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Abstract: Carbazole polymers attract significant attention as promising luminophores, organic elec-
tronic and photovoltaic materials, photo/electrocatalysts, energy storage materials, redox mediators
and catalysts. However, the oxidation potential of the commercially available poly(vinylcarbazole) is
insufficient for some applications such as high-voltage Li-Ion batteries. We have proposed a monomer
for the novel polycarbazole with an increased oxidation potential, which will be compatible with high-
voltage cathode materials for Li-Ion. In addition, the proposed polymer is an interesting substrate for
the further carbonization to obtain N-doped carbons with a high electrocatalytic activity level.
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1. Introduction

Carbazoles are of great interest as a class of compact functional molecules, which meet
their applications as dyes and luminophores [1], organic electronic [2] and photovoltaic
materials [3,4], photo/electrocatalysts [5], energy storage materials [6,7], redox mediators
and catalysts [8]. Due to their highly reversible redox process and easily tunable π-system,
the carbazole core is an attractive scaffold for the design of the functional materials for
various electrochemical and energy storage applications.

Due to the unique properties of the carbazole core, plenty of carbazole-based polymeric
materials are used in various fields of science and technology. The most recognized large-
scale commercial poly(N-vinylcarbazole) (PVK) was discovered by Walter Reppe in the
1930s [9] and was established as the first photoconductive polymer [10]. In addition,
the PVK is industrially used as a thermoconductive material [11], an emission layer for
OLEDs [12] and a photoresist [13]. Carbazole itself can also act as a monomeric unit for
the synthesis of conductive polymer, polycarbazole, which is also used in light emission
devices, photovoltaics, photochromic devices, sensors and supercapacitors [14].

3,6-dicyanocarbazole was proposed as a redox shuttle with a very high switch-on
potential, which can protect Li-Ion batteries from the overpotential fault by providing an
internal discharge route [15]. To fit the working potential window of a cathode material
to the anodic region, two -CN groups were introduced to the carbazole core. Recently,
we proposed a novel protecting principle which serves to prevent Li-Ion batteries from
faults caused by overpotential [16]. The protective element comprises the layer between
the cathode material and current collector, rapidly increasing its resistance above a certain
potential, and thus interrupting the circuit of the battery. Redox polymers containing
pendants which attain a positive charge are promising materials for various electrochemical
applications, such as energy storage [17] or electrocatalysis [18], and may be employed as
well in the role of such protective layer materials. The PVK polymer conceptually may
serve as the protective layer as well, although its oxidation potential is too low to match
the working window of the common cathode materials.

Herein, we report the monomer 9-vinyl-9H-carbazole-3,6-dicarbonitrile, which may
be used to synthesize an analog of PVK, with the oxidation potential sufficiently shifted to
the cathodic region for the efficient protection of Li-Ion batteries. In addition, this cyanated

Molbank 2024, 2024, M1768. https://doi.org/10.3390/M1768 https://www.mdpi.com/journal/molbank

https://doi.org/10.3390/M1768
https://doi.org/10.3390/M1768
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molbank
https://www.mdpi.com
https://orcid.org/0000-0002-4538-316X
https://orcid.org/0009-0001-4012-7933
https://orcid.org/0000-0001-6337-7719
https://doi.org/10.3390/M1768
https://www.mdpi.com/journal/molbank
https://www.mdpi.com/article/10.3390/M1768?type=check_update&version=2


Molbank 2024, 2024, M1768 2 of 5

PVK analog may be further subjected to a thermal or solvothermal carbonization, affording
the nitrogen-reach carbon for catalytic and energy storage applications [19]. The reported
synthetic method comprises an atom-economic route to acquiring the desired product. The
structure of the obtained 9-vinyl-9H-carbazole-3,6-dicarbonitrile is confirmed by means of
1H and 13C NMR, as well as FTIR and HRMS.

