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Abstract: The degradation and loss of natural wetlands has caused severe crises for wetland taxa.
Meanwhile, constructed wetlands are expanding significantly and facing dramatic environmental
changes. Exploring the responses of wetland organisms, particularly zooplankton, may have im-
portant implications for the management of wetlands. Environmental and zooplankton samples
were collected from 34 subsidence wetlands created by underground coal mining across the North
China Plain in August 2021. We used generalized linear models and redundancy analysis to test
zooplankton responses to environmental variables, with the relative importance quantified by varia-
tion partitioning. We identified 91 species, divided into 7 functional groups, with the highest density
of rotifer filter feeders (RF, 2243.4 ± 499.4 ind./L). Zooplankton species richness was negatively
correlated with electrical conductivity (EC), chlorophyll-a, total phosphorus, and pH. The Shannon–
Weiner and Pielou evenness indices were positively correlated with transparency and negatively
correlated with the photovoltaic panel area (AS). Rotifer predators (RCs) and RF densities were
positively correlated with cropland area and dissolved oxygen, but negatively correlated with AS.
Small crustacean filter feeders positively correlated with AS, whereas medium crustacean feeders
(MCFs) positively correlated with EC. AS was the most critical variable affecting the zooplankton
community. Our study showed that the spatial pattern of zooplankton communities was shaped
by environmental heterogeneity across the subsidence wetlands, providing implications for the
management and conservation of these constructed wetlands.

Keywords: subsidence wetland; zooplankton; functional groups; environmental variables; wetland
ecosystem

1. Introduction

Over two-thirds of natural wetlands have been degraded and lost [1], severely threat-
ening wetland taxa worldwide [2,3]. Constructed wetlands are increasing in number and
may provide compensatory habitats for wetland taxa [4–6]. They may play a role in wetland
ecosystems and compensate for natural wetlands to a certain extent when these wetlands
are well managed. However, the environments of constructed wetlands can change very
often in response to humans [7]. Exploring how wetland taxa adapt to drastic environ-
mental changes in constructed wetlands will help us to understand the mechanisms for
maintaining the biodiversity and ecosystem services of wetlands.

Among the many wetland taxa, zooplankton, as the link between producers and
consumers, play a crucial role in maintaining the health and stability of wetland ecosys-
tems [8–10]. Zooplankton are an important food source for almost all freshwater fish
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species and controlling phytoplankton populations through filter feeding has a signif-
icant effect on eutrophication status. Changes in zooplankton communities affect the
nutrient structure and stability of wetland ecosystems and have become a topic of global
concern [11]. Zooplankton are highly dependent on water; therefore, the physical and
chemical properties of water may directly affect zooplankton [12]. The physicochemi-
cal factors of water usually directly affect the growth, development, and proliferation of
zooplankton [13]. These individual-level effects transmitted to the community level may
cause changes in the zooplankton community structure [14]. Indirect factors may also
alter the zooplankton communities by influencing the physical and chemical indicators of
the water [15]. For example, urbanization and agricultural activities transport nutrients
to wetlands through surface runoff, accelerating the process of water eutrophication and
increasing the population’s tolerance to pollution, thus altering the community structure,
and mostly negatively correlated with the photovoltaic panel area [16]. Zooplankton are
sensitive to living conditions and are often used as biological indicators of environmental
change; therefore, they are crucial for wetland management [17,18]. Exploring how zoo-
plankton communities respond to such changes is vital for understanding the maintenance
of zooplankton biodiversity in wetlands.

Compared with natural wetlands, dramatic changes in the environment of constructed
wetlands may significantly affect wetland taxa; therefore, the response mechanisms of taxa
in constructed wetlands deserve attention [3,19]. Environmental factors inside wetlands,
such as water depth, topography, and hydrological conditions, are significantly affected by
human activities, which are very different from those in natural wetlands [20]. Additionally,
human activities in wetlands, such as aquaculture and the laying of photovoltaic panels,
have caused changes in the water environment [21]. However, the environment around
wetlands, such as land use patterns, is affected by human activities, and more nutrients
and pollutants are transported to wetlands through rainfall and surface runoff, resulting
in changes in the aquatic environment [22,23]. Investigating wetland taxa, especially zoo-
plankton, in response to the dramatic environmental changes caused by human activities is
important for managing constructed wetlands.

