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Abstract: The title complex [{PhS(tBuN)2}(Cl)Ge:→RhCl(cod)] (2) was synthesized by the reaction of
three-coordinated chlorogermylene, [PhS(tBuN)2]GeCl (1), supported by a diimidosulfinate ligand
with a half equivalent of [RhCl(cod)]2 in benzene. The molecular structure of 2 was determined by
1H and 13C NMR spectroscopies and single-crystal X-ray diffraction (SCXRD) analysis. The electronic
property of germylene 1 was assessed by determining the Tolman electronic parameter of the corre-
sponding cis-dicarbonyl Rh(I) complex, [{PhS(tBuN)2}(Cl)Ge:→RhCl(CO)2] (3), that was prepared by
the treatment of 2 with carbon monoxide.

Keywords: rhodium; germylene; diimidosulfinate; single-crystal X-ray diffraction analysis

1. Introduction

In recent years, the utilization of more substantial carbene congeners, commonly
known as tetrylenes, as ligands in transition metal chemistry has experienced significant
growth [1–10]. This heightened interest has been propelled by the amphiphilic property of
tetrylenes, enabling them to function as both Lewis base and acid, as well as their enhanced
electron-donating capacity, surpassing that of most phosphines and N-heterocyclic carbenes
(NHCs) [11–13]. Indeed, certain tetrylene-transition metal complexes have demonstrated
their efficacy as catalysts for homogeneous transformations [14–24]. Furthermore, theoreti-
cal calculations support that germylenes can potentially serve as an ancillary ligand for
transition metal catalysts compared to common NHC and phosphine ligands [25].

We have been conducting research on the synthesis and properties of a series of
three-coordinated tetrylenes supported by iminophsphonamide [Ph2P(RN)2]− (R = tBu,
2,6-iPr2C6H3) [26–32] and diimidosulfinate [PhS(RN)2]− (R = tBu, SiMe3) [33] ligands,
which are isoelectronic ligands of amidinate [R’C(RN)2]−. In particular, we demonstrated
that iminophosphonamido silylenes and germylenes not only display strong electron-
donating properties surpassing those of NHCs but also exhibit diverse reactivities, in-
cluding unique coordination behavior [32]. In our ongoing investigation into three-
coordinated tetrylenes, we present the synthesis and structure of the germylene-Rh(I)
complex [{PhS(tBuN)2}(Cl)Ge:→RhCl(cod)] (cod = 1,5-cyclooctadiene), in which the germy-
lene fragment is supported by a diimidosulfinate ligand, as well as its reactivity toward
carbon monoxide.

2. Results and Discussion

The treatment of [PhS(tBuN)2]GeCl 1 [33] with a half equivalent of [RhCl(cod)]2 in
benzene gave the corresponding germylene-Rh(I) complex [{PhS(tBuN)2}(Cl)Ge: →RhCl(cod)]
2 as an orange powder in a 66% yield (Scheme 1). In the 1H NMR spectrum of 2, a singlet signal
due to tert-butyl groups was observed at 1.34 ppm. Four non-equivalent signals assigned to
methylene protons in the cod ligand were found at 1.70–1.78, 2.12, and 2.24 ppm. Two alkenyl
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protons in the cod ligand appeared at 4.23 and 5.62 ppm as a broad signal. Single crystals of 2
suitable for X-ray diffraction analysis were obtained from a saturated benzene solution at room
temperature. The ORTEP of 2 is illustrated in Figure 1, and selected bond lengths and bond
angles are provided in Table 1. Complex 2 crystallizes in the triclinic space group P-1 with a
benzene molecule per unit cell. As depicted in Figure 1, the central rhodium atom, to which
the germanium atom is coordinated, and the phenyl group on the sulfur atom are oriented
in opposite directions relative to the four-membered ring GeN2S skeleton. The rhodium
atom exhibits a distorted planar square geometry. The Ge–Rh bond length [2.3924(4) Å] of
2, which lies within the range of previously reported germylene-Rh(I) complexes [2.3366(9)–
2.4499(8) Å] [34–39]. The Ge–Cl bond length [2.2620(6) Å] of 2 is somewhat shorter than that
of the starting 1 [2.3498(19) Å] [33]. This shortening of the bond length can be attributed to the
coordination of the lone-pair electron on the germanium atom to the rhodium atom, leading to
a decrease in electron density on the germanium atom that is a factor to the elongation of the
Ge–Cl bond in 1 due to the electronic repulsive interaction between both atoms. The average
Rh–C distance (2.204 Å) to the carbon atom (C19, C20) positioned trans to the germanium
atom is longer than the distance to the cis-oriented carbon atoms (2.126 Å), indicating the
strong trans influence of the germylene ligand.
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Table 1. Selected bond lengths [Å] and bond angles [◦].

