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Abstract: Molecular property prediction is an important task in drug discovery, and with help
of self-supervised learning methods, the performance of molecular property prediction could be
improved by utilizing large-scale unlabeled dataset. In this paper, we propose a triple generative
self-supervised learning method for molecular property prediction, called TGSS. Three encoders
including a bi-directional long short-term memory recurrent neural network (BiLSTM), a Transformer,
and a graph attention network (GAT) are used in pre-training the model using molecular sequence
and graph structure data to extract molecular features. The variational auto encoder (VAE) is used
for reconstructing features from the three models. In the downstream task, in order to balance
the information between different molecular features, a feature fusion module is added to assign
different weights to each feature. In addition, to improve the interpretability of the model, atomic
similarity heat maps were introduced to demonstrate the effectiveness and rationality of molecular
feature extraction. We demonstrate the accuracy of the proposed method on chemical and biological
benchmark datasets by comparative experiments.

Keywords: generative supervised learning; variational auto-encoders; molecular feature extraction;
molecular property prediction; artificial intelligence

1. Introduction

Drug development is a time-consuming and costly process. In order to improve the
success rate and reduce the time and costs, computer-aided drug design (CADD) [1,2]
methods such as virtual screening and molecular docking have been introduced to pro-
vide guidance for the entire process. Despite their success in drug discovery [3,4], many
traditional CADD methods based on molecular simulation techniques suffer from high
computational costs and long running times, which limit their large-scale application in the
pharmaceutical industry.

In recent years, artificial intelligence has developed rapidly, which has become a
popular and dominant direction within drug discovery because of its superior performance
and high efficiency. Moreover, many deep-learning methods [5,6] have been successfully
applied to various tasks in drug discovery, including molecular property prediction [7],
drug-target affinity prediction [8,9], and protein–protein interaction prediction [10].

Molecular property prediction aims to predict whether a molecule has the expected
properties (solubility, biological activity, etc.) from a large number of candidate molecules,
which is important for drug design. There are many ways to represent molecular se-
quences, including simplified molecular input line entry systems (SMILES), and finger-
prints like Extended-Connectivity fingerprints (ECFP) [11] and the molecular access system
(MACCS) [12]. SMILES is a specification for extracting molecular sequence features that
uses ASCII strings to encode molecular structures. The molecule is simply represented
using one or two letter symbols from the periodic table. For chemical bonds [13], single
bonds can be implicitly represented by “-”, and double, triple, and quadruple bonds are
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represented by “=”, “#”, and “$”, respectively. Various deep learning methods based on
SMILES strings have emerged. Hou et al. [14] used LSTM to process SMILES strings to
obtain complex information of atoms. Honda et al. [15] proposed the SMILES Transformer,
which pre-trained the sequence-to-sequence model by using SMILES strings. However, the
structural information of molecules cannot be obtained from a SMILES string directly since
two connected atoms may be far away from each other in the SMILES string.

Moreover, the molecular graph structure [16] provided another way to represent
molecules, in which atoms are represented by nodes and chemical bonds are represented by
edges. In recent years, many studies have concentrated on molecular graph structures for
molecular property prediction through Message Passing Networks, including MPNN [17],
DMPNN [18], and CMPNN [19]. Most of current graph-based methods are supervised
learning methods that require large-scale labeled data for training. However, the label
acquirement (i.e., molecules with known property) is a tough and expensive process. On the
other hand, there are many databases with a large amount of data but no label information
(e.g., ZINC [20], ChEMBL, and PubChem). How to reasonably and effectively utilize these
data to improve the accuracy of molecular property prediction is an open problem to
be solved.

The Natural Language Processing (NLP) and Computer Vision [21] (CV) fields address
this problem through self-supervised learning (SSL). Specifically, the model is first pre-
trained on a large unlabeled dataset and then fine-tuned for downstream tasks using
data with labels. SSL includes generative self-supervised and contrastive self-supervised
learning [22]. The generative SSL consists of an encoder and a decoder. The encoder is
trained to encode an input x into a latent vector z, and the decoder is used to reconstruct
z into x by minimizing the reconstruction loss. The generative SSL methods include
AutoRegressive (AR) models, flow-based models, AutoEncoder (AE) models, and hybrid
generative models. For the contrastive SSL [23,24], features are learned by constructing
positive and negative samples, and an encoder is trained to encode an input x into an
explicit vector z to measure similarity.

SSL has achieved great success in the field of natural language processing, such as the
creation of the Generative Pre-trained Transformer (GPT) [25] and Bidirectional Encoder
Representation from Transformers (BERT) [26]. GPT is OpenAI’ s pre-trained Transformer
model for natural language processing, which uses deep learning to generate human
language-like text given a prompt or seed text. The pre-trained BERT language model is able
to learn contextual word representations by masking words prediction and reconstructing
the input context, thereby improving the performance of downstream tasks. Wen et al. [27]
pre-trained BERT to obtain a semantic representation of compound fingerprints through
SSL, called Fingerprint-BERT (FP-BERT). Then, the embedding of molecule was fed into a
convolutional neural network (CNN) to obtain higher-level features.

