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Abstract: The periodontal ligament (PDL) is a highly specialized fibrous tissue comprising heteroge-
neous cell populations of an intricate nature. These complexities, along with challenges due to cell
culture, impede a comprehensive understanding of periodontal pathophysiology. This study aims
to address this gap, employing single-cell RNA sequencing (scRNA-seq) technology to analyze the
genetic intricacies of PDL both in vivo and in vitro. Primary human PDL samples (n = 7) were split
for direct in vivo analysis and cell culture under serum-containing and serum-free conditions. Cell
hashing and sorting, scRNA-seq library preparation using the 10x Genomics protocol, and Illumina
sequencing were conducted. Primary analysis was performed using Cellranger, with downstream
analysis via the R packages Seurat and SCORPIUS. Seven distinct PDL cell clusters were identified
comprising different cellular subsets, each characterized by unique genetic profiles, with some show-
ing donor-specific patterns in representation and distribution. Formation of these cellular clusters
was influenced by culture conditions, particularly serum presence. Furthermore, certain cell popula-
tions were found to be inherent to the PDL tissue, while others exhibited variability across donors.
This study elucidates specific genes and cell clusters within the PDL, revealing both inherent and
context-driven subpopulations. The impact of culture conditions—notably the presence of serum—on
cell cluster formation highlights the critical need for refining culture protocols, as comprehending
these influences can drive the creation of superior culture systems vital for advancing research in PDL
biology and regenerative therapies. These discoveries not only deepen our comprehension of PDL
biology but also open avenues for future investigations into uncovering underlying mechanisms.

Keywords: culture conditions; genetic markers; periodontal ligament cells; single-cell RNA-seq

1. Introduction

Periodontal tissues are highly complex due to the multiplicity of interacting cells
and extracellular matrices, the proximity of soft and mineralized tissues, and the constant
challenges exerted by microbial and physical factors [1].

Among these tissues, the periodontal ligament (PDL) stands out as a specialized
fibrous connective tissue located between the cementum and alveolar bone, consisting
of a diverse cell population including fibroblasts, cementoblasts, osteoblasts, endothelial
progenitor cells, macrophages, osteoclasts, and progenitor/stem cells [2]. The PDL not
only supports teeth structurally but also plays vital roles in nutrition provision, tissue
equilibrium, repair processes, and mechanical force sensing [3]. Although fibroblastic
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PDL cells are presumed to regulate PDL homeostasis and regeneration, the exact cellular
subtypes responsible for these processes still remain to be elucidated [2,4].

PDL cells, with their spindle-shaped morphology, resemble gingival fibroblasts local-
ized in close proximity, but exhibit distinct functional activities, performance in inflamma-
tory settings, and regenerative patterns [5,6]. Differential gene expression likely underlies
these functional distinctions, with studies showing significant genetic differences between
PDL cells and gingival fibroblasts, but precise and in-depth data are not yet available [5].

Besides direct processing and analysis of explanted in vivo tissues, cell culture is
the standard in vitro method for studying cellular behavior patterns, interactions, and
signaling pathways. Although cultured cells are denoted as a homogeneous population
when expanded under the same conditions as a kind of homogenizing agent and without
further external influences, more recent approaches suggest heterogeneity evolving over
time [7]. Furthermore, the type of cultivation has another potentially modulating influence
on cells and their genetic profiles. Different cultivation techniques can influence cells
and their genetic characteristics, with the widespread use of fetal bovine serum (FBS)
in culture media serving to support cell attachment and growth, despite potential risks
such as immune responses and alterations in cellular properties. Moreover, serum-based
cultivation appears inadequate for clinical cell cultures and cell-based therapies [8]. Due
to these long-standing practical, clinical, and ethical concerns about the use of serum,
developing serum-free culture media formulations enabling both isolation and efficient cell
expansion is crucial for maintaining cellular properties without these risks [9].

Nevertheless, various additional aspects certainly play a key role in the analysis
of oral tissues as well, such as their heterogeneous nature and the different conditions
to which the tissues are exposed to in vivo, both affecting their in vivo characteristics
and impacting on their cultivation in vitro. Comprehending periodontal physiology and
pathology is hindered by the intricate nature of these tissues coupled with challenges in
in vitro culture, requiring a thorough examination of tissue composition, gene expression,
and cellular changes between in vivo and in vitro environments to gain deeper insights
into their molecular basis and regulatory mechanisms [10].

Next-generation sequencing (NGS) technology offers unparalleled efficiency, depth,
and accuracy in transcriptome analysis, significantly advancing our comprehension of
gene expression intricacies and regulatory networks within cells [11]. Initially, NGS was
limited to mass sequencing of cell populations without enabling to account for cellular
heterogeneity within populations, which was subsequently overcome by the development
of single-cell RNA sequencing (scRNA-seq), allowing the dissection of genetic patterns
at individual cell level, thus providing unprecedented insights into cellular diversity and
complexity [12,13]. With the capability to study millions of cells simultaneously and decode
their transcriptomes, scRNA-seq fundamentally changes the understanding of cellular
biology by facilitating comprehensive molecular profiling and mathematical analysis of
cellular expression states [14].

This study aims to utilize scRNA-seq to uncover the genetic pattern of PDL cells and
investigate genetic changes induced by different culture conditions to provide insights
into the cellular architecture and interactions within the PDL, addressing questions about
cellular heterogeneity and genetic regulation in oral tissues.

Specifically, our objectives are:

1. To comprehensively characterize the genetic profile of PDL cells using scRNA-seq
technology, providing a detailed insight of their complexity and individuality;

2. To compare genetic alterations in PDL cells cultured under serum-free and serum-
containing conditions with those directly explanted from in vivo settings, aiming to
determine whether culture procedures induce genetic changes and if serum supple-
mentation has a distinct impact;

3. To identify and characterize distinct PDL cell types based on their highly expressed
genetic markers, facilitating a deeper understanding of the cellular architecture and
interactions within the PDL.
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Through these objectives, we aim to advance our understanding of PDL biology and
shed light on the impact of culture conditions on genetic expression patterns, ultimately
contributing to broader insights into oral tissue regulation.

