HDWR are significantly reduced and the α-helices of residues 201–215 disappear, which is
in agreement with the results obtained previously.

2.6. Analysis of the Interaction between DPP4 and Dipeptide Inhibitors

Through a cluster analysis of the 500 ns kinetic simulation, the patterns of the six
average ligands during the MD simulation were obtained. The structures of IPI, LPAVTIR,
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and LPPEHDWR are shown in Figure 11A–C, respectively. It can be observed that the
structure of IPI and LPAVTIR remains more stable throughout the simulation compared
to LPPEHDWR. Figure 11D–F depict the variations in the number of hydrogen bonds
formed by the inhibitory peptides IPI, LPAVTIR, and LPPEHDWR with DPP4 during the
simulation, respectively. Due to the differing peptide lengths, LPAVTIR and LPPEHDWR
form more hydrogen bonds with the protein. However, the number of hydrogen bonds for
IPI remains relatively stable. This observation can also be indicative of the stability of the
inhibitory peptide and its binding to the protein.
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Figure 11. Ligand poses of six superimposed structures over 500 ns: (A) IPI, (B) LPAVTIR, and
(C) LPPEHDWR. Evolution of the number of hydrogen bonds formed between DPP4 and peptides
during molecular dynamic simulation: (D) IPI, (E) LPAVTIR, and (F) LPPEHDWR. (G) Time evolution
of the RMSDs and (H) corresponding frequencies of IPI, LPAVTIR, and LPPEHDWR.

The changes in the root mean square deviation (RMSD) values and their corresponding
relative frequency distributions are depicted in Figure 11G,H. The RMSD values of LPAVTIR
are predominantly distributed around 2.5 Å, indicating relatively smaller fluctuations
and increased stability as the simulation progresses. On the other hand, the degree of
fluctuation in the RMSD value of LPPEHDWR is relatively large, indicating that it moves
more vigorously during the simulation process. The IPI consistently stabilized around
0.34 Å, suggesting the enduring stability and tight binding of the IPI structure to the
protein’s active site without deviation.

To further investigate the detailed interactions between the proteins and the inhibitors,
representative structures obtained from the cluster analysis are utilized (Figure 12). In
Figure 12, the major hydrogen bonding interacting residues during the simulation are
highlighted in red. Inhibitory peptide IPI interacts with DPP4 through hydrogen bonds
involving residues Glu205, Glu206, Arg741, and Ile742 (Figure 12A). LPAVTIR forms
hydrogen bonds mainly with residues Ser630, Arg205, Asn710, Ala743, Tyr631, Tyr622,
Asp663, and Arg125 (Figure 12B). In contrast, LPPEHDWR interacts with DPP4 using
residues Ser460, Arg560, Asn562, Tyr480, Ser59, Asp104, Gln533, Asp556, Glu205, and
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Asp104 but does not bind to the active pocket (Figure 12C). Upon comparison, it is evident
that inhibitory peptide LPPEHDWR does not bind to the active pocket, while inhibitory
peptide LPAVTIR is similar in that it predominantly occupies the substrate-binding site in
the active pocket, which is a key factor contributing to its inhibitory activity.
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Figure 12. Binding pocket of (A) IPI, (B) LPAVTIR, and (C) LPPEHDWR systems during molecular
dynamic simulation. Residues that interacted with the ligands are shown in red and inhibitory
peptides are shown in green.

The results of MM-PBSA calculations are summarized in Table 4. The LPAVTIR-
bound DPP4 complex exhibits a binding free energy of −33.74 ± 0.79 KJ/mol, and the
LPPEHDWR-bound DPP4 complex displays a binding free energy of −32.91 ± 0.72 KJ/mol.
These results indicate that LPAVTIR binds more strongly to DPP4 compared to LPPEHDWR.
Overall, the tight and strong binding of LPAVTIR to the active site is consistent with its
competitive inhibition. The free energy of IPI binding to DPP4 was −11.20 ± 0.72. While
its binding ability was not as high as that of LPAVTIR and LPPEHDWR, IPI demonstrated
stable binding to the active site of DPP4. This stability is a key factor contributing to the
robust inhibition exhibited by IPI.