However, language models can only be used to handle sequence-based molecular
representations, ignoring the important topology of molecular graphs. Therefore, the
utilization of SSL for molecular graphs is also a non-negligible aspect of molecular property
prediction. Graph contrastive coding (GCC) [28] designs a self-supervised graph neu-
ral network pre-training framework to capture common network topological properties
across multiple networks. The KPGT [29] self-supervised framework introduces the line
graph transformer (LiGhT), which is mainly used to accurately simulate the structural
information of molecular graphs. However, it ignores the unique structural properties of
chemical molecules, such as rings and functional groups. To fully consider the properties
of molecular graphs, Zhang et al. [30] sampled subgraphs by learning graph motifs. The
motif learning was defined as a clustering problem through EM-clustering to group similar
and important subgraphs into several motifs. These learned motifs were used to train the
sampler to generate more informative subgraphs for graph-to-subgraph contrastive learn-
ing. HiMol [31] used a hierarchical molecular graph neural network (HMGNN) to encode
topic structures and extracted node–topic–graph hierarchical molecular representations.
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Despite improvements in molecular representation learning, there are still some prob-
lems which remain to be solved:

(1) Although molecular representations based on SSL have been extensively studied,
most methods focus on pre-training using sequence information or graph information
only. The effective fusion of heterogeneous molecular information is important for
enhancing the diversity of molecular representations. There are some methods that
have considered this direction. Liu et al. [32] used 3D and 2D information for SSL,
aiming to maximize the mutual information between 3D and 2D views of the same
molecule. However, there is much less 3D molecular structural information than there
is 2D and 1D information. Although there are some methods that could calculate
3D information about a molecule, the error accumulation could also result in the
inaccuracy of predictions. Zhu et al. [33] used sequence and graph information to
conduct SSL and proposed a pre-training algorithm that combined two molecular
representations, including dual-view molecular pre-training (DMP), which maximized
the consistency between molecular sequence and molecular graph representations.
However, we believe that the generative model can reflect molecular information more
accurately and effectively. Therefore, inspired by Liu’s work, this paper concentrates
on how to use the generative SSL model to learn molecular representations from
sequence and topological structural information from molecules.

(2) The existing SSL models, whether generative or contrastive, generally only use a
single or two different models. For example, in generative learning, the encoder and
decoder are used to reconstruct features, and in contrastive learning, SSL is performed
by minimizing the difference between the feature representation of two different
types or sources of data. But there is currently no method to discuss the introduction
of three or more models in SSL. We believe that, to a certain extent, more models
participating in SSL can also improve the accuracy and generalization of the final
feature representation.

(3) After pre-training, multiple models are obtained for downstream tasks, and how to
more effectively integrate multiple models is also a problem worth studying. Ensem-
ble learning is widely used in the fusion of various models, but directly concatenating
output features cannot effectively utilize the advantages of different models. Treating
each output feature equally will also result in key information vanishing from multiple
features. Therefore, how to design an effective fusion model, discover the important
parts of different sources of features, and improve the accuracy of the prediction are
also important issues in this paper.

To address the above problems, a triple generative self-supervised learning method
(TGSS) is proposed in this paper, which combines molecular sequence information and
molecular graph structure information to improve model performance. Moreover, BiLSTM
and Transformer are used to learn the feature representation of the molecular sequence,
and GAT is used to learn the feature representation of the molecular graph. The generative
SSL method is introduced in the pre-training step and all three representations are used for
reconstruction, which are performed in pairs to improve the generalization of the model.
For the downstream tasks, all three pre-trained models are fused and the attention module
is utilized to fully integrate the three features. We experimented with eight downstream
tasks of molecular property prediction, five of which outperform existing supervised and
self-supervised learning methods.

2. Results
2.1. Datasets

For the pre-training dataset, we used 430,000 unlabeled molecules randomly sampled
from the public ChEMBL database available at https://www.ebi.ac.uk/chembl/ (accessed
on 3 March 2023). ChEMBL is a database of bioactive molecules with drug-like properties,
containing millions of unlabeled SMILES data. The comparative experiments were tested
on the public dataset MoleculeNet [34] available at https://moleculenet.org/ (accessed on
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5 April 2023), including classification tasks and regression tasks. For the regression task
dataset, we use the random splitting method to divide the dataset. For the classification task
dataset, following the method of Yang et al. [35], we use the scaffold splitting, which splits
the molecules according to their structures. The molecular samples in the training set and
the test set come from different molecular scaffolds. This scaffold splitting method is more
challenging and could evaluate the generalization of model more accurately. These two
split methods are used to split a dataset into a training set, validation set, and test set in the
ratio of 8:1:1. The details of the dataset are shown in Table 1. It should be noted that Tox21
and SIDER involve multi-classification tasks, where each input sample may correspond to
multiple labels. Therefore, the arithmetic mean values of all labels are calculated for these
two datasets as the final result.

Table 1. The details of the MoleculeNet Datasets.