Subsidence wetland is a new type of constructed wetland. Formed in the last 30 years
and still expanding, this variety of wetland is produced by continuous underground mining
activities [24–26]. China is a large coal mining country with abundant coal reserves [27],
with more than 81.8% of the coal production coming from underground mining [28]. By
2020, the land subsidence caused by coal mining exceeded 3.5 × 104 ha [29]. Due to high
groundwater levels and abundant rainfall, nearly two-thirds of the subsided area of the
North China Plain has been waterlogged [24]. The original terrestrial ecosystem has been
transformed into a wetland ecosystem, creating hundreds of independent wetlands of
different sizes that may provide critical alternative habitats for wetland organisms [30,31].
Similarly, subsidence created by underground mining has been recorded in other countries,
and the resulting wetlands are also important hotspots for research into aquatic biodi-
versity [32,33]. Biodiversity studies of coalmine subsidence wetlands in the same region
in China have mainly focused on single populations, and higher or lower trophic levels,
such as comparing phytoplankton levels to the presence of birds [2,3,34]. In contrast, there
are few overall studies of zooplankton as the middle position in the food chain. Further
research is needed to understand the biodiversity of subsidence wetlands, which has been
largely overlooked.

We predicted that high-nutrient wetlands would have higher zooplankton densities,
but that communities would have lower alpha diversity because of the high proliferation of
a few species [35]. We also predicted that different zooplankton functional groups would
respond differently to environmental factors [36]. Additionally, factors associated with
human activities may have a higher interpretative variance for the zooplankton community
because the environmental factors in constructed wetlands are drastically changed by
anthropogenic influences [37]. Given the increasing interference of human activities in the
natural environment, the response of zooplankton to environmental change has become an
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important topic in research and wetland management. Subsidence wetlands in the North
China Plain are expanding under the influence of continuous underground coal mining
and play an increasingly important role in regional biodiversity conservation. Therefore,
exploring how zooplankton communities in constructed wetlands respond to drastic en-
vironmental changes will provide new insights into the maintenance of biodiversity in
aquatic communities in human-dominated landscapes and have important implications for
the effective management of wetland ecosystems.

2. Materials and Methods
2.1. Study Area

The Huainan mining area, situated in the southern part of the North China Plain
(32.73–33.73◦ N, 116.03–117.52◦ E; Figure 1), is one of China’s largest coal production
bases [24]. The flat terrain and abundant water resources of this region, which is char-
acterized by a warm temperate monsoon climate, are attributed to an average annual
precipitation of 970 mm. The landscape is mainly composed of croplands. However, for
over a century, massive underground mining has led to large-scale ground deformation and
subsidence. By 2020, the extent of land subsidence within the Huainan mining area had ex-
panded to 3.5 × 104 ha, encompassing a flooded area of 2.6 × 104 ha [38]. These subsidence
wetlands were formed in different years with different sizes and clear boundaries, and
many of them continue to expand owing to ongoing underground coal mining activities.
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Figure 1. The 34 subsidence wetlands (a) for sampling zooplankton communities and the land cover
map (b) of the study area in the Huainan coal mining area, China.

2.2. Zooplankton Sampling

In August 2021, zooplankton samples were collected from 34 randomly selected
subsidence wetlands in the Huainan coalmine area. Four sampling sites were established
in each wetland: two were littoral and two were pelagic. The littoral sites were 5–10 m
away from the wetland boundary, and the pelagic sites were located in the center of the
wetlands. The distance between adjacent sampling sites was >200 m. Zooplankton samples
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were collected vertically from different water layers at each sampling site. When the water
depth was less than 10 m, we collected zooplankton samples from 0.5 m below the surface
and 0.5 m above the bottom. When the wetland depth was >10 m, another sample was
collected from the medium layer to improve its representativeness.