Bond Lengths [Å] Bond Angles [◦]

Ge1–Rh1 2.3924(4) Ge1–Rh1–Cl2 88.829(18)
Ge1–Cl1 2.2620(6) Rh1–Ge1–Cl1 114.36(2)
Ge1–N1 1.9290(19) Rh1–Ge1–N1 132.77(6)
Ge1–N2 1.925(2) Rh1–Ge1–N2 125.71(6)
Rh1–Cl2 2.3631(6) Cl1–Ge1–N1 99.59(6)
Rh1–C15 2.134(2) Cl1–Ge1–N2 101.15(6)
Rh1–C16 2.118(2)
Rh1–C19 2.213(2)
Rh1–C20 2.194(2)

To assess the electron-donating property of germylene ligand 1 using Tolman’s elec-
tronic parameter [40,41], we next conducted the synthesis of the corresponding cis-dicarbonyl
Rh(I) complex, [{PhS(tBuN)2}(Cl)Ge:→RhCl(CO)2] (3). Treatment of 2 with carbon monox-
ide (1 atm) in C6D6 resulted in the quantitative formation of 3 (Scheme 2). In the 13C{1H}
NMR spectrum of 3, the carbonyl carbons resonated at 185.8 ppm as a broad signal, which
is comparable to that of the germylene-Rh(I) complex bearing an iminophosphonamide
ligand, [{Ph2P(tBuN)2}(Cl)Ge:→RhCl(CO)2] (183.1 ppm) [32]. In the IR spectrum of 3, two
absorptions due to carbonyl stretching vibration were observed at 2005 and 2069 cm−1.
Comparing the average carbonyl stretching frequency (2037 cm−1) with that of the corre-
sponding rhodium complexes bearing common N-heterocyclic carbenes (NHCs) or cyclic
(alkyl)(amino) carbenes (cAACs), the donor intensity of germylene 1 is relatively high,
falling between NHCs (2046–2051 cm−1) and cAACs (2031–2036 cm−1).
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3. Materials and Methods
3.1. General Considerations

Unless otherwise noted, all experiments were carried out under an argon atmo-
sphere using standard Schlenk-line techniques or a glovebox (UNICO Ltd., Ibaraki, Japan).
1H and 13C NMR spectra were recorded on Bruker Avance-500 (500 MHz for 1H) and
Bruker Avance-400 (101 MHz for 13C) spectrometers (Bruker, Kanagawa, Japan) using C6D6
as the solvent at room temperature. IR spectrum was recorded on a TENSOR II (Bruker,
Kanagawa, Japan). All melting points were determined on a Mel-Temp capillary tube
apparatus and were uncorrected. Elemental analyses were conducted at the Molecular
Analysis and Life Science Center of Saitama University. All solvents were dried over
4A molecular sieves or potassium mirrors before use. All materials were obtained from
commercial suppliers and used without further purification except 1 that was prepared
according to the corresponding literature procedure [33].