Dataset Task Task Type #Molecule Splits Metric

FreeSolv 1 Regression 642 Random RMSE
ESOL 1 Regression 1128 Random RMSE

Lipophilicity 1 Regression 4200 Random RMSE
BACE 1 Classification 1513 Scaffold ROC-AUC
BBBP 1 Classification 2039 Scaffold ROC-AUC
HIV 1 Classification 41127 Scaffold ROC-AUC

Tox21 12 Classification 7831 Scaffold ROC-AUC
SIDER 27 Classification 1427 Scaffold ROC-AUC

Regression dataset:

• FreeSolv: the experiment and calculated hydration-free energies in water of 642 small
neutral molecules.

• ESOL: 1128 compounds and their corresponding water solubility.
• Lipophilicity: the octanol/water partition coefficients of 4200 compounds.
• Classification dataset.

Classification dataset:

• BACE: the quantitative and qualitative binding results for a panel of human
(BACE-1) inhibitors.

• BBBP: the permeability properties of 2039 compounds.
• HIV: more than 40,000 compounds with the ability to inhibit HIV replication, repre-

sented by inactivated and active tags.
• Tox21: the qualitative toxicity measurements of 12 different targets for 7831 compounds.
• SIDER: 27 drug side effects labels for 1427 compounds.

2.2. Performance Comparison with Baselines

To better test the model performance, we have selected self-supervised learning models
and supervised learning models for comparison. Self-supervised models includes Mol-
CLR [36], GraphCL [37], HierMRL [38], GraphLoG [39], GraphMVP [32], GraphMAE [40],
KEMPNN [41], MolPMoFiT [42], MolBERT [43], FP-BERT [27], and SMILES Transforme [15].
Supervised learning models includes D-MPNN [35], DimeNet [44], AttentionFP [45], DLF-
MFF [46], and MSSGAT [47].

To demonstrate the effectiveness of the TGSS method, we tested it on eight molecular
datasets, and the experimental results are shown in Tables 2 and 3, which were obtained
using the mean and standard deviation of three different random seed tests. Table 2
shows the performance of the TGSS method in classification tasks. Compared with other
supervised/self-supervised learning methods, our TGSS method performed the best on
BBBP, HIV, SIDER, in the five benchmark datasets in the classification tasks. Compared to
the best results on these three datasets, the TGSS method achieved improvements of 5.7%,
0.3%, and 4.9%, respectively. Specifically, our TGSS achieved the best overall performance
on five datasets compared to the supervised learning and other self-supervised learning
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methods, including generative and contrastive SSL models. These results demonstrate the
effectiveness and good generalization ability of our self-supervised strategy.

Table 2. The ROC-AUC values of various approaches in classification tasks. Higher values mean
better results.

Dataset BACE BBBP HIV Tox21 SIDER

Supervised
learning

D-MPNN 0.809 (0.006) 0.710 (0.003) 0.771 (0.005) 0.759 (0.007) 0.570 (0.007)
AttentionFP 0.784 (0.022) 0.643 (0.018) 0.757 (0.014) 0.761 (0.005) 0.606 (0.032)

MSSGAT 0.881 0.726 0.787 - 0.617

Self-Supervised learning

MolCLR 0.828 (0.007) 0.733 (0.010) 0.774 (0.006) 0.741 (0.053) 0.612 (0.036)
GraphCL 0.754 (0.014) 0.697 (0.007) 0.698 (0.027) 0.739 (0.007) 0.605 (0.009)
HierMRL 0.877 (0.017) 0.745 (0.016) 0.782 (0.011) 0.792 (0.006) 0.686 (0.011)

GraphLoG 0.835 (0.012) 0.657 (0.014) 0.778 (0.008) 0.757 (0.006) 0.612 (0.011)
GraphMVP 0.768 (0.011) 0.685 (0.002) 0.748 (0.014) 0.745 (0.004) 0.623 (0.016)
GraphMAE 0.831 (0.009) 0.720 (0.006) 0.772 (0.010) 0.755 (0.006) 0.603 (0.011)

TGSS 0.810(0.004) 0.790 (0.068) 0.789 (0.041) 0.754 (0.005) 0.721 (0.004)

Note: The best results are shown in bold. Standard deviations are in brackets.

Table 3. The RMSE values of various approaches in regression tasks. Lower values mean better results.

Dataset FreeSolv ESOL Lipophilicity

Supervised learning
D-MPNN 2.082 (0.082) 1.050 (0.008) 0.683 (0.016)
DimeNet 2.094 (0.118) 0.878 (0.023) 0.727 (0.019)
DLF-MFF 1.849 0.747 0.772

Self-Supervised learning

KEMPNN 1.188 (0.158) 0.703 (0.024) 0.563 (0.011)
MolPMoFiT 1.197 (0.127) - 0.565 (0.037)

MolBERT 1.523 (0.660) 0.552 (0.070) 0.602 (0.010)
FP-BERT 1.140 (0.006) 0.670 (0.004) 0.660 (0.002)

SMILES Transformer 1.650 0.720 0.921
TGSS 0.960 (0.065) 0.645 (0.075) 0.652 (0.009)

Note: The best results are shown in bold. Standard deviations are in brackets.