Rotifer samples were collected in 1 L plastic bottles and fixed in 1% Lugol’s iodine
solution in the field. Each rotifer sample was concentrated to 30 mL after 48 h of pre-
cipitation in the laboratory. The crustacean samples were collected with 10 L of mixed
water through a 60 µm plankton net, with an opening area of 346 cm2. They were then
transferred to 50 mL plankton bottles and preserved with 5% formalin in the field. The
zooplankton count was performed using a light microscope (Olympus, BX53; OLYMPUS
TOKYO, Tokyo, Japan), and 1 mL sub-samples of rotifers were counted in a counting cham-
ber twice at 100× magnification, while 5 mL sub-samples of crustaceans were counted at
40× magnification for all 50 mL samples. Species identification was conducted as described
previously [39–42]. The rotifer density of 1 L water was calculated using an average of
two sub-samples, while the density of crustaceans was calculated using the sum of 50 mL
samples. The density and alpha diversity indices of the zooplankton were calculated for
each sample and averaged for the entire wetland [3].

We divided the collected zooplankton into the following functional groups based
on size and feeding habits [10,43,44]: rotifer filter feeders (RFs), rotifer carnivores (RCs),
small crustacean filter feeders (SCFs), medium crustacean filter feeders (MCFs), medium
crustacean carnivores (MCCs), large crustacean filter feeders (LCFs), and large crustacean
carnivores (LCCs; Table 1).

Table 1. Description and classification of zooplankton functional group in the 34 subsidence wetlands
in the Huainan coal mining area in China.

Scientific Name Description Functional
Group

Size
(mm)

Rotaria tardigrada Rotifer filter feeders RFs
Colurella obtusa Rotifer filter feeders RFs

Lepadella quinquecostata Rotifer filter feeders RFs
Brachionus angularis Rotifer filter feeders RFs

Brachionus calycifiorus Rotifer filter feeders RFs
Brachionus forficula Rotifer filter feeders RFs

Brachionus budapestiensis Rotifer filter feeders RFs
Brachionus capsuliflorus Rotifer filter feeders RFs

Brachionus urceus Rotifer filter feeders RFs
Brachionus falcatus Rotifer filter feeders RFs

Brachionus caudatus Rotifer filter feeders RFs
Brachionus diversicornis Rotifer filter feeders RFs

Platyias quadricornis Rotifer filter feeders RFs
Platyias militaris Rotifer filter feeders RFs
Anuraeopsis fissa Rotifer filter feeders RFs

Keratella cochlearis Rotifer filter feeders RFs
Keratella valga Rotifer filter feeders RFs

Keratella qudrata Rotifer filter feeders RFs
Notholca labis Rotifer filter feeders RFs
Lecane luna Rotifer filter feeders RFs

Lecane ungulata Rotifer filter feeders RFs
Lecane pioenensis Rotifer filter feeders RFs

Lecane eutarsa Rotifer filter feeders RFs
Lecane closterocerca Rotifer filter feeders RFs

Lecane ludwigii Rotifer filter feeders RFs
Lecane curvicornis Rotifer filter feeders RFs

Monostyla stenroosi Rotifer filter feeders RFs
Monostyla hamata Rotifer filter feeders RFs

Monostyla closterocerca Rotifer filter feeders RFs
Monostyla crenata Rotifer filter feeders RFs
Monostyla bulla Rotifer filter feeders RFs

Monostyla elachis Rotifer filter feeders RFs
Asplanchna priodonta Rotifer carnivores RCs
Ascomorpha ecaudis Rotifer filter feeders RFs
Diurella rousseoeti Rotifer filter feeders RFs
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Table 1. Cont.