Table 4. MM-PBSA (KJ/mol) of the two systems.

System IPI LPAVTIR LPPEHDWR

∆Evdw −20.42 ± 0.59 −48.22 ± 0.66 −44.40 ± 0.83
∆Eele −158.48 ± 4.18 −413.84 ± 6.71 −119.86 ± 3.74

∆Gsolv 167.69 ± 4.19 428.32 ± 6.05 131.35 ± 3.76
∆Ggas −178.90 ± 4.47 −462.06 ± 6.48 −164.26 ± 4.27
∆Gtotal −11.20 ± 0.72 −33.74 ± 0.79 −32.91 ± 0.72

3. Materials and Methods
3.1. System Preparation

The three-dimensional structure of the DPP4 protein and inhibitor–ligand complex was
obtained by searching the RCSB PDB database [28] (PDB ID: 2RIP [29]). The obtained pdb
structure was processed using Pymol 2.4.0, an open source software, removing redundant
water molecules, deleting small ligand inhibitor molecules, and saving it as a new pdb file
of only the receptor protein DPP4.

HPEPDOCK 2.0 [30] can fully account for peptide flexibility by generating a large
number of peptide conformations (up to 1000). Instead of constructing the peptide structure
and optimizing the energy by ourselves, we used the sequence module, and the docking of
the peptide to the DPP4 protein was performed using the HPEPDOCK 2.0 online website.
Receptor proteins were selected from our processed pdb files and uploaded, and ligands
were pasted in FASTA format at sequence. After conducting separate docking experiments
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of the DPP4 protein with IPI, LPAVTIR, and LPPEHDWR peptides, the model exhibiting
the lowest binding energy was carefully selected for subsequent visualization and analysis
of the interactions. The systems studied are named as follows IPI for IPI-bound DPP4,
LPAVTIR for LPAVTIR-bound DPP4, LPPEHDWR for LPPEHDWR-bound DPP4, and Apo
for ligand-free DPP4 protein.

3.2. Conventional Molecular Dynamic Simulation

Conventional molecular dynamic simulation (cMD) of the three model systems was
performed using the pmemd.cuda module of AMBER 16 [31]. Before the simulation, force
field parameters for the proteins and peptides were generated using the Leap module
embedded in AMBER 16, both using the ff14SB force field [32]. Each system was then
dissolved in an octahedral box using the TIP3P [33] water model. To prevent edge effects,
periodic boundary conditions (PBC) were applied to the four systems. The distance between
the solute surface and the box was set to 15 Å. An appropriate amount of antagonist ion
(Na+) was added to neutralize the systems. All bonds involving hydrogen atoms were
constrained using the SHAKE algorithm [34]. Non-bonded electrostatic interactions were
handled using the particle mesh Ewald (PME) algorithm [35] with an intercept of 10 Å.
In the minimization phase, the steepest descent algorithm and the conjugate gradient
algorithm were used, each performed for 5000 steps. Then, the three models were gradually
heated under the NVT set to 300 K. Finally, the 50 ns simulation of the equilibrium of the
system was performed under the NPT set. The time step of the whole simulation was 2 fs.

3.3. Gaussian Accelerated Molecular Dynamic Simulation

The initial structures used for GaMD simulation were derived from the equilibrium
structure of cMD simulation. In the GaMD method, the harmonic boost potential was added
to reduce the energy barrier by smoothing the potential energy surface, thus accelerating
transitions between different conformational states for enhanced sampling [36]. Here, the
added lifting potential followed the Gaussian distribution so that the original potential
energy surface could be easily recovered. In addition, GaMD has the benefit of not requiring
any predefined reaction coordinates or collective variables (CVs). Therefore, this enhanced
simulation method is excellently suited for studying the dynamics of complex biological
systems. In this study, we applied dual potential boost [37] to the GaMD simulation. The
dual potential parameters were determined from a previous 50 ns cMD simulation. Then, a
50 ns GaMD simulation was performed. Finally, 500 ns GaMD simulations were performed
in the NVT ensemble, with coordinates saved every 10 ps.