2. Results

9-vinyl-9H-carbazole-3,6-dicarbonitrile was prepared from 9H-carbazole in three steps,
as depicted in Scheme 1. Carbazole was brominated with NBS as described in the litera-
ture [20] to afford 3,6-dibromo-9H-carbazole 1 in a quantitative yield. The substitution of
the bromine atoms in the carbazole 1 was performed using a modified method described
earlier [20]. As a result, 9H-carbazole-3,6-dicarbonitrile 2 was obtained in 53% yield.
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Scheme 1. Scheme for the synthesis of the compound 3.

The attempted vinylation of 9H-carbazole-3,6-dicarbonitrile with vinyl acetate cat-
alyzed by [Ir(COD)Cl]2 failed, presumably due to the insufficient nucleophilicity of the
nitrogen atom owing to the presence of EWG groups in the molecule. However, we have
found that the alkylation of carbazole 2 with 1,2-dibromoethane results in the formation of
the title compound 9-vinyl-9H-carbazole-3,6-dicarbonitrile 3 in one step, thus comprising a
one-pot alkylation–elimination sequence.

In the 1H NMR spectrum of the title compound 3 (Figure S3), two doublets at 8.81 and
7.98 ppm accompanied with the doublet of doublets at 7.93 ppm were observed, which is
typical for 3,6-disubstituted carbazole. The absence of the NH proton signal in combination
with three additional dd signals confirmed the presence of the vinyl group in the molecule.
It is noteworthy that the signal of the internal CH proton of the vinyl group is situated in
the very low-value field, at 7.56 ppm, which may be explained by the effect of the -CN
substituents. Two complementary signals of the terminal hydrogen atoms of the vinyl
group were found in the typical alkene region at 5.78 and 5.46 ppm. In the 13C NMR
spectrum of the 9-vinyl-9H-carbazole-3,6-dicarbonitrile 3 (Figure S4), two new signals at
128.8 and 107.5 ppm were observed. This fact is explained by the presence of a vinyl group
in the target compound 3. The FTIR spectrum of the product revealed the presence of the
strong C≡N vibration band at 2224 cm−1 and the well-resolved band of C=C vibration of
the non-symmetric conjugated vinyl fragment at 1599 cm−1.

As a result, we have obtained a valuable monomer for the further preparation of
the high-potential redox polymer, 9-vinyl-9H-carbazole-3,6-dicarbonitrile. The proposed
synthetic method is a one-pot vinylation procedure, which affords the desired compound
in a high yield.

3. Materials and Methods
3.1. General Considerations

Reagents of “reagent grade” purity were purchased from Sigma–Aldrich (Europe).
DMF and DMSO were distilled from CaH2 and stored under 3Å molecular sieves prior
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to use. Hexane was dried by standing with activated SiO2. 1H and 13C-NMR spectra
were acquired using a Bruker Avance 400 spectrometer (Bruker Analytische Messtechnik
GmbH, Rheinstetten, Germany) at 400 and 101 MHz, respectively, in DMSO-d6. The
Fourier-transform infrared spectra were recorded using the Shimadzu IRaffinity-1 FTIR
spectrophotometer (Shimadzu Europa GmbH, Kyoto, Japan) in KBr pellets. The HRMS
spectrum was recorded using electrospray ionization using Bruker microTOF apparatus
(Bruker Analytische Messtechnik GmbH, Rheinstetten, Germany) in positive mode.

3.2. Synthesis of 3,6-Dibromo-9H-carbazole 1

Carbazole (5.00 g, 30 mmol) was dissolved in DMF (50 mL), and the solution was
cooled to 0 °C; then, NBS (11.20 g, 63 mmol, 2.1 eq.) in DMF (30 mL) was added. The reaction
was allowed to warm to room temperature and stirred overnight. Afterwards, 200 mL of
water was added to the reaction mixture to precipitate the product, which was then filtered
and dried in air. The obtained substance 1 was isolated by flash chromatography (silica gel,
eluent DCM/hexane 1:1). Quantitative yield, 9.75 g.

