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Abstract: Strawberries are sensitive fruits that are afflicted by various pests and diseases. Therefore,
there is an intense use of agrochemicals and pesticides during production. Due to their sensitivity,
temperatures or humidity at extreme levels can cause various damages to the plantation and to the
quality of the fruit. To mitigate the problem, this study developed an edge technology capable of
handling the collection, analysis, prediction, and detection of heterogeneous data in strawberry farm-
ing. The proposed IoT platform integrates various monitoring services into one common platform
for digital farming. The system connects and manages Internet of Things (IoT) devices to analyze
environmental and crop information. In addition, a computer vision model using Yolo v5 architec-
ture searches for seven of the most common strawberry diseases in real time. This model supports
efficient disease detection with 92% accuracy. Moreover, the system supports LoRa communication
for transmitting data between the nodes at long distances. In addition, the IoT platform integrates
machine learning capabilities for capturing outliers in collected data, ensuring reliable information
for the user. All these technologies are unified to mitigate the disease problem and the environmental
damage on the plantation. The proposed system is verified through implementation and tested on a
strawberry farm, where the capabilities were analyzed and assessed.

Keywords: Internet of Things; computer vision; machine learning; LoRa

1. Introduction

Strawberries are popular fruits consumed in almost all parts of the globe, and this
expansion is a result of the fruit adaption capability that makes the cultivation possible
in multiple climates. The efforts of producers and scientists also collaborated to expand
strawberry production and commercialization, generating adaptive systems that allow the
cultivation of fruit to specific conditions of each region [1]. Furthermore, the production and
commercialization of strawberries are present in 76 countries, reaching a global production
of 7.7 million tons in 2013. This consumption has increased in the 21st century and has
been accompanied by technological innovations that allow the availability of strawberries
all year long, thus feeding a continuous market demand [2].

One challenge to be faced is producing the fruit in an economical and sustainable
way [1], because conventional cultivation methods apply a considerable quantity of pesti-
cides and agrochemicals to avoid losses by diseases and pests. Nearly half of the world
crops are lost due to pest infestation and diseases [3]. For example, Anthracnose (a disease
caused by Colletotrichum spp) is the most destructive disease found in Brazilian strawberry
farms [2]. As a result, farmers utilize two popular approaches to deal with these problems:
prevention and combat. Prevention is associated with good practices such as (i) acquiring
seedlings from trusted providers, (ii) controlling water quality, (iii) sanitation and care with
the tools of work, and (iv) use of personal equipment [4]. Equally important, combating
the disease or plague is crucial when diseases reach a critical state, which occurs when
prevention is insufficient or not correctly applied. The majority of combat processes use
chemical products to eliminate the disease [4]. However, these products may cause health
problems to the consumers and farmers. In addition, these diseases can develop into severe
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health problems such as auditing loss and congenital malformations through the change in
the mother–fetus binomial [5].

Correct disease identification is essential to applying correct products and thus the
reduction or elimination of the disease or pest in the plantation, sometimes requiring
specialized professionals or previous knowledge from the farmer. In addition, some
identification processes must take samples and send them to the laboratory for analysis,
consuming more time, leaving the farm unprotected, and allowing disease to spread across
other parts [6]. Alternatively, researchers have begun investigating new methods based on
Artificial Intelligence and mobile devices, seeking to develop accurate and reliable methods
for disease detection. Additionally, techniques that use image-based systems and Artificial
Intelligence have begun to be applied because of the considerable visual change caused by
most diseases on leaves, fruits, and plant stems.

Computer vision (CV) is a field of artificial intelligence aiming to offer machines
vision capabilities. The field of computer vision has presented solutions and applications
relevant to the agricultural area, offering autonomous and effective methods of cultivating
various different plants [7]. Researchers have widely studied disease control, and it is
possible to find in the literature several applications that use computer vision for pest and
disease detection [8]. Fruit quality control systems have also been gaining ground in the
AI field, causing several applications to be developed for the automatic quality control
of harvested fruits [9]. Most of the proposed agricultural applications available in the
literature that make use of vision systems often use neural networks to improve processes.
Neural network-based systems can detect and classify diseases in real time after a judicious
training process. Indeed, diverse diseases can rapidly be recognized, and the farmer can
take the correct procedures to mitigate or eliminate the problem early. Several researchers
have already developed and proposed solutions that make use of neural networks to detect
various diseases in different plants such as corn [10], tomato [11], and many others [12].

This paper proposes a unifying IoT platform with wireless sensor network (WSN),
computer vision (CV), machine learning (ML), and long-range (LoRa) communication
capabilities. In addition, the paper proposes a cheap and flexible way to implement the
proposed IoT platform for heterogeneous scenarios and farming processes. Moreover,
the platform makes available to the user all the captured metrics for manual analysis
and data-driven decisions. The data collected are stored on Cloud and Raspberry board,
consequently creating redundancy in all data and offering different approaches for farmers.
In summary, the project aims to be an all-in-one IoT platform to enable the intelligent
farm on strawberries cultivation. The organization of the article is as follows. Section 2
presents some background technologies used in platform construction. Section 3 presents
a literature review of related work. Section 4 gives a detailed view of the proposed IoT
platform. Finally, Section 5 presents the results obtained during the tests performed.

2. Background
2.1. Wireless Sensor Network

Wireless sensor networks (WSN) are defined as a wireless network of sensors con-
nected to devices such as microcontrollers for monitoring variables or phenomena, allowing
users to monitor various and heterogeneous subjects in real time. In addition, the wireless
exchange of data between devices also allows a broader range of implementation possibili-
ties since traditional methods that use wires for data exchange may not be applicable in
solutions that present long distances between devices. Furthermore, WSNs can address
multivariate and unpredictable ecosystems in the agricultural field by monitoring and
measuring various physical aspects and phenomena. Correspondingly, the volume of data
collected through remote sensing can provide a broad view of agricultural environments
and has several advantages through a non-invasive method of collecting information over
a large geographical area.

Most sensor network applications seek to develop an autonomous and remote monitor-
ing system of variables such as humidity, temperature, and soil moisture [13,14], and a sig-
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nificant part of the developed systems only read and show those variables on a screen [15].
Some researchers have made progress in this field, reaching more considerable distances
using IoT devices [16], automating the farm irrigation system [17