Table 3 shows the performance of the TGSS method in regression tasks. It can be
seen from the table that our TGSS method outperformed the previous supervised learning
method on all three datasets. Compared with other self-supervised learning methods, al-
though our method is weaker than MolBERT and KEMPNN on the ESOL and Lipophilicity
datasets, respectively, the overall performance is better when combining the three datasets.
It is worth noting that the improvement made by our TGSS method on the FreeSolv dataset
was by 18.8%; thus, it can be seen that the improvement made by our model was most sig-
nificant in small datasets. This effectively demonstrated that the TGSS model was capable
of extracting effective representations from limited molecular data.

2.3. Ablation Experiments

To explore the influence of different factors on the model’s performance, we conducted
ablation experiments in the pre-training, downstream task prediction, and feature fusion
stages, respectively.

2.3.1. Performance Comparison of Different Combinations of the Model in the
Pre-Training Process

In this paper, three models including BiLSTM, Transformer, and GAT were embedded
in the TGSS to improve the generalization performance of the model. To explore the
impact of different pre-trained models, we designed the first ablation experiment with five
groups: pre-training all three models, only pre-training two models, including BiLSTM and
GAT (Pre-BG), BiLSTM and Transformer (Pre-BT), Transformer and GAT (Pre-TG), that
is, Lxz, Lxy, Lyz are used as the objective functions alone, and the last group is without
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pre-training (No pre). For a fair comparison, the experiment still used the three models’
fusion prediction methods in the downstream tasks, but the parameters of the models that
did not participate in pre-training were initialized randomly.

Four datasets including two regression tasks (ESOL and Lipophilicity) and two clas-
sification tasks (BACE and BBBP) were selected for evaluation. The prediction result at
different epochs was used as the indicator for different methods. From the ESOL dataset in
Figure 1a it can be seen that, in the first 100 epochs, the effect of the proposed TGSS model
was worse than Pre-BG, Pre-TG, and no pre-training. After the 100th epoch, the RMSE
value became the minimum one. It could be concluded that pre-training has significantly
improved the performance of the model. Compared with only pre-training BG, BT, TG, and
no pre-training, the results were improved by 19.8%, 15.7%, 11.7% and 7.6%, respectively.
Since the amount of data in Lipophilicity was larger than that in ESOL, after increasing the
amount of data, the gap between each module widened. Pre-training with BiLSTM and
Transformer, Transformer and GAT, and the proposed TGSS method were all significantly
better than no pre-training. At the 195th epoch, the proposed model achieved the best
results; compared with the best results of pre-BG, pre-BT, pre-TG, and no pre-training,
the improvements were 17.2%, 3.7%, 0.6%, and 9.0%, respectively. In Figure 1b, it can be
seen that the TGSS model achieved the best performance faster than other methods, and
the curve is smoother, indicating that it has better stability. Therefore, it was found that
pre-training the model for downstream tasks effectively improved the prediction accuracy.
Compared with the non-pre-trained model, the pre-trained model achieved convergence
faster, which sped up the training process.

Figure 1. Performance comparison of different combinations of model in pre-training process.
(a) ESOL. (b) Lipophilicity. (c) BACE. (d) BBBP.

2.3.2. Performance Comparison of Different Sizes of Pre-Training Dataset

The model was pre-trained to learn effective molecular representations without labels
through SSL. A sub-dataset which contains 430,000 molecules was used in pre-training.
To explore whether less data would affect the performance of downstream tasks, we
implemented the pre-training with different amounts of data, from 10,000 to 430,000, and
tested its performance on downstream tasks.
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It can be clearly seen from Figure 2a that, on the regression dataset, pre-training with
more data effectively improved the performance of the model. The RMSE using the whole
dataset was 0.597, whereas the RMSE using the pre-training dataset with 20,000 molecules
was 1.086, which was clearly improved through the use of a larger dataset. For the classi-
fication tasks in Figure 2b, the improvements brought by using 430,000 molecules as the
pre-training dataset compared to using other smaller datasets are clear. To summarize,
the amount of pre-training data affected the performance. By increasing the amount of
pre-training data, the model could learn more comprehensive molecular features, thereby
improving the generalization ability of the model.

Figure 2. Performance comparison of different sizes of pre-training dataset. (a) Regression tasks.
(b) Classification tasks.

2.3.3. Performance Comparison of Different Combinations of Model in Downstream Tasks

In the downstream task, we used three models to predict molecular properties. Among
them, BiLSTM and Transformer extracted molecular sequence features, and GAT extracted
2D molecular graph features. In this section, we try to investigate the contribution of each
single model in a downstream task. For a fair comparison, all three trained models were
acquired from the TGSS pre-training step. Instead of combining them together, each single
model, BiLSTM (B), Transformer (T), and GAT (G), and the fusion of any two models
(B + G, B + T, T + G) were used for comparison, and the results are shown in Figure 3.