2. Results
2.1. Dimensionality Reduction and Clustering

After quality control analysis for scRNA-seq data was conducted (Figure 1), a standard
Seurat workflow was used to cluster cells after dimensionality reduction. Samples were
integrated using Seurat’s standard integration workflow and analyzed independently. The
analysis of the cell frequency in the calculated clusters was carried out and visualized in
bar charts, as a low cell count in a cluster can influence the conclusions drawn and must be
taken into account in the data analysis. The resulting UMAP grids and bar charts for PDL
samples are illustrated in Figures 2 and 3.

Figure 3A shows bar charts that depict the distribution of cells from the conditions PDL,
PDL_MEDIUM_1, and PDL_MEDIUM_2 across all clusters. The left bar chart illustrates
the percentage composition of cells from each condition within each identified cluster, with
each bar representing the proportion of cells from one condition and the total percentage
for each condition in all clusters sums to 100%. This visualization elucidates how each
condition contributes to the total cell population within each cluster, with a high percentage
in a particular cluster possibly indicating a strong association with that cluster’s cell
subpopulation. The bar chart on the right displays the frequency of cells from each condition
within each cluster, providing insights into the absolute size of each cluster in absolute terms
and allowing for the comparison of the number of cells from each condition contributing to
each cluster.

Our analysis identified seven distinct clusters. The majority of cells were generally
found in cluster 0, which contains a significant proportion of cells from all conditions,
namely PDL tissue (PDL), PDL cells in serum-containing medium (PDL_M1) and PDL cells
in serum-free medium (PDL_M2), suggesting that it may represent a fundamental cell state
or type present in both in vivo PDL and cultured conditions. Cluster 1 had the second-
highest number of cells, but was predominantly composed of cells from PDL_M1, with
PDL_M2 being almost absent and PDL tissue was only slightly represented. This might
indicate that serum-containing conditions might support the cell state or type represented
by this cluster. Remarkably similar, cluster 6 shows a notable presence of cells from PDL_M1
and was also almost solely generated due to cell culture in serum-containing medium.
Clusters 4 and 5 were also exclusively induced by cell culture, but independent of serum
influence, and exhibited low cell abundances. These clusters 4 to 6 also contained the
most negative cells and those with the lowest number of expressed genes, whereas in
contrast, the highest gene expression numbers were found in clusters 0–3 with only very
few negative cells.
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Figure 1. Quality control analysis for scRNA-seq data. (A) Combined overview of cells excluded
and included for tissue samples of PDL, PDL cells cultured in serum-containing medium (PDL_M1),
and PDL cells cultured in serum-free medium (PDL_M2). The left graph plots the percentage of
mitochondrial genes in a cell (percent.mt), indicative of cell degradation and death, against the
number of detected genes in this cell (nFeature_RNA). The center graph shows the percentage of
ribosomal genes, related to cell cycle phases against the number of detected genes (nFeature_RNA).
The right plots the number of detected genes (nFeature_RNA) against sequenced fragments (nCoun-
tRNA), highlighting potential doublets. (B) Sample quality before and after quality adjustment.
Each dot represents a cell, with its position indicating the mitochondrial quality metrics. (C) Results
of HTO demultiplexing, identifying demultiplexed singlet, doublets, and negative signal singlets.
(D) Post-filtering status of PDL samples, showing the removal of doublets and other biased data to
enhance the integrity of subsequent analyses.
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Figure 2. UMAP visualization for PDL cell analysis. This UMAP visualization presents the results 
of the clustering of PDL cells in vivo as baseline condition (PDL), PDL cells cultured in serum-con-
taining medium (PDL_M1), and PDL cells cultured in serum-free medium (PDL_M2). (A) Cluster-
ing for each specimen into 7 color-coded clusters, showing the distinct cell populations within the 
PDL, PDL cells in serum-containing medium (PDL_M1), and PDL cells in serum-free medium 
(PDL_M2). The spatial arrangement of clusters within each graph signifies the segregation of dis-
tinct cell types, with cohesive cell populations consistently localized to specific regions across all 
three specimens. Each dot represents one cell. (B) Overview of clustering in 7 clusters, visually rep-
resented with distinct colors for each condition with regard to the sample types PDL, PDL_M1, and 
PDL_M2 on the left. The right-sided graph showcases the composition of clusters under different 
conditions altogether. The majority of cells were found in cluster 0, representing a fundamental cell 