1H NMR (400 MHz, DMSO-d6) δ, ppm: 11.58 (s, 1H), 8.43 (d, J = 2.0 Hz, 2H), 7.53 (dd,
J = 8.7, 2.0 Hz, 2H), 7.47 (d, J = 8.7 Hz, 2H) (Figure S1).

3.3. Synthesis of 9H-Carbazole-3,6-dicarbonitrile 2

3,6-Dibromocarbazole (5.00 g, 15.4 mmol), dppf (56 mg, 0.10 mmol), Zn(CN)2 (2.20 g,
19 mmol), zinc powder (40 mg, 0.62 mmol), Zn(OAc)2·2H2O (180 mg, 0.82 mmol) and
Pd2(dba)3·dba (80 mg, 0.07 mmol) were added to a 100 mL Schlenk flask and dissolved
in 50 mL DMF and 0.5 mL water previously degassed by ultrasonication in vacuo. This
mixture was heated to 110 °C for 3 days. The resulting suspension was cooled, and then
poured into a 100 mL mixture of H2O/NH4Cl(sat.)/NH3(sat.) (50/40/10 v/v) and filtered
through a suction filter. The filter cake was dissolved in DMF and filtered through a silica
gel layer. The solution concentrated in vacuo to ca. 50 mL and cooled up to −10 ◦C. The
obtained crystalline solid was filtered, washed with cold diethyl ether (2 × 20 mL) and
dried in air to afford the target product 2 (1.76 mg, 53%) as a colorless crystalline solid.

1H NMR (400 MHz, DMSO-d6) δ, ppm: 12.36 (s, 1H), 8.78 (d, J = 1.7 Hz, 2H), 7.84 (dd,
J = 8.5, 1.7 Hz, 2H), 7.71 (d, J = 8.5 Hz, 2H) (Figure S2).

3.4. 9-Vinyl-9H-carbazole-3,6-dicarbonitrile 3

Sodium hydride (60% suspension in mineral oil) (184 mg, 4.6 mmol, 2 eq.) was washed
with dry hexane (2 × 5 mL) under an argon atmosphere and dried in vacuo. Then, dry
DMSO (20 mL) and 9H-carbazole-3,6-dicarbonitrile 2 (500 mg, 2.3 mmol) were added. The
resulting mixture was stirred vigorously for 2 h, and 1,2-dibromoethane (1.3 g, 600 µL, 3 eq.)
was added to one portion. The resulting solution was stirred overnight and an additional
portion of sodium hydride (460 mg, 5 eq.) in dry DMSO (10 mL) was added. This solution
was further stirred overnight and poured into 100 mL of water. The precipitate was filtered,
washed with diethyl ether (2 × 10 mL) and dried in vacuo, affording the title compound 3
(408 mg, 73%) as a colorless crystalline solid.

1H NMR (400 MHz, DMSO-d6) δ, ppm: 8.81 (d, J = 1.6 Hz, 2H), 7.98 (d, J = 8.6 Hz, 2H),
7.93 (dd, J = 8.6, 1.6 Hz, 2H), 7.56 (dd, J = 15.9, 9.2 Hz, 1H), 5.78 (dd, J = 15.9, 1.6 Hz, 1H),
5.46 (dd, J = 9.2, 1.6 Hz, 1H) (Figure S3). 13C NMR (101 MHz, DMSO-d6) δ, ppm: 141.1,
130.7, 128.8, 126.2, 122.4, 119.5, 112.4, 107.5, 103.6 (Figure S4). FTIR (KBr) ṽ, cm−1: 3068 (br,
C-H), 2224 (C≡N), 1599 (C=C) (Figure S7). HRMS (ESI) m/z [M+H]+ calcd for C16H10N3

+

244.0869, found 244.0869 (Figures S5 and S6).

Supplementary Materials: The following are available online, Figures S1–S7: 1H and 13C NMR, FTIR
spectra and HRMS data for compound 3.
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