Figure 3. Performance comparison of different combinations of model in downstream tasks
(a) Regression tasks. (b) Classification tasks.

As can be seen from Figure 3a, the improvement of our TGSS model is even more obvi-
ous on the ESOL dataset, which is about 18.3% compared with the other best combinations.
When using the larger regression dataset, Lipophilicity, although the fusion of BiLSTM and
GAT had achieved an RMES of 0.653, our method still led to an improvement of about 1.6%.
As can be seen in Figure 3b, for the classification task, the proposed TGSS method led to an
improvement of about 0.4% on the smaller BACE dataset and 6.4% on the BBBP dataset.
Through the experiment, it was demonstrated that the proposed TGSS model combining
three models could obtain the best results and improve the generalization performance



Int. J. Mol. Sci. 2024, 25, 3794 8 of 19

of the model. This showed that using multiple models to learn molecular information
was effective. Different models could learn various aspects of molecular information, thus
compensating for the limitations of a single model, meaning that the proposed model could
comprehensively acquire molecular information.

2.3.4. Performance Comparison of Different Feature Fusion Methods

When merging different molecular features, we believe that concatenating two features
directly cannot explore the deep information of each feature, and so we introduced aa hier-
archical elem-feature fusion method to the TGSS model. In this section, we experimented
with two different strategies for the model, direct concatenating and adding the hierarchical
elem-feature fusion modules, to explore their different impacts on the model.

For the three molecular features extracted by the model, adding a feature fusion
method could effectively balance the proportion of the three in the final output features.
As shown in Figure 4a, in the ESOL dataset, adding feature fusion could achieve a lower
RMSE than no fusion method. It can be seen from Figure 4b that, on the larger dataset,
Lipophilicity, the curves of the two were more consistent, but the improvement after adding
feature fusion to the best result was about 8.6%. For the classification dataset, the feature
fusion was able to significantly improve the prediction performance, and this trend is
evident from Figure 4d. From the experiments, it was found that feature fusion could
prevent the premature fitting of the model when the amount of data was small. Although
the effect of the improvement was not as obvious as when the amount of data increased, it
was still better than directly concatenating features.

Figure 4. Performance comparison of different feature fusion methods. (a) ESOL. (b) Lipophilicity.
(c) BACE. (d) BBBP.

2.4. Feature Visualization

TGSS has shown good results on various datasets, but there are still interpretability
problems within the model. Due to the black-box nature of the deep learning model, the
learned content (weights, features) cannot be effectively mapped to chemistry, biology, or
other knowledge domains. Therefore, visualizing what the model has learned can help
measure the effectiveness of the model and improve the interpretability of the model.
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Molecular features consist of the individual features of each atom. For the TGSS
model, there are three representations for each atomic feature, which are BiLSTM features,
Transformer features, and GAT features. In order to study the evolution of these features
during the training process, we calculated the similarity coefficient (Pearson correlation
coefficient) between atomic features, and then visualized the similarity with a heat map.

We randomly selected a molecule from the datasets of Lipophilicity and ESOL for
mapping, and plotted them as final output features. As can be seen from Figure 5a, the
TGSS model combined with the three features’ information clearly showed the cluster-
ing of atoms. After 100 epochs, the molecules were divided into three clusters, namely
4-chlorophenyl, 1-methylbenzimidazole, and piperazine. Moreover, both 4-chlorophenyl
and 1-methylbenzimidazole are lipophilic, which suggests that TGSS can learn charac-
terizations related to the lipid solubility of molecules. In addition, it can also be found
from Figure 5b that oxy acetonitrile, phenyl, 3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl,
related to the water solubility of the molecule, are all clustered. Therefore, the TGSS model
was able to effectively extract molecular property-related information.

Figure 5. Atomic similarity heat map. (a) Example in the Lipophilicity dataset. (b) Example in the
ESOL dataset.

3. Discussion

In this work, we explored the fusion of multiple models for molecular representation
through generative self-supervised learning. TGSS, a triple generative self-supervised
learning method, is proposed, which uses BiLSTM and Transformer through molecular
sequences and GAT through 2D graphs for pre-training. Moreover, molecules are recon-
structed by VAE between each model in pre-training. In downstream tasks, the trained
models were fine-tuned and a feature fusion module was added to balance the weights
between three molecular features.

We experimentally validated the accuracy and generalization of the TGSS model using
benchmark datasets from the fields of chemistry and biology, which indicates that pre-
training with a large unlabeled dataset is effective for property prediction, since pre-training
can enable the model to learn more molecular data and make up for the lack of labeled data.
Meanwhile, by comparing it with other self-supervised learning methods, it was proven
that our self-supervised strategy could extract molecular property-related representations
more effectively, since this strategy fully combines multiple molecular features and more
comprehensively obtains the information contained in the molecules.

In addition, we verified the impact of pre-training weights, pre-training data volume,
different model combinations, and molecular feature fusion on model performance through
ablation experiments. By pre-training the model, the fitting speed and accuracy of the model
in downstream tasks could be significantly accelerated. Different amounts of pre-training
data also affect the performance of the model. The more pre-training data, the better the
effect of the model. By using a combination of three models, the characteristics of different
models can be fully exploited to improve the comprehensiveness of extracted molecular
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features. The added molecular feature fusion can effectively balance the proportions
between different molecular features, and improve the performance of the final prediction.