Figure 2. UMAP visualization for PDL cell analysis. This UMAP visualization presents the results of
the clustering of PDL cells in vivo as baseline condition (PDL), PDL cells cultured in serum-containing
medium (PDL_M1), and PDL cells cultured in serum-free medium (PDL_M2). (A) Clustering for each
specimen into 7 color-coded clusters, showing the distinct cell populations within the PDL, PDL cells in
serum-containing medium (PDL_M1), and PDL cells in serum-free medium (PDL_M2). The spatial
arrangement of clusters within each graph signifies the segregation of distinct cell types, with cohesive
cell populations consistently localized to specific regions across all three specimens. Each dot represents
one cell. (B) Overview of clustering in 7 clusters, visually represented with distinct colors for each
condition with regard to the sample types PDL, PDL_M1, and PDL_M2 on the left. The right-sided
graph showcases the composition of clusters under different conditions altogether. The majority of cells
were found in cluster 0, representing a fundamental cell state present in both in vivo PDL and cultured
conditions. Cluster 1, with the second-highest number of cells, was mainly composed of PDL_M1 cells,
suggesting serum-containing conditions support this cell state. Cluster 6 also exhibited notable presence
of PDL_M1 cells, indicating serum influence. Clusters 4 and 5, induced by culture but not influenced
by serum, had fewer cells and lower gene expression compared to clusters 0–3. (C) The left graph
shows the 7 identified clusters based on the occurrence of demultiplexed cells (Singlet, turquoise) and
unassigned cells (Negative, red), which could not be attributed to any donor. The right graph visualizes
the clusters according to the number of genes expressed per cell, with color intensity indicating the
level of gene expression per cell as depicted in the legend.
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Figure 3. Analysis of cluster composition across conditions and donors. (A) Cell abundance analysis.
Bar charts from the sample cell abundance analysis display the computed clusters by percentage
(Perc) and absolute number of cells (Freq), representing the distribution of cells from different
conditions (PDL, PDL_MEDIUM_1, and PDL_MEDIUM_2) across clusters. The left graph illustrates
the percentage composition of cells (Perc) from each condition within each identified cluster. Each bar
represents the proportion of cells from a specific condition, and the total percentage for each condition
across all clusters adds up to 100%. The right graph shows the absolute number of cells (Freq) from
each condition within the clusters, providing an absolute count that complements the percentage
distribution. (B) Donor-specific cluster distribution: overview of individual donor samples and their
individual distributions across samples (top row of UMAP plots) and clusters (bottom row of UMAP
plots). Clusters 0, 3, and 4 were universally present, with variable intensities across donors. Clusters
1, 5, and 6 showed sporadic absence in some individuals. Cluster 2 was exclusive to donors 5, 6
and 7, notably dominant in donor 7. Each donor exhibited a distinct clustering pattern; for instance,
emphasis on clusters 5 and 6 Donor 1, or remarkable prominence of cluster 1 in donor 7.
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Figure 3B provides an overview of the donors, presenting for each specimen the
individual cluster localization of their PDL tissue (PDL) and cultured PDL cells in serum-
containing (PDL_Medium_1) and serum-free (PDL_Medium_2) medium, along with the
presence of the seven identified clusters in their characteristic genetic profiles. It can be
seen that for each donor the representation of cells from PDL tissue and from cell cultures is
weighted differently and distributed within the clusters, thus reflecting the natural diversity
among donors. However, the different representation and distribution pattern of the seven
identified clusters among donors is notable. Cluster 0 was consistently represented in all
donors, with donor 2 being the most pronounced, followed by donor 6. Clusters 3 and 4
were also found in all specimens, again with individual intensity depending on the donor.
The other clusters were not found in all individuals, with clusters 1 and 5 not detectable
in one donor each and cluster 6 not present in three donors. The pattern of cluster 2
was noteworthy, as it was exclusively present in three donors, namely donors 5, 6, and
7, and in the first two only represented by one cell, but contrarily constituted the second
strongest cluster in donor 7. In addition, each donor showed an individual clustering
pattern, with some observations being particularly noteworthy. Donor 1 had a strong
portfolio with regard to clusters 5 and 6, which were rather underrepresented in the other
donors, and exhibited hardly any cells in the other clusters, not even in the predominant
cluster 0. Donor 2, on the other hand, was the strongest representative of cluster 0, but
showed no cells at all for clusters 5 and 6, and thus exhibited exactly the opposite cellular
focus compared to donor 1. Donors 3 and 4 presented a very analogous pattern with
generally moderate but consistent cell presence in all clusters except cluster 2. Donor 5
was particularly conspicuous due to its strong representation of clusters 1 and 3, the latter
being the most pronounced compared to all other individuals. Donor 6 showed a similar
picture to donor 2 with a focus on cluster 0 and the absence of clusters 5 and 6, but with
massively fewer cells overall. Donor 7 exhibited a particularly interesting and conspicuous
pattern due to the already mentioned massive occurrence of cluster 2, and furthermore the
strongest occurrence of cluster 1 in comparison to all other donors.

2.2. Marker Identification across Clusters

Cluster-specific markers were identified utilizing a two-pronged approach: differential
expression analysis and specificity ranking. Differential expression analysis elucidates
genes with notable expression differences between a specific cluster and the rest, shed-
ding light on functional markers that might play significant roles across various clusters.
Conversely, specificity ranking zeroes in on markers unique to each cluster, identified by
their lower or non-existent expression in other clusters, thus possibly pinpointing more
definitive signatures of cellular identity. This integrated methodology affords a nuanced
understanding of cluster specificity, merging insights into both relative expression levels
and distinct expression patterns of genes within clusters. Figure 4B exemplifies this by
showcasing a Uniform Manifold Approximation and Projection (UMAP) plot for CD74
expression, one of the top differentially expressed genes (DEGs) in cluster 5, demonstrating
its expression profile across clusters 0–6. Here, the most highly expressed genes are consid-
ered per cluster, irrespective of whether they originate from PDL tissue or cultured PDL
cells, with the goal of uncovering the identity of each cluster. The corresponding heatmaps
are shown in Figure 4A.

The analysis revealed that the top three DEGs for cluster 0 were IGFBP7, which
encodes insulin-like growth factor (IGF) binding protein 7, regulating the availability
of insulin-like growth factors in tissues, stimulating cell adhesion and modulating IGF
binding to its receptors; followed by THBS2 and THBS1, whose proteins both mediate
cell–cell and cell–matrix interactions. Regarding the most important specific genes, one
gene was exclusively included in cluster 0, namely TAGLN. TAGLN, encoding transgelin, is
a transformation- and shape-change-sensitive actin cross-linking/gelling protein found
in fibroblasts and smooth muscle, and its downregulation may be an early and sensitive
marker for onset of transformation.



Int. J. Mol. Sci. 2024, 25, 4731 8 of 19
Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 10 of 22  

 

to its receptors; followed by THBS2 and THBS1, whose proteins both mediate cell–cell and 
cell–matrix interactions. Regarding the most important specific genes, one gene was ex-
clusively included in cluster 0, namely TAGLN. TAGLN, encoding transgelin, is a transfor-
mation- and shape-change-sensitive actin cross-linking/gelling protein found in fibro-
blasts and smooth muscle, and its downregulation may be an early and sensitive marker 
for onset of transformation. 

In cluster 1, the three most highly expressed genes were PTGIS, encoding prostacy-
clin synthase, an enzyme catalyzing rearrangement of prostaglandin H2; followed by 
CLU, an extracellular molecular chaperone binding misfolded proteins to neutralize their 
toxicity and mediate cellular uptake through receptor-mediated endocytosis; and third, 
SFRP1, which can downregulate the Wnt signaling pathway, a crucial player in embryonic 
development, cell differentiation, and proliferation. The corresponding three most im-
portant specific genes were S100A10 and S100A16, both belonging to the S100 family of 
proteins, which regulate a number of cellular processes such as cell cycle progression, 
differentiation, exocytosis, and endocytosis, whereby S100A10 in particular is addition-
ally linked with the transport of neurotransmitters. The third-highest expressed gene was 
SVIL, implementing a potential role as a high-affinity link between the actin cytoskeleton 
and the membrane by recruitment of actin and other cytoskeletal proteins into specialized 
structures at the plasma membrane and in the nuclei of growing cells. 