Scientific Name Description Functional
Group

Size
(mm)

Diurella stylata Rotifer filter feeders RFs
Diurella dixon-nuttalli Rotifer filter feeders RFs

Diurella collaris Rotifer filter feeders RFs
Trichocerca cylindrica Rotifer filter feeders RFs
Trichocerca capucina Rotifer filter feeders RFs
Trichocerca pusilla Rotifer filter feeders RFs

Trichocerca lophoessa Rotifer carnivores RCs
Trichocerca elongata Rotifer filter feeders RFs
Synchaeta pectinata Rotifer filter feeders RFs
Polyarthra euryptera Rotifer filter feeders RFs

Polyarthra trigla Rotifer carnivores RCs
Polyarthra vulgaris Rotifer filter feeders RFs
Mytilina ventralis Rotifer filter feeders RFs

Pompholyx complanata Rotifer filter feeders RFs
Pedalia mira Rotifer filter feeders RFs

Filinia minuta Rotifer filter feeders RFs
Filinia terminalis Rotifer filter feeders RFs
Filinia opoliensis Rotifer filter feeders RFs

nauplius Small crustacean filter feeders SCFs <0.70
Sinocalanus Burckhardt Large crustacean filter feeders LCFs >1.50

Schmackeria inopinus Medium crustacean feeders MCFs 0.70–1.50
Schmackeria forbesi Medium crustacean feeders MCFs 0.70–1.50

Heliodiaptomus serratus Medium crustacean feeders MCFs 0.70–1.50
Sinodiaptomus sarsi Large crustacean filter feeders LCFs >1.50

Neodiaptomus schmackeri Medium crustacean feeders MCFs 0.70–1.50
Eodiaptomus sinensis Medium crustacean feeders MCFs 0.7–1.5

Onychocamptus mohammed Small crustacean filter feeders SCFs <0.70
Limnoithona sinensis Small crustacean filter feeders SCFs <0.70
Macrocyclops albidus Medium crustacean carnivores MCCs 0.70–1.50

Macrocyclops distinctus Medium crustacean feeders MCFs 0.70–1.50
Eucylops serrulatus Medium crustacean feeders MCFs 0.70–1.50

Microcyclops varicans Medium crustacean feeders MCFs 0.70–1.50
Mesocyclops leuckarti Medium crustacean carnivores MCCs 0.70–1.50

Thermocyclops hyalinus Medium crustacean carnivores MCCs 0.70–1.50
Cyclops strenuus Large crustacean carnivores LCCs >1.50
Leptodora kindti Large crustacean carnivores LCCs >1.50

Diaphanosoma leuchtenbergianum Medium crustacean feeders MCFs 0.70–1.50
Diaphanosoma brachyurum Medium crustacean feeders MCFs 0.70–1.50

Diaphanosoma sarsi Medium crustacean feeders MCFs 0.70–1.50
Diaphanosoma excisum Medium crustacean feeders MCFs 0.70–1.50

Daphnia pulex Large crustacean filter feeders LCFs >1.50
Daphnia hyalina Large crustacean filter feeders LCFs >1.50

Daphnia cucullata Large crustacean filter feeders LCFs >1.50
Ceriodaphnia pulchella Small crustacean filter feeders SCFs <0.70
Ceriodaphnia cornuta Small crustacean filter feeders SCFs <0.70

Ceriodaphnia quadrangula Small crustacean filter feeders SCFs <0.70
Scapholeberis mucronata Medium crustacean feeders MCFs 0.70–1.50

Moina micrura Small crustacean filter feeders SCFs <0.70
Moina rectirostris Medium crustacean feeders MCFs 0.70–1.50

Bosmina longirostris Small crustacean filter feeders SCFs <0.70
Bosmina fatalis Small crustacean filter feeders SCFs <0.70

Bosmina coregoni Small crustacean filter feeders SCFs <0.70
Bosminopsis Richard Small crustacean filter feeders SCFs <0.70

Alona guttata Small crustacean filter feeders SCFs <0.70
Chydorus sphaericus Small crustacean filter feeders SCFs <0.70
Pleuroxus hamulatus Small crustacean filter feeders SCFs <0.70

2.3. Habitat Variable

We quantified 13 environmental variables that could affect zooplankton communities,
including physicochemical and anthropogenic disturbances (Table 2). Two 1 L water sam-
ples were collected in opaque plastic bottles, stored at low temperatures, and transported
to the laboratory. During the field surveys, pH, dissolved oxygen (DO), and electrical
conductivity (EC) were measured using a Hach HQ40d portable multimeter; transparency
(SD) and water depth were measured using a Secchi disk. In the laboratory, total phospho-