To validate the interpretability of the model, heat maps were generated by computing
similarity coefficients, which revealed a high degree of consistency with the depiction of
molecular structure in reality. It is demonstrated that the proposed model could extract key
information from molecules.

4. Materials and Methods
4.1. Overview

This section presents the proposed triple generative self-supervised learning method
based on molecular sequences and graph structures, which consists of two parts, a pre-
training stage and a downstream task prediction stage, as shown in Figure 6a. Unlabeled
molecules were used to train the TGSS model in pre-training, and the trained weights were
transferred to the pre-trained TGSS model for molecular prediction.

Figure 6. Overall framework. (a) TGSS framework. (b) Description of the generative self-supervised
strategy in pre-training, the training model is updated according to reconstruction Loss. (c) Down-
stream task prediction.

In the pre-training part, the data used were all unlabeled, all of which came from a
subset of the ChEMBL dataset, with a total of 430,000 molecules. In the encoder part, BiLSTM
and Transformer were used to encode sequence data, and GAT was used to encode graph
data. After obtaining the corresponding features, the VAE was used for generative self-
supervised learning. As shown in Figure 6b, the input molecules were processed by three
models to obtain hx, hy, hz. These three features entered the VAE, where the reconstruction
loss was calculated after reparameterization. The model weights were optimized based on
the loss, and the weight with the best effect was used for downstream tasks.

In the downstream task prediction, the data used were labeled data from MoleculeNet
as shown in Figure 6c. The model was finetuned through the labeled data for prediction.
Moreover, a feature fusion module was introduced to balance the proportions of each
feature in the final output.
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4.2. Pre-Training Models

In the pre-training stage, three models were utilized for training: BiLSTM, Transformer,
and GAT, and the parameters of these models were transferred to downstream tasks for
molecular property prediction.

There are two types of molecular input, which are molecular sequences (SMILES)
and 2D molecular graphs. Sequence-based BiLSTM and Transformer are used to process
SMILES to obtain the corresponding molecular features hx and hy. Graph-based GAT is
used to process 2D molecular graphs to obtain molecular features hz. Each model will be
introduced in the following sections.

4.2.1. BiLSTM

BiLSTM, as an extension of the Recurrent Neural Network (RNN), addresses the
challenges faced by RNN in learning long-term dependencies. The LSTM consists of
three gate units: forget gate, input gate, and output gate. These gate units enable the
model to extract features from the input data and keep this information for a long time.
During the training process, the information is kept or discarded based on the weight value.
Figure 7a shows the basic structure of BiLSTM, where X = {x1, x2, x3, · · · , xn} represents

the elements in SMILES,
{→

h 1,
→
h 2,
→
h 3, · · · ,

→
h t

}
represents the hidden vector of the forward

layer, and
{←

h 1,
←
h 2,
←
h 3, · · · ,

←
h t

}
represents the hidden vector of the backward layer. The

input {x1, x2, x3, · · · , xn} are fed into the embedding layer to obtain the corresponding

embedding vector, and the forward layer and the backward layer are used to obtain
→
h t and

←
h t, respectively. These vectors are then combined to obtain the output vector hx of BiLSTM.

Figure 7. BiLSTM, Transformer and GAT models used in the TGSS model. (a) BiLSTM. (b) Trans-
former. (c) GAT.

For an input xt, the computation proceeds as follows:

ft = sigmoid
(

W f ·[ht−1, xt] + b f

)
(1)

it = sigmoid(Wi·[ht−1, xt] + bi) (2)
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∼
Ct = tanh(Wc·[ht−1, xt] + bC) (3)

Ct = ft ∗ Ct−1 + it ∗
∼
Ct (4)

ot = σ(Wo·[ht−1, xt] + bo) (5)

ht = ot ∗ tanh(Ct) (6)

where W f , Wi, Wc, Wo are weight matrices, and b f , bi, bC, bo are biases.
The BiLSTM utilizes two LSTMs with different directions. namely the forward layer

and the backward layer, to process the input data. At time t, the forward layer calculates

the hidden vector
→
h t at the current moment based on the previous hidden vector

→
h t−1 and

the embedding vector Xt; the backward layer calculates the hidden vector
←
h t based on

←
h t−1 and the embedding vector Xt. Subsequently,

→
h t and

←
h t are combined to form the

final hidden vector, which serves as the output of BiLSTM as follws:

hx =

[→
h t,
←
h t

]
(7)

4.2.2. Transformer

The Transformer consists of a self-attention layer and a feed-forward neural network to
capture the global dependencies between input and output through an attention mechanism.
When processing a sequence, the RNN operates by sequentially processing words and
passing the results to the next layer. However, when dealing with long sequences, the
gradient tends to vanish or explode when words are distant from each other. Unlike
RNN, the Transformer [48] tracks the relationship between words in the long text in both
forward and backward directions through the attention mechanism. A detailed flowchart
of Transformer is shown in Figure 7b.