Figure 4. Genetic profiling and expression intensity in clustered cells. (A) Heat maps of the top
differentially expressed genes (DEGs) and of the top-specific genes for each cluster within the PDL
batch. DEG analysis identifies genes with notable expression differences between a specific cluster
and others, highlighting potential functional markers across clusters. Specificity ranking pinpoints
markers unique to each cluster, potentially providing clearer signatures of cellular identity through
their distinct expression patterns. The heat maps are color-coded to reflect gene expression levels,
with the scale bar indicating the range of expression. The cluster numbers are labeled at the top of
the heat maps. (B) An illustrative UMAP plot showing the expression of CD74 across clusters. The
color scale on the right of the image indicates the respective expression intensities.

In cluster 1, the three most highly expressed genes were PTGIS, encoding prostacyclin
synthase, an enzyme catalyzing rearrangement of prostaglandin H2; followed by CLU, an
extracellular molecular chaperone binding misfolded proteins to neutralize their toxicity
and mediate cellular uptake through receptor-mediated endocytosis; and third, SFRP1,
which can downregulate the Wnt signaling pathway, a crucial player in embryonic devel-
opment, cell differentiation, and proliferation. The corresponding three most important
specific genes were S100A10 and S100A16, both belonging to the S100 family of proteins,
which regulate a number of cellular processes such as cell cycle progression, differentiation,
exocytosis, and endocytosis, whereby S100A10 in particular is additionally linked with the
transport of neurotransmitters. The third-highest expressed gene was SVIL, implementing
a potential role as a high-affinity link between the actin cytoskeleton and the membrane
by recruitment of actin and other cytoskeletal proteins into specialized structures at the
plasma membrane and in the nuclei of growing cells.
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For cluster 2, the three most significant DEGs were SRPX, predicted to be an extracellu-
lar matrix structural constituent involved in cell adhesion; TNC, whose protein tenascin C
is expressed in the extracellular matrix of various tissues during development, disease or in-
jury and is upregulated by inflammation or at sites exposed to specific biomechanical forces;
and in third place SPON2, which inter alia is predicted to enable antigen binding activity
and cell adhesion. The three top-specific genes in cluster 2 were SELENOP, whose protein
acts as an antioxidant in the extracellular space; secondly, antioxidant enzyme SOD3, and
thirdly, SOX4 functioning in the apoptosis pathway and mediating downstream effects of
parathyroid hormone (PTH) and PTH-related protein (PTHrP) in bone development.

The three priority DEGs in cluster 3 were TOP2A, whose nuclear enzyme controls and
modifies the topologic states of DNA during transcription; CENPF, involved in chromo-
some segregation during cell division and in orientation of microtubules to form cellular
cilia, and H2AFZ, encoding the thermosensory response mediator histone H2AZ. The
top-specific genes were PTTG1, which is inter alia involved in stimulating expression
of basic fibroblast growth factor, TK1, which codes for the cell cycle-regulated enzyme
thymidine kinase 1 with importance for nucleotide metabolism and, analogous to the top
DEGs, again TOP2A.

Looking at cluster 4, the top three DEGs represent MYL9, whose encoded protein is a
myosin light chain regulating muscle contraction, the TMP2-related protein tropomyosin 2,
which binds to actin filaments in muscle and non-muscle cells and plays a central role in
calcium-dependent regulation of striated muscle contraction as well as SPARCL1, which
interacts with the extracellular matrix in order to create intermediate states of cell adhesion
as well as being associated with the repair of muscle damage. Similar to cluster 0, there were
exclusively two top-specific genes in cluster 5, namely SKA2, which enables microtubule
binding activity and, congruent with the DEGs of the cluster, again SPARCL1.

The first three DEGs in cluster 5 were inflammatory cytokine CCL3 as well as CD74
and HLA-DPB1, the latter two being involved in antigen presentation via MHC II. The
corresponding top-specific genes were ITGB2, whose coding surface protein integrin β-2
establishes contacts between cells as well as contacts to the tissue portion between cells,
PLEK, which is involved in actin cytoskeleton organization among various other processes
and RGS1, which regulates G protein-coupled receptor signaling cascades.

For cluster 6, the top three DEGs were MZB1, which is involved in positive regulation
of cell population proliferation and is supposed to exert its effect via action of molecu-
lar chaperones, as well as, in second and third place, Immunoglobulin Heavy Constant
Gamma 3 and 1 (IGHG3,1). These are thought to enable antigen binding activity and im-
munoglobulin receptor binding activity and to be involved in several processes including
activation of the immune response, defense response to other organisms, and phagocytosis.
The only top-specific gene present for cluster 6 was again MZB1.

2.3. Conservation Analysis across Donors

In the next step, a conservation analysis was performed across all donors, pooling all
samples together, in order to identify the top 10 conserved markers sorted by the most
conservative significance assumption (max_pval). Since cluster 0 was expressed in all
donors and also contained the absolute majority of PDL cells, it was used to identify
the genes of this complex that are conserved across all donors and thus represent the
characteristic of this cluster. As exhibited in Figure 5, the most significantly conserved
marker of cluster 0 was TMEM119, whose encoded Transmembrane Protein 119 is involved
in the positive regulation of bone mineralization as well as osteoblast differentiation and
proliferation. The other genes of interest were primarily COL1A1 and COL1A2, which
encode type I alpha-1 collagen and type I alpha-2 collagen, with type I fibrillar collagen
being the most abundant type of collagen in the body and COL12A1, whose protein is a
type XII collagen and is responsible for cell adhesion, collagen degradation and collagen
fibril organization, among other functions.
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Figure 5. Conserved markers of cluster 0. Results of the conservation analysis across all 7 donors
showing the top 10 conserved markers sorted by the most conservative significance assumption
(max_pval) of cluster 0. Top 10 genes are listed in the left column.