3.4. Trajectory Analysis

All analyses, including RMSD, RMSF, Rg, SASA, and DCCM, were computed using
Amber16′s Cpptraj module [38]. Principal component analysis (PCA) [39] was also calcu-
lated using Cpptraj. This is a widely used dimensionality reduction method to characterize
the coordinated motion of an entire protein. Free energy mapping (FEL) is commonly used
to find major conformations and their corresponding potentials.

3.5. MM-PBSA Calculations

The accurate calculation of protein–protein binding free energy is of great importance
in biological and medical science [40]. This work used the molecular mechanics/Poisson–
Boltzmann surface area (MM/PBSA) method to explore the ligands’ binding affinity to
DPP4 [41,42]. The binding free energy (∆Gbind) can be expressed by the following equations.

∆Gbind = ∆H − T∆S (1)

∆H = ∆EMM + ∆Gsol (2)

∆EMM = ∆Eele + ∆EvdW + ∆Eint (3)

∆Gsol = ∆Gpol + ∆Gnonpol (4)
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where ∆EMM and ∆Gsol, represent the gas-phase molecular mechanical energy change
and the solvation free energy change, respectively. Because there is little conformational
change before and after receptor–ligand binding, this contribution of T∆S can be canceled
out in the calculation of the difference [43]. ∆EMM includes three terms calculated using
molecular mechanics (MM): the covalent energy change (∆Eint), the electrostatic energy
change (∆Eele), and the van der Waals energy (∆EvdW). The ∆Eint consists of changes in the
bond terms, angle terms, and torsion terms, respectively [44].

In this investigation, the conformational structures of the protein–ligand complex, as
well as those of the individual protein and ligand, were derived from a sole MD trajectory,
wherein the protein–ligand structure was treated as a rigid entity. Hence, the ∆Eint between
the complex and the isolated components might counterbalance each other, as this energy
term was computed using the identical MD simulated trajectory. Furthermore, only the
∆Eele and ∆EvdW components of Equation (3) were investigated in the subsequent analysis.
∆Gsol was used to indicate the sum of the polar solvation-free energy (∆Gpol) and non-
polar solvation-free energy (∆Gnonpol). ∆Gpol was determined by solving the linearized
Poisson–Boltzmann equation using the PBSA program in the AMBER 16 suite [31].

Subsequently, a total of 400 snapshots were extracted from the final trajectory spanning
100–500 ns at 10-frame intervals for MM/PBSA calculation [45].

4. Conclusions

Through 500 ns GaMD simulation of four systems, we have elucidated the inhibition
mechanisms of three peptides on the DPP4 enzyme. Specifically, the LPAVTIR peptide
demonstrated a more stable structure and tighter binding to the Ser630 active site of DPP4,
resulting in superior competitive inhibition. In contrast, the LPPEHDWR peptide caused
the disappearance of the horizontal α-helix (residues 201–215), comprising Glu205 and
Glu206, in the DPP4 enzyme. This disruption of the spatial arrangement between the
active site Ser630 and Glu205/Glu206 led to enzyme inactivation. Additionally, in the
LPPEHDWR system, the absence of the α-helix at residues 738–748 was responsible for
enzyme inactivation. Moreover, the size of the substrate channel and cavity volume is
significantly reduced after the binding of the inhibitory peptide to the protein, which is an
important factor in the inhibition of enzyme activity. Moreover, IPI, by stabilizing the active
site of DPP4, induces the disappearance of the horizontal α-helix and a notable reduction
in the active cavity volume.

In summary, this study elucidates the inhibition mechanism of silkworm pupa peptide
on the DPP4 enzyme, providing a significant theoretical basis for the advancement of
related health foods and pharmaceuticals.
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