First, an embedding layer is used to convert the input to Xembedding ∈ RB×S×d, where
B, S, and d represent the batch size, sequence length, and vector dimension, respectively.
Subsequently, Q, K, V are obtained through linear transformation.

To address the problem of sequence prediction, the Transformer provides sequential
information by adding position encoding Xpos with the same dimensions as the input is
obtained, which is combined with Xembedding to obtain a new embedding as follows:

X′embedding = Xembedding + Xpos (8)

Next, the self-attention mechanism is introduced to ensure the model attends on the
more relevant characters as follows:

Q = X′embedding ×WQ (9)

K = X′embedding ×WK (10)

V = X′embedding ×WV (11)

where WQ, WK, and WV are trainable parameters, and then the attention matrix is calculated
by QKT and weighted by V:

Attention(Q, K, V) = so f tmax

(
QKT
√

dk

)
V (12)

where dk represents the number of columns in the Q, K matrix.
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Then, the residual connection and layer normalization are implemented to obtain
the Xhidden:

Xhidden = Norm
(

X′embedding + Attention(Q, K, V)
)

(13)

The Xhidden is used as the input to the Feed Forward Network, which contains two
linear transformations to obtain the final output hy as the following equation:

hy = FFN(x) = max(0, Xhidden·W1 + b1)W2 + b2 (14)

4.2.3. GAT

Molecules can be represented as topological graphs by treating atoms as nodes and
bonds as edges, which can be defined as G = (V, E), where V denotes the set of nodes
and E denotes the set of edges. A two-layer graph attention network [49] is used for node
aggregation to obtain graph representations in TGSS. The processing flow of a molecule in
GAT is shown in Figure 7c. First, the topological information is obtained from the molecular
graph. The processing in GAT is divided into three steps.

The first step is to calculate the attention weights eij and eik of the central atom and the
neighbor atoms through the following equation:

eij = LeakyReLU
(

aT[Whi
∣∣∣∣Whj

])
(15)

The second step is to normalize the weights to obtain aij, in which the eij is fed into a
softmax function for normalization.

aij = so f tmax
(
eij
)
=

exp
(
eij
)

∑k∈Ni
exp(eik)

(16)

Finally, the feature information of neighbor nodes are aggregated with the feature
weight of its own node, through aggregating node weight information using the
following equation:

h′i = σ
(
∑j∈Ni

aijWhj

)
(17)

After obtaining the features of each atom i, max pooling and MLP are used to obtain
the feature hz.

hz = MLP
(

MAXPOOLING
(
h′i
))

(18)

4.3. Molecular Representation Reconstruction

In the pre-training process, VAE is used to reconstruct the molecular features and
calculate the reconstruction loss, as shown in Figure 8a. VAE consists of two parts: an
encoder and a decoder. The encoder processes the input features to obtain mean µx and
logarithm σx which determine the latent vector zx, and can be represented as follows:

zx = µx + σx � ε, ε ∼ N (0, I) (19)

In the decoder part, the reparameterization is implemented to calculate the latent
vector zx, and then the reconstructed features are output through the decoder. The re-
construction loss is obtained by calculating Mutual information (MI) between the two
reconstructed features.

MI measures the nonlinear dependence between two random variables, and the
larger the MI, the stronger the dependence between the variables. Unlike the correlation
coefficient, MI is more general and determines the difference between the joint distribution
of p(x, y) and the product of the marginal distributions of p(x) and p(y). The standard
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expression of MI is calculated as follows, where hx, hy, and hz correspond to the feature of
BiLSTM, Transformer, and GAT, respectively.

I
(
hx; hy

)
= Ep(x,y)

[
log

p(x, y)
p(x)p(y)

]
(20)

where p(x, y) represents the joint probability distribution function of hx and hy, while p(x)
and p(y) represents the marginal probability distribution functions of hx and hy, respectively.

Figure 8. The process of molecular reconstruction loss calculation. (a) Calculation process of VAE.
(b) Calculation process of molecular representation reconstruction loss. The loss between two
molecular features is calculated by VAE. The three molecular features are first obtained from the
corresponding latent vectors zx, zy, and zz through reparameterization of VAE. The reconstruction
losses Lxy, Lxz, and Lyz with the other two molecular features are obtained, respectively.

It can be seen from the above equation that the greater the divergence of the product
of p(x, y) and p(x)p(y), the stronger the correlation between x and y.