Finally, also of interest was MXRA8, whose coding transmembrane protein can mod-
ulate the activity of various signaling pathways, including inhibiting osteoclastogenesis
downstream of TNFSF11/RANKL and CSF1, possibly attenuating signaling via integrin
ITGB3 and MAP kinase p38.

2.4. Pseudotime Analysis

Finally, to elucidate the developmental progression of cells, we conducted a pseu-
dotemporal trajectory inference using single-cell data. The results are plotted in a two-
dimensional space defined by component 1 and component 2 (Figure 6). Using this tech-
nique in single-cell transcriptomics, the pattern of the dynamic process that cells undergo
developmentally in temporal sequence was determined, subsequently arranging cells based
on this progression. In the left plot, the trajectory presented as a black line indicates the
cellular developmental path and reveals that the cells of conditions PDL_M1 and PDL_M2
originate from PDL and furthermore undergo certain changes due to the culture conditions.
In the right plot, the trajectory contextualizes the cluster progression states in temporal
sequence, indicating that the early formations are clusters 0–3, from which the clusters 4–6
are then differentiated.
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and PDL_M2 originate from PDL and undergo certain changes due to the culture.
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3. Discussion

In this study, we used single-cell RNA sequencing to identify and characterize different
fibroblast populations in the PDL. Additionally, we detected rare subsets of PDL cell
populations emerging during cell culture and analyzed their distinct genetic profiles under
serum-containing and serum-free conditions. Our findings indicate that some fibroblast
populations are naturally situated within the PDL tissue, while others respond specifically
to their environment. The finding that certain genes consistently show expression within a
specific cluster across all donors suggests a pivotal role for these genes in maintaining the
structure and function of the PDL. In-depth analysis of this cluster in subsequent studies
holds the potential to uncover PDL cell-characteristic markers, thereby advancing our
understanding of periodontal biology. These discoveries hold promise for developing
novel diagnostic tools and therapeutic approaches for improving periodontal health and
treatment outcomes.

Our study represents a significant advancement in the field, as it is the first to combine
both in vivo and in vitro data of the PDL from the same specimens for scRNA-seq analysis,
and moreover examine in vitro cells cultured under serum-free and serum-containing
conditions. The novelty of this comprehensive approach, which has not been previously
undertaken, provides a broad and unparalleled view of the genetic profiles and functional
dynamics of PDL cells in different environments. Through this innovative methodology,
this study elucidates the intricate interplay between cellular responses and environmental
factors within the PDL microenvironment at the single-cell level, gaining deeper insights
into genetic distinctions and functional diversity of PDL cell populations.

Furthermore, the inclusion of multiple donors enabled exploration of individual-
specific variations in PDL composition, adding another layer of complexity to the findings
of PDL dynamics.

Our analyses revealed that the transition from in vivo to in vitro alone resulted in
the formation of two new cell clusters with very characteristic features. It was extremely
striking that the predominant genes in cluster 4 as one of these two clusters were MYL9
and TMP2, two markers for the regulation of muscle contraction, and SPARCL1, a gene
associated with the repair of muscle damage [15]. Thus, under culture conditions, a fibrob-
lastic population appears to emerge that corresponds to a myofibroblastic cell type. These
findings are supported by another recent study on dermal fibroblasts, postulating a lineage
plasticity with distinct differentiation pathways from fibroblasts to a specialized contractile
myofibroblasts, specifically attesting to a dynamic nature of fibroblast identities during
wound healing [16]. Furthermore, studies revealed that PDL cells can transform into myofi-
broblasts during orthodontic tooth movement by activating the RhoA/ROCK pathway as
a result of the occurring mechanical strains and express the myofibroblast-specific marker
α-smooth muscle actin due to biomechanical signal transduction in a stimulus-induced
manner [17,18]. In order to understand which environmental influences evoke a cell cluster
with predominant muscle-associated marker expression in this study, further intrinsic
mechanisms must be investigated as cells were not exposed to any mechanical stimuli.

The second new cluster 5, exclusively evolved by the transition from in vivo to in vitro
alone, was characterized by its first three DEGs comprising inflammatory cytokine CCL3 as
well as the MHC II antigen presentation key molecules CD74 and HLA-DPB1, suggesting
an activated cellular cluster type involved in the immune response. Previous studies
have already shown that PDL cells possess immunomodulatory properties and secrete
proinflammatory cytokines such as the proinflammatory CCL3 discovered in our work,
suggesting the possibility of further differentiation into immunocompetent cells capable of
antigen presentation via MHC II [19,20].

The large genetic changes exclusively caused by the in vitro culture compared to cells
in situ uncovered here have been found for other cell types as well [21,22]. This nature of
metabolic plasticity depending on the environment must be taken into account in future
in vitro studies intended to reflect the in vivo situation and at best be eliminated by more
precise knowledge of the underlying causes.
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In addition to the genetic changes and resulting formations of new clusters due to the
fact of cultivation, our data also revealed that two further clusters developed exclusively
upon presence of serum and were undetectable in serum-free conditions. The genetic
profile of cluster 1 was dominated by markers for cell differentiation, proliferation, and
cell cycle progression, which confirms the well-known extraordinary growth-inducing
composition of factors in serum, but, as the comparison with in vivo cells shows, does
not correspond to reality and thus has implications for the future development of in vitro
models [23]. Cluster 6, as a second cluster exclusively evolving due to presence of serum,
was characterized as well by a marker involved in the positive regulation of cell population
proliferation and furthermore by markers enabling antigen as well as immunoglobulin
receptor binding activity, which are additionally involved in activation of the immune
response, defense response to other organisms, and phagocytosis. The immunomodulatory
functions of PDL cells have already been described, but based on the data presented here, it
is unclear to what extent FBS plays a role in artificially inducing these properties, especially
in light of the fact that studies have already demonstrated the alteration of the cellular
transcriptional profile by FBS [9,24]. FBS is a variable and undefined component of the
medium with a complex composition and may contain generally unpredictable factors that
are not yet fully understood.