Diversity 2024, 16, 304 6 of 14

rus (TP, 0.5 L sample), total nitrogen (TN, 0.5 L sample), and chlorophyll-a (Chl-a, 0.5 L
sample) were measured using standard analytical methods [45]. For the convenience of
the reviewers and readers, please refer to Li [3] for the specific sampling and experimental
methods employed. Other variables were obtained from the land cover map. To obtain a
land cover map of the study area, we downloaded remotely sensed images without cloud
cover from the US Geological Survey website on 1 August 2021 http://glovis.usgs.gov
(accessed on 10 June 2022). The obtained remote sensing images were radiometrically and
geometrically (systematically) corrected using ground control points and ephemeris data
in ENVI5.3. They were then re-projected onto zone 50 (north) of the Universal Transverse
Mercator Projection 1984 coordinate system. The study areas were subjected to supervised
classification using the maximum likelihood classification method. Five land cover types
were identified: water, aquatic vegetation, cropland, architecture, and floating photovoltaic
panels (Figure 1). To verify the classification, training samples were used, and the overall
accuracy was determined to be 96.85% with a κ coefficient of 0.954, indicating a high
classification accuracy.

Table 2. Habitat variables of zooplankton community structure in the 34 subsidence wetlands in the
Huainan coal mining area in China.

Habitat Variables Description Range Mean SE

pH pH 7.15–9.00 7.98 0.08
WD (m) Water depth 2.10–15.10 6.50 0.50

DO (mg/L) Dissolved oxygen 4.00–13.85 7.26 0.38
EC (us/cm) Electric conductivity 449.37–1788.63 764.80 44.14

SD (m) Transparency 0.23–14.8 6.10 0.48
TP (mg/L) Total phosphorus concentration 0.06–1.22 0.34 0.04
TN (mg/L) Total nitrogen concentration 0.26–2.2 1.12 0.34

Chl-a (µg/L) Chlorophyll-a concentration 730.24–813.85 281.54 32.61
AW (km2) Area of each wetland 0.04–3.91 1.09 0.17

AA (km2)
Area of aquatic vegetation

in each wetland 0.01–0.30 0.09 0.01

AS (km2)
Area of floating photovoltaic panel

in each wetland 0.16–1.73 0.64 0.21

AC (km2)
Area of cropland in each wetland

within a 2 km buffer zone 6.70–17.22 10.33 0.43

AD (km2)
Area of architecture in each

wetland within a 2 km buffer zone 2.24–7.53 4.41 0.25

2.4. Statistical Analyses

We used a generalized linear model to analyze the relationships between zooplankton
species richness, Pielou evenness index, the Shannon–Wiener diversity index, and envi-
ronmental factors. First, we calculated the variance inflation factor (VIF) and removed
TN (VIF > 10). For species richness, a GLM with a negative binomial distribution was
used, whereas the Pielou evenness and Shannon–Wiener indices were transformed using
square-root methods and analyzed using a GLM with a Gaussian distribution. A backward
selection procedure was used to select the final model. We used the indirect ordination
method to analyze differences in the composition of the functional groups of zooplank-
ton communities and their relationships with environmental factors. We conducted a
detrended correspondence procedure for the zooplankton communities. As the axis length
was 0.77, we selected an RDA model. Before conducting RDA, TN was excluded from
the model because of collinearity. To satisfy the multivariate normality hypothesis, we
transformed all environmental variables and zooplankton functional group density data,
except for pH and architectural area, by log10 (X + 1). A 999-permutation Monte Carlo
permutation test was used to examine the significance of the variance in the RDA gradient.
The significant differences between the densities of each functional group were assessed
using Kruskal–Wallis testing. The relative importance of each variable was determined via

http://glovis.usgs.gov
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variation partitioning using the adjusted R-squared method in the RDA. For each species,
we calculated the McNaughton dominance index (Y), Y = (Ni/N) × fi, where Ni was the
total number of individuals species i in all samples, N was the total number of all species
in all samples, and fi was the occurrence frequency of species i. When Y > 0.02, the species
was registered as the dominant species [46]. All statistical analyses were performed using
the “vegan” packages in R 3.4.1.