Therefore, our objective is to maximize the MI between any two features through the
above models in order to obtain a more accurate representation, i.e., maximize I

(
hx; hy

)
,

I(hx; hz), I
(
hy; hz

)
. In other words, it is used to minimize the difference between the

reconstructed features and other features; that is, minimize Lxy, Lxz, and Lyz in Figure 8b.
In this paper, we employed the variational lower bound to approximate the conditional

log-likelihood term in (20). Specifically, when generating Transformer sequence features
from the corresponding BiLSTM sequence features, we modeled the conditional likelihood
p(y|x) to obtain the lower bound of the conditional likelihood. Similarly, p(z|x ) represents
the generation of GAT features from the BiLSTM sequence features, and p(z|y) represents
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the generation of GAT graph features from Transformer sequence features. The calcuation
of p(y|x) is as follows:

logp(y|x) ≥ Eq(zx |x)[logp(y|zx)]− KL(q(zx|x)||p(zx)) (21)

Likewise, the expression for logp(x|y) is similar. The above objective function consists
of conditional log-likelihood and Kullback–Leible (KL) divergence, which represent the
reconstruction of a Transformer’s sequence features (y) from a sampled BiLSTM’s sequence
features (zx). However, one challenge arises from the discrete nature of molecules, making
them difficult to model in the molecular space.

Therefore, taking inspiration from Liu et al. [32], we implemented the reconstruction
of the data space as a continuous representation space. For the reconstruction, we projected
the latent vector zx onto the objective representation space. Then, the lower bound of the
conditional likelihood could be calculated as follows:

Eq(zx |x)[logp(y|zx)] = −Eq(zx |x)

[∥∥qx(zx)− SGhy(y)
∥∥2

2

]
+ C (22)

where C is a constant, and the SG denotes the regularization operator used for optimizing
the variational representation reconstruction.

Combining the above two equations with BiLSTM and Transformer as an example,
the objective function of their loss can be calculated as follows:

Lxy = 1
2 ·
[
Eq(zx |x)

[∥∥qx(zx)− SGhy(y)
∥∥2
]
+Eq(zy |y)

[∥∥qy
(
zy
)
− SGhx

∥∥2
2

]]
+ β

2

·
[
KL(q(zx|x)||p(zx)) + KL

(
q
(
zy
∣∣y)∣∣∣∣p(zy

))] (23)

Similarly, the Lxz between BiLSTM and GAT, as well as the Lyz between Transformer
and GAT, can also be calculated using the above equation. The final objective function is
as follows:

L = mean
(
Lxy,Lxz,Lyz

)
(24)

4.4. Downstream Task with Hierarchical Elem-Feature Fusion

The downstream task prediction stage includes three parts: model fine-tuning, hierar-
chical feature fusion, and molecular property prediction, as shown in Figure 9a. First, the
model reloads the pre-training weights and fine-tunes them according to the input labelled
data. In the fine-tuning stage, three models including BiLSTM, Transformer, and GAT
output features, and the hierarchical feature fusion is performed, respectively, sequence
feature fusion and sequence-graph feature fusion. The final output is used for molecular
property prediction.

Since three models are used to obtain three molecular features, just concatenating them
directly cannot fully explore the information hidden in the features and find the important
part of each feature. Inspired by Hua et al. [50], we combined the sequence and structural
features and balanced the weights of different features, and the two same feature fusion
models were adopted in the TGSS model, as shown in Figure 9b.

First, the sequence features of molecules are fused by combining the BiLSTM feature
and the Transformer feature. The weights of the two features are obtained through the
attention module shown in Equation (25):

Wattn = σ
(
CNN2D

(
Concat

(
hx, hy

)))
(25)

where hx ∈ RN×d and hy ∈ RN×d and hx and hy denote the BiLSTM feature and Trans-
former feature, respectively. Concat is the concatenating operation, and the features are
extracted from the concatenated feature map by 2D convolution operation CNN2D. The σ
is a Sigmoid used to normalize the convolved features to obtain the attention weight matrix
Wattn of hx. The (1 −Wattn) is defiend as the attention weight matrix of hy, correspondingly.
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After connecting the residuals of the two features separately, the combined feature h f is
obtained by Equation (26):

h f = FC(hx) ∗ Wattn + hx + FC
(
hy
)
∗ (1−Wattn) + hy (26)

where FC denotes the Linear layer and the ReLU layer, and ∗ denotes the element dot product.

Figure 9. Downstream task with hierarchical elem-feature fusion. (a) The process of downstream
task prediction process. (b) The process of molecular feature fusion.

Following the above method, the sequence feature h f is fused with the graph feature
hz to obtain the final feature h f . After hierarchical fusion, the output h f is robust and fully
combines the sequence and graph information of molecules, which can be used for more
effective molecular predictions.

5. Conclusions

Molecular property prediction is an important task in molecular design. Deep learning
methods are used to effectively extract molecular features, thereby reducing the time and
costs required. We use three models to extract features from different dimensions to ensure
that as much molecular information is retained as possible. In pre-training, a generative
self-supervised strategy was adopted. Among them, VAE was utilized to calculate the
reconstruction molecule loss and optimize the model based on the reconstruction loss. It
turns out that generative self-supervised learning can provide great help for molecular
sequence representation and graph representation.

Our current research only focused on the 1D and 2D information of molecules. In the
future, 3D information could be considered as useful information which may be introduced
for in-depth research. Additionally, we would like to utilize larger pre-trained datasets to
improve the comprehensiveness of the model. Through our work, we hope we can make
contributions to molecular property prediction.
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