Pseudotime analyses underline these results that PDL cells undergo a developmental
path in culture as well as sequential transcriptional changes due to culture conditions com-
pared to the PDL they were originating from, which is also reflected by cluster progression
from more undifferentiated to specialized cell states. Notably, clusters 4–6 are further away
along the inferred developmental trajectory. As these clusters primarily consist of cells
cultured under specific conditions, this might indicate that these conditions drive cells
towards a distinct differentiation path or induce stress responses that are not present or less
pronounced in the earlier clusters. A further study of these differences and the nature of
these cells could reveal some implications related to functional capabilities and limitations
of these cells on the one hand or optimization of culture conditions to either promote or
inhibit the formation of these later-stage clusters, depending on the desired outcome for
cell culture or tissue engineering applications.

Our analyses further showed that the cells from PDL tissue and from cell cultures are
differently weighted and distributed within the clusters in each donor, and furthermore,
that each donor had a different pattern of representation and distribution of the seven
identified clusters. To fully understand the biological implications of these cellular dis-
tributions of in vitro and in vivo cells within clusters, a further study will need to deeply
investigate the gene expression profiles and functional annotations associated with each
cluster separately. The differences in cluster composition between conditions are indicative
of how the in vitro culture conditions affect the state of the cells, which is important for
interpreting the relevance of in vitro studies to in vivo biology. The variability in cluster
distribution between conditions could influence the generalization of results beyond the
study, as it suggests that different culture conditions may lead to different cellular composi-
tions. Throughout the entire span of research on periodontal structures, fibroblasts have
eluded precise classification due to the lack of specific markers and have escaped distinct
specification of their heterogeneous subpopulations, which was further complicated by
partial overlaps and strong similarities of the same cell types.

The findings of this study hold significant clinical relevance, particularly in under-
standing the pathogenesis of periodontitis, as the identification of cluster-specific markers
sheds light on the intricate molecular mechanisms underlying periodontal tissue homeosta-
sis and dysfunction. Deficiency or dysregulation of certain genes, as highlighted by the
differential expression analysis and specificity ranking, may contribute to the development
and progression of periodontitis. For instance, downregulation of TAGLN, a gene encoding
transgelin involved in actin cytoskeleton organization, may indicate early pathological
changes associated with cellular transformation and shape alterations as characteristic
features of periodontal tissue remodeling in response to inflammation and mechanical
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stress [25,26]. Furthermore, alterations in the expression of SELENOP, SOD3 and SOX4
in cluster 2 highlight potential disruptions in antioxidant defense mechanisms and apop-
tosis regulation, being critical for periodontal tissue homeostasis [27–29]. Moreover, the
upregulation of inflammatory cytokines such as CCL3 and immune response-related genes
such as CD74 and HLA-DPB1 in cluster 5 suggests an enhanced immune response within
the periodontal microenvironment as a hallmark of periodontitis-associated inflammation
and tissue destruction [30–32]. Overall, the elucidation of cluster-specific markers and con-
servation patterns provides valuable insights into the molecular mechanisms underlying
periodontitis pathogenesis. Targeting these genes and pathways in case of dysregulation
may offer novel therapeutic strategies for the prevention and management of periodontal
diseases, ultimately improving clinical outcomes and oral health quality.

Our results reveal for the first time that there are specific genes and resulting cell
clusters in PDL culture whose expression underlies contextual aspects, as well as sub-
populations that are independent of such environmental factors. These aspects could
be optimally decoded with the scRNA-seq method used in this study, whereby the 10x
Genomics protocol applied here, in contrast to other commercially available scRNA-seq
protocols, enables the sequencing of thousands of cells simultaneously. This is done with a
much lower read depth per cell and without the use of fluorescent markers to determine
cell identity, making the 10x Genomics platform as particularly suitable for the detailed
characterization of heterogeneous tissues such as the ones investigated here [33].

The study presents valuable insights into gene expression patterns and cell clusters in
PDL cultures, albeit with limitations to be considered when looking at the results. While
the scRNA-seq method employed is a recognized standard, reliance on a single method can
introduce inherent biases, necessitating cautious interpretation. The study’s conclusions
should be contextualized within the chosen methodology’s parameters, recognizing that
different sequencing methods may yield differing results. Furthermore, the generalizability
of the results may be limited by the specific characteristics of the PDL cultures used in this
study. Factors such as donor variability, culture conditions, and number of passages could
in principle influence gene expression patterns and cell behavior, potentially leading to
biased or incomplete conclusions when relying exclusively on these data, urging careful
extrapolation to other settings. Although the study identifies relevant genes and cell groups,
their functional significance remains to be fully understood, prompting further validation
through diverse approaches.

The results of our study lay the foundation for further analysis of the lineage relation-
ships of PDL cell subpopulations as well as characterization of the factors determining
their plasticity and fate change, thus paving the way for new state of the art therapeutic
approaches to tissue regeneration and healing in the periodontium. Our present study
provides a basic prerequisite for such scientific progress in the field of periodontal research.

4. Material and Methods

The study was performed according to the ethical principles of the World Medical
Association Declaration of Helsinki. Informed consent was obtained from all individual
human donors of the experimental material included in the study. The study has been
independently reviewed and received Institutional Review Board (IRB) approval by the
Ethical Committee of the University of Bonn (reference number 029/08).

4.1. Isolation and Sample Preparation of Primary PDL

Primary human PDL was achieved from periodontally healthy adult male (n = 2) and
female (n = 5) donors with a mean age of 26.3 ± 11.2 undergoing extraction of erupted
wisdom teeth (n = 7). Patient inclusion criteria based on panoramic radiographs and
clinical examination were as follows: no systemic problems or medication affecting oral
health; no need for an osteotomy to minimize the risk of injury to the PDL; teeth with
completely developed root apices to ensure that no pulp tissue can contaminate the tissue
harvest; and securing direct sample processing after extraction. Specimens were kindly



Int. J. Mol. Sci. 2024, 25, 4731 14 of 19

provided by the Private Practice Dr. Vollmar, Wissen, Germany; the Private Practice Dr. Dr.
Appel, Sankt Augustin, Germany; and the MEDECO Clinic Bonn, Germany. Primary PDL
was explanted from the middle third of the root surface of the wisdom teeth. Enzymatic
dissociations of PDL (n = 7) to obtain single-cell suspensions was performed by washing
extracted teeth with DMEM medium, scraping off the PDL cells from the root surface
and mincing them before incubating the small tissue pieces with 0.5 mL enzyme mix
(12.5 µL collagenase/dispase and 5 µL DNase I) at 37 ◦C for 30 min. Residual tissues were
disaggregated by gentle flushing until single-cell suspensions were obtained. Each sample
was filtered through a 70 µm filter attached on 50 mL tubes. Filters were washed with
10 mL of medium and cells were centrifuged at 300× g for 5 min before resuspending them
in 0.2 mL of medium. Viability testing and cell count analysis was performed using trypan
blue and a hemacytometer. Specimens were cryopreserved by adding 10% DMSO into cell
suspensions, storing samples at −80 ◦C for one day and then transferring them to −150 ◦C.