3.2. Synthesis of [{PhS(tBuN)2}(Cl)Ge:→RhCl(cod)] 2

In a Schlenck tube, germylene 1 (52.1 mg, 0.14 mmol) and [Rh(cod)Cl]2 (35.8 mg,
0.07 mmol) were dissolved into benzene (1 mL). The resulting orange solution was stirred
for 4 h at room temperature. All volatiles were removed under reduced pressure to give
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germylene-rhodium(I) complex 2 (57.8 mg, 66%) as orange crystals. Mp. 165–167 ◦C
(decomp.). 1H NMR (C6D6, 500 MHz): δ = 1.34 (s, 18H, CH3), 1.71–1.78 (m, 4H, CH2),
2.12 (br s, 2H, CH2), 2.25 (br s, 2H, CH2), 4.43 (br s, 2H, CH), 5.62 (br s, 2H, CH), 6.93–6.95
(m, 3H, Ph), 8.03–8.05 (m, 2H, Ph). 13C{1H} NMR (C6D6, 101 MHz): δ 29.3 (CH2), 31.0
(CH3), 33.5 (CH2), 56.1 (C), 70.2 (CH, JRh-C = 14 Hz, cod), 101.0 (CH, cod), 128.6 (CH, Ph),
129.9 (CH, Ph), 133.8 (CH, Ph), 147.3 (C, Ph). Anal. Calcd. for C22H35Cl2GeN2RhS: C, 43.60;
H, 5.82; N, 4.62. Found: C, 43.98; H, 5.71; N, 4.46. See Supplementary Materials.

3.3. Reaction of 2 with CO

A pressure-tight NMR tube containing a solution of 2 in C6D6 (0.5 mL) under a CO pressure
(ca. 3 atm) was kept for 1 h at room temperature. The color of the solution changed immediately
from orange to yellow. The reaction was completed within 1 h. 1H NMR (C6D6, 500 MHz): δ
1.28 (s, 9H, CH3), 1.58 (s, 9H, CH3), 6.95 (t, 1H, 3J = 7 Hz, p-Ph), 7.06 (t, 2H, 3J = 8 Hz, m-Ph),
7.51 (d, 2H, 3J = 8 Hz, o-Ph). 13C{1H} NMR (C6D6, 101 MHz): δ 33.0 (CH3), 33.6 (CH3), 60.0 (C),
62.4 (C), 128.6 (CH, Ph), 129.2 (CH, Ph), 131.2 (CH, Ph), 145.6 (C, Ph), 185.8 (C, CO). IR (C6D6):
2005, 2069 cm−1 [ν(CO)]. See Supplementary Materials. Concentration of the reaction mixture
resulted in the decomposition of the expected product 3.

3.4. SCXRD Analysis of 2

An orange single crystal of 2 was grown from a saturated benzene solution at 25 ◦C.
The intensity data were collected at 100 K on a Bruker SMART APEX II diffractometer
employing graphite-monochromated MoKα radiation (λ = 0.71073 Å). The structure was
solved by direct methods (SHELXT) [42] and refined by full-matrix least-squares procedures
on F2 for all reflections (SHELXL) [43]. Hydrogen atoms were located by assuming ideal
geometry and were included in the structure calculations without further refinement of the
parameters.

Crystal data for C28H41Cl2GeN2RhS (2): M = 684.09 g mol−1, triclinic, P-1, a = 8.3881(7),
b = 12.5836(11), c = 14.1437(12) Å, α = 88.7760(10), β = 88.8650(10), γ = 89.9720(10)◦,
V = 1492.3(2) Å3, Z = 2, Dx = 1.522 g cm−3, F(000) = 700, and µ = 1.829 mm−1. CCDC
deposition number: 2324776.

4. Conclusions

A novel germylene-rhodium(I) complex 2 was synthesized and structurally charac-
terized by spectroscopic data and SCXRD. To estimate the electron-donating ability of
diimidosulfinato germylene ligand 1, the corresponding cis-dicarbonyl Rh(I) complex 3
was prepared through the reaction of 2 with carbon monoxide. The donor property of 1
was determined from the Tolman electronic parameter of 3 and revealed to be intermediate
between NHCs and cAACs.

Supplementary Materials: The following are available online: all spectroscopic data for 2 and 3 and
crystallographic data for 2 in Crystallographic Information File (CIF) format. CCDC 2324776 also
contains the supplementary crystallographic data for this paper.
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