3. Results
3.1. Habitat Variables

The sampled wetland was weakly alkaline, and the average water depth was 6.50 m,
with pH and DO ranges of 7.1–9 and 4–13.9 mg/L, respectively. The nutrient state
of the wetland was indicated by TN, TP, and chlorophyll-a, with respective values of
1.12 (±0.34) mg/L, 0.34 (±0.04) mg/L, and 2.82 (±0.31) µg/L. The EC and SD in wetlands
varied significantly, standing at 764.80 (±43.48) us/cm and 6.10 (±0.48) m, respectively.
The sizes of wetlands ranged from 0.04 to 3.9 km2, and the cover of aquatic vegetation had
an average area of 0.09 (±0.01) km2. The floating photovoltaic panels were fitted with seven
wetlands, covering an area of 0.27 to 1.7 km2. Within the 2 km buffer zone surrounding
each wetland, the land cover types were cropland and architecture area, and mean areas
were 10.33 (±0.43) km2 and 4.41(±0.25) km2 (Table 2).

3.2. Composition of Zooplankton Community

We recorded 91 zooplankton species from 22 families and 46 genera and divided
them into seven functional groups (LCCs, LCFs, MCCs, MCFs, RCs, RFs, RCs, and SCFs;
Table 1). The species richness was the highest in the rotifer filter feeders (10.3 ± 0.5),
followed by MCFs (5.0 ± 0.3) and SCFs (4.9 ± 0.4). The significant differences between
the densities of the different functional groups (p < 0.05) and the dominant species were
as follows: Polyarthra trigla (24.53%; Y = 0.25), Trichocerca pusilla (15.28%; Y = 0.23), Anu-
raeopsis fissa (1218%; Y = 1.12), and nauplius (1.73%, Y = 0.02; Table 3). The density
was the highest in the RFs (Figure 2), with an average density of 2243.4 ± 499.4 ind./L,
which was the contribution of Brachionus forficula, Brachionus angularis, Trichocerca pusilla,
Trichocerca capucina, etc. The following are the data for RCs with an average density of
787.3 ± 124.1 ind./L, which was the contribution of Polyarthra trigla (Figure 2). The den-
sity of MCFs was 146.5 ± 14.2 ind./L, which was the contribution of Eucylops serrulatus,
Microcyclops varicans, and Diaphanosoma sarsi. The dominant species of LCF were Sinodiapto-
mus sarsi, Daphnia pulex, and Daphnia cucullate, while the dominant species of MCCs were
Thermocyclops hyalinus and Mesocyclops leuckarti. The dominant species in SCFs and LCCs
were nauplius and Cyclops strenuous, respectively.
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Table 3. Results of relative abundance analysis of the four dominant species to determine the top
contributions to abundance-based community structure in the subsidence wetlands in the Huainan
coal mining subsidence area, China.

Scientific Name Relative Abundance (%) McNaughton Dominance Index (Y)

Polyarthra trigla 24.53 0.25
Trichocerca pusilla 15.28 0.23

Anuraeopsis fissa and 12.18 0.12
nauplius 10.73 0.02

3.3. Effects of Environmental Variables on Zooplankton Community Diversity

Species richness was negatively correlated with TP concentration, Chl-a concentration,
EC, and pH. The Shannon–Weiner diversity and Pielou evenness indices were positively
correlated with SD, but negatively correlated with the floating photovoltaic panel area (AS).
Additionally, the Shannon–Weiner diversity index was negatively correlated with the TP
concentration (Table 4).

Table 4. Summary of generalized linear model results of zooplankton diversity index and able in the
34 subsidence wetlands in the Huainan coal mining area, China.

Diversity Index Environment Variable Coefficient p

Species richness

pH −0.14 0.01
Conductivity −0.0002 <0.05

Total phosphorus concentration −0.30 <0.05
Chlorophyll-a concentration −0.04 <0.05

Pielou evenness index
Transparency 0.001 <0.05

Area of floating photovoltaic panel in
each wetland −0.10 0.02

Shannon–Weiner
diversity index

Transparency 0.02 0.05
Total phosphorus concentration −1.45 0.04

Area of floating photovoltaic panel in
each wetland −1.34 0.03

3.4. Correlation between Functional Groups of Zooplankton and Habitat Variables

In the final RDA model, the four variables exhibited a significant impact, as determined
by the Monte Carlo test (Table 5). The first two RDA axes collectively elucidated 87.1% of
the variance within the zooplankton community, with respective eigenvalues of 0.41 and
0.07 (Table 5). The densities of RFs and RCs were positively correlated with cropland area
(AC) and DO and negatively correlated with the AS. The density of MCFs was positively
correlated with AC and EC and negatively correlated with DO. The density of small
crustacean feeders was positively correlated with the AS but negatively correlated with DO
and AC. Given the limited projection magnitude, the interplay between large crustacean
feeders, large crustacean carnivora, and medium crustacean carnivora group densities and
environmental factors was not analyzed (Figure 3). Variation partitioning showed that
the variation in the zooplankton communities was mainly explained by the AS (34.0%),
followed by electric conductivity (10.3%), DO (7.3%), and AC (7.1%) (Figure 4).

Table 5. Summary of RDA models of the relationships between zooplankton communities and habitat
variables in the 34 subsidence wetlands in the coal mining area in China.

Information Numerical Value

Axis length 0.79
Significant variables in RDA model AS (p < 0.05)

EC (p < 0.05)
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Table 5. Cont.

Information Numerical Value

AC (p < 0.05)
DO (p < 0.05)

Proportion of total variance explained 44.95%
Constrained eigenvalue of RDA 1 0.41
Constrained eigenvalue of RDA 2 0.07

Proportion of constrained variance explained by RDA 1 74.05%
Proportion of constrained variance explained by RDA 2 13.01%

Cumulative constrained variance explained 87.06%
Model significance by Monte Carlo test F = 7.74, p < 0.05

AS, area of floating photovoltaic panel in each wetland; AC, area of cropland in each wetland within 2 km buffer
zone; EC, electrical conductivity; DO, dissolved oxygen.
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4. Discussion

We found that all the subsidence wetlands were weakly alkaline, which was similar
to other wetlands in the same region [47,48]. The wetlands had high concentrations of
nitrogen and phosphorus, which was similar to other subsidence wetlands in the North
China Plain [49]. The regional climate is a warm temperate monsoon climate and the
annual rainfall reaches 970 mm. Compared with other artificial wetlands in the same
region, we recorded a relatively higher number of zooplankton species [47]. Moreover, we
found similar species compositions in other single-subsidence wetlands in the North China
Plain [48,49], where small species (e.g., rotifer filter feeders and rotifer carnivores) had
significantly higher densities than other taxa and dominated the community. Specifically,
there were significantly more species of rotifer filter feeders were and they had higher
densities than other functional groups in the community. However, zooplankton are highly
sensitive to changes in environmental factors [50].

As predicted, high-nutrient wetlands have higher zooplankton densities, but their
communities have lower species richness, Shannon–Weiner scores, and evenness indices.
Our results showed that eutrophication occurs to different degrees in subsidence wet-
lands [51,52]. Wetlands with high nutrient levels have higher zooplankton densities,
mainly because of the contribution of the tolerant species Trichocerca pusilla, Anuraeopsis
fissaand and Brachionus [53]. At the same time, the large proliferation of these species
has limited the growth of other populations, reducing the overall species richness [54,55].
Additionally, higher conductivity and pH environments lead to lower zooplankton species
richness because most single-celled zooplankton are intolerant to high conductivity and pH
environments owing to osmotic regulation [56]. Notably, Shannon–Weiner diversity and
Pielou evenness indices were positively correlated with SD and negatively correlated with
AS. Higher SD has been shown to reduce the proliferation of dominant algae in eutrophic
environments and to promote the recovery of underwater aquatic plants [57], thereby
enhancing habitat heterogeneity, improving water quality, and ultimately contributing
to the diversification of zooplankton communities [58]. The introduction of photovoltaic
panels suppresses the excessive dominance of a few species [3], but reduces the overall
zooplankton diversity by limiting phytoplankton production [59].

Each zooplankton functional group responded differently to environmental factors.
RFs (Brachionus forficula, Brachionus angularis, etc.) and RCs (Polyarthra trigla) were positively
correlated with AC and DO, but negatively correlated with the AS. Agricultural activities
transport large nutrient loads and organic debris to wetlands, which gives RFs and RC, as
R-strategy animals, an advantage in their competition with other groups and thus allows
them to proliferate [60,61]. Floating photovoltaic panels effectively reduce the availability
of light and wind disturbances [62], thereby reducing the excessive advantage of RFs and
RCs. SCFs were mainly composed of nauplius. This positively correlated with AS, in
contrast to RFs and RCs. Interspecies competition is evident between small crustacean
and rotifer filter feeder groups for available resources and habitats [63]. SCFs have low
filter-feeding efficiency and reproduction rates and are at a disadvantage in competition
with RFs [64]. Floating photovoltaic panels reduce the competitive advantage of RFs and
promote their proliferation. So, we found higher levels of small crustacean filter density in
wetlands with floating photovoltaic panels. Eucylops serrulatus, Microcyclops varicans, and
Diaphanosoma sarsi were the dominant species of MCF, and were positively correlated with
conductivity because they have a wider tolerance to conductivity and require more calcium
during growth than other taxa [65,66].

Among the many types of environmental factors, human disturbance significantly
affects zooplankton communities in subsidence wetlands. Variation partitioning empha-
sized the significant role played by human disturbances inside and outside wetlands in
the formation of zooplankton community structures. Floating photovoltaic panels and
agricultural activities in wetlands directly or indirectly change the physical and chemical
environment of the water and affect the structure of the zooplankton community [3,67].
In constructed wetlands, such as coal mining subsidence wetlands, it is essential to study
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how zooplankton adapt to drastic environmental changes [23,68]. In addition to the above
environmental factors, other environmental factors can affect the zooplankton community
structure, such as water temperature and hydrological conditions. However, we did not
examine the relationships between these environmental factors and zooplankton in this
present study. The subsidence wetlands in the North China Plain are located at the same
latitude, and the daily fluctuations in water temperature during continuous sampling can-
not truly reflect the relationship between water temperature and zooplankton in different
wetlands. Therefore, it is necessary to understand how environmental factors such as water
temperature affect zooplankton communities, and put more effort into these aspects in
future research. Hence, it is essential to comprehend the impact of environmental factors,
such as water temperature, on zooplankton communities. We should dedicate further
research efforts to this in the future.

5. Conclusions

We found abundant zooplankton species in subsidence wetlands due to underground
coal mining in the North China Plain, and the rotifer filter feeders had the highest species
richness and density. High-nutrient wetlands had higher zooplankton densities because
of the proliferation of a few tolerant species, resulting in the lower species richness of
zooplankton communities. Additionally, higher transparency promoted the restoration
of aquatic vegetation and enhanced habitat heterogeneity, resulting in a higher level of
zooplankton diversity index. The introduction of photovoltaic panels effectively reduced
the amount of light and phytoplankton content, resulting in low overall zooplankton
diversity. Rotifer filter feeders, rotifers carnivora, and small crustacean filter feeders
responded in opposite ways to environmental factors because of interspecific competition.
Rotifer filter feeders and rotifers carnivora preferred habitats with high nutrition and rich
food resources, whereas floating photovoltaic panels reduced the competitive advantage
of the former and made small crustacean filter feeders the dominant species. The main
human disturbance in the area of floating photovoltaic panels significantly affected the
zooplankton community. We predict that zooplankton communities in subsidence wetlands
will gradually miniaturize due to the impacts of continued underground coal mining
and human interference. Our study provides significant insights into the mechanisms
governing the establishment and maintenance of zooplankton community biodiversity in
a dramatically changing environment and has substantial implications for the effective
management and conservation of constructed wetlands.
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