4.2. Primary PDL Cell Isolation and Culture

From the isolated primary human PDL (n = 7), one half of the material was processed
directly for further analysis as described above, and the other half was used to study
the differentiation of PDL cells under two different media culture conditions. Cells were
grown in cell culture flasks (T75, CELLSTAR® Greiner BioOne, Kremsmünster, Austria),
one half in N2B27-PDLsf medium [34], a serum-free medium formulation for successful
PDL cell cultivation over several passages, and one half in serum containing Dulbecco’s
Modified Eagle Medium (DMEM)-based medium (sDMEM) supplemented with 10% heat
inactivated fetal calf serum (Invitrogen). Cells were grown at 37 ◦C in a humidified 5% CO2
atmosphere and passaged after reaching confluence. Medium was supplemented with
1% Penicillin-Streptomycin (Gibco, Carlsbad, CA, USA) and 1% Plasmocin prophylactic
(Invivogen, Toulouse, France) until passage 2. From passage 3, both media were used in
the absence of Penicillin-Streptomycin and Plasmocin prophylactic. Culture-expanded
cells were utilized for analyses at passage 3–4. The passaging of cells was performed
with StemPro Accutase (Gibco) for 5–10 min at 37 ◦C and the dissociation was stopped by
diluting the enzyme with medium.

4.3. Cell Hashing and Sorting from Single-Cell Suspension

Single-cell aliquots were thawed and supplemented with 5 mL of medium before
centrifuging at 500× g for 5 min. After discarding the supernatants, cells were resuspended
in 100 µL cell staining buffer (Biolegend, San Diego, CA, USA; cat # 420201). 5 µL of human
TruStain FcX™ (Biolegend, cat # 422301) Fc Blocking reagent was added and incubated for
10 min at 4 ◦C. The antibody pool was prepared using 1 µg of single-cell TotalSeq™—A025x
anti-human Hashtag antibody (Biolegend). To maximize performance, the antibody pool
was centrifuged at 14,000× g at 2–8 ◦C for 10 min before adding to the single-cell suspension
and incubating for 30 min at 4 ◦C. Cells were washed threefold with 1 mL cell staining
buffer, spun for 5 min at 350× g at 4 ◦C and resuspended in 500 µL of PBS in 1.5 mL tubes.
Specimen samples were pooled from all patients and stored on ice. Before sorting, 1 µg/mL
of propidium iodide was added and incubated at room temperature for 5 min. Cells were
passed through a 70 µm cell strainer or nylon meshes onto a new tube and loaded into the
cell sorter. Cell sorting was performed with a four-laser (405 nm, 488 nm, 561 nm, 640 nm)
BD FACSAria III high-speed cell sorter with a 70 µm, 85 µm, and 100 µm nozzle. Living
cells were collected in a new 1.5 mL tube containing 1 mL of PBS, pelleted by centrifugation
and resuspended in fresh PBS.

4.4. Library Preparation

Library preparation of DNA samples, in order to be compatible with the Illumina
sequencer (10x Genomics Inc., San Diego, CA, USA), was performed with the Illumina
10x Genomics sequencing workflow in order to generate droplet-based scRNA-seq data.
Samples were prepared for primary PDL, cultured PDL cells in serum-containing medium
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(PDL_M1), as well as cultured PDL cells in serum-free medium (PDL_M2). Library prepa-
ration was done according to the manufacturer’s protocol (10x Genomics, Chromium
Single Cell 3′ Reagent Kits v3 and CITE-seq). First, the viability of sorted cells and the
degree of separation were assessed using the Countess II system (Thermo). Subsequently,
2500 cells were used to prepare the libraries. According to the CITE-seq protocol, a specific
HTO primer had been added to the cDNA amplification step. In the subsequent cDNA
purification, the supernatant was used for HTO library preparation, while the bead-bound
DNA was used for cDNA library preparation. Sequencing was performed on the NovaSeq
6000 system using an SP flow cell. According to 10x Genomics guidelines, read lengths
were 28/8/0/91.

4.5. Sequencing and Demultiplexing

All libraries were pooled and sequenced on a NovaSeq sequencing system with an
SP flow cell, adhering to the following run parameters: 28 cycles for read 1, 91 cycles
for read 2, and 8 cycles for index 1. The instrument’s standard sequencing workflow
mainly consists of template generation, imaging, and base calling with RTA. The binary
sequencing data were then demultiplexed and converted to fastq format using bcl2fastq
v2.20.0.422 (https://support.illumina.com/sequencing/sequencing_software/bcl2fastq-
conversion-software.html; access date: 4 December 2021)) without allowing for any index-
based mismatch (--barcode-mismatches 0). This precaution was taken to consider the
small edit distance between two of the sample barcodes used in library preparation. The
sequencing resulted in average sample sizes of 72 M, 157.5 M, and 82 M sequencing reads
for PDL, PDL_M1, and PDL_M2, respectively, and 56.5 M, 88.5 M, and 102.5 M reads for
the corresponding HTO libraries. This reads distribution was predetermined based on a
calculated pooling ratio, derived from a preliminary shallow sequencing experiment and
subsequent saturation analysis to reach the sample-specific number of reads required for
optimal saturation at the gene expression and HTO levels for each sample.

4.6. Cellranger Primary Analysis

The CellRanger analysis pipeline (https://www.10xgenomics.com/support/software/
cell-ranger/downloads/previous-versions) (v3.1.0-access date: 23 April 2023) from 10x
was used to perform the standard scRNA-seq basic analysis. The pipeline workflow in-
cludes the following steps: (1) alignment to the human genome reference sequence GRCh38
(preprocessed release 95—downloaded from the 10x Genomics website), (2) cell inference,
(3) saturation analysis, and (4) various QC metrics. Starting from 1250, 2500, and 2500
initially set cells for PDL, PDL_M1, and PDL_M2, respectively, cell recovery rates of 21%
(262 cells), 16.2% (404 cells), and 10.7% (267 cells) were achieved. In addition, average
sequencing depths of 276K, 390K, and 300K reads per cell were received, respectively,
which is significantly higher than the recommended average depth. Finally, for the HTO
libraries, 5K, 63K, and 59K usable HTO reads per cell were produced (10x recommendation
is 5K sequenced reads per cell). All samples reached a saturation level of approximately
98% in terms of sequencing depth.

4.7. Downstream Analysis with Seurat
4.7.1. Data Integration and Cleaning

The Cellranger software (version 4.6) was used to create single-cell gene expression
matrices for downstream analysis, applying its standard filtering process to distinguish
between GEMs containing cells and those either empty or containing ambient RNA. The
Seurat package (v3.9.9.9008) was then used to further process the filtered gene expression
matrices (UMI counts per gene per cell) and de-multiplex the donor samples based on the
hash information (HTO). For this purpose, an algorithm applying Seurat’s HTODemux
function was used which sets the quantile parameter to 99.9% and otherwise uses standard
parameters [35]. Samples were integrated using Seurat’s standard integration workflow
and analyzed independently.

https://support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software.html
https://support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software.html
https://www.10xgenomics.com/support/software/cell-ranger/downloads/previous-versions
https://www.10xgenomics.com/support/software/cell-ranger/downloads/previous-versions
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4.7.2. Quality Checks

Analysis of the scRNA-seq data started with an initial quality control assessing stan-
dard quality parameters to evaluate cell status in individual samples. To enhance data
quality, noisy cells, defined by mitochondrial or ribosomal loads comprising more than
25% or 50% of the detected transcriptome, respectively, were excluded. Cells containing
fewer than 150 genes were also sorted out. Metrics comprising mitochondrial load in each
cell (mt genes) as marker for cell degradation and cell death, ribosomal load (ribo genes)
as indicator for cell cycle, the number of genes detected per cell (n feature), and number
of transcripts (n count) were determined in order to eliminate low-quality cells falsifying
analyses. Doublets were filtered out, identified by an excess number of detected genes and
transcripts within a single barcode. Absence of cells indicating false positives, dying cells,
or debris were removed. The cut-off threshold was set at 20, removing all cells exceeding
this threshold from further analysis. This further selection retaining only high-quality cells,
took place after integration, as the poor quality cells were also used during integration to
give the algorithm additional complexity. Cells with missing hash identity were retained
for downstream analyses to enhance clustering performance and subsequent steps. Subse-
quently, HTO (hashtagging) demultiplexing was performed, with each sample barcoded
and linked to HTO signals. The strongest signal was used as the donor identity using the
HTODemux method with a quantile of 99.9%. Cell identities were categorized into singlets,
cells with negative signals, and doublets. Singlets, representing single cells with statistically
significant unique identity from one donor, were further processed for analysis. Negatives
referred to singlets with either no or non-significant hashtagging, while doublets contain
multiple cells. Finally, all identified noisy and biased data, including doublets, cells with
fewer than 150 genes, cells with more than 25% mitochondrial genes, and cells with 50%
ribosomal genes, were removed.

4.7.3. Dimensionality Reduction and Clustering

Dimensionality reduction via standard PCA analysis was initially performed, with the
first 20 dimensions selected for the PDL batch after consulting the elbow plot (principal
components against standard deviation). Subsequently, UMAP dimensionality reduction
was performed based on its implementation in the wot package using the RunUMAP
function with the mentioned dimensions and otherwise the default parameters [36]. The
subsequent clustering of the cells was carried out using an SNN (Shared Nearest Neighbor)
clustering algorithm based on modularity optimization via the FindClusters function. This
process entailed calculating the k-nearest neighbors of the cell, constructing the SNN graph
and then optimizing a modularity function to determine the clusters based on a given
resolution. A clustering resolution of 0.25 was chosen for integrated PDL samples to
avoid overclustering.

4.7.4. Differential Expression Analyses

Differential expression analyses between clusters were performed with FindAllMark-
ers, which implements the nonparametric Wilcoxon rank sum test. To identify conserved
markers between donors, the FindConvervedMarkers function was used to calculate the
differential markers for each specific cluster and each donor present in the cluster compared
to all other clusters and then combine the markers of all donors that have a combined
significant meta-p-value. The standard minimum method from the R package metap was
used to combine the p-values. For each cluster, only donors contributing more than two
cells in the cluster were considered to obtain reliable conclusions. To identify genes with
high specificity, the discrimination analysis method implemented with GeneSorteR was
applied [37].

4.8. Pseudotemporal Trajectory Inference

The SCORPIUS package was used for pseudotemporal trajectory inference of single-
cell data to determine the order of cells along developmental trajectories [38]. To construct
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trajectories, a dimensionality reduction was performed with the reduce_dimensionality
method of the package, using the Spearman correlation for the distance parameter and
selecting three dimensions. Then, the infere_trajectory method was run with the default
parameters. The draw_trajectory_plot method was applied to plot the trajectory.

5. Conclusions

In this study, we have employed cutting-edge scRNA-seq technology to gain deeper
insight into the genetic profile of the PDL. Our exploration has uncovered the intricate
cellular populations within the PDL in their highly organized complexity and individuality,
unveiling distinct genetic signatures and cell clusters. Notably, we have deciphered both
inherent subpopulations and those influenced by contextual aspects, shedding light on the
dynamic nature of the PDL.

Furthermore, our findings underscore the profound impact of in vitro transitions and
serum-containing cell culture on the genetic features of PDL cells. This revelation not only
deepens our comprehension of the cellular architecture of the PDL but also underscores the
importance of environmental factors in shaping its characteristics.

By elucidating these phenomena, our study lays a solid foundation for future inves-
tigations aimed at unraveling the underlying determinants of these observations. These
insights promise to advance our understanding of the PDL’s fundamental dynamics and
pave the way for further research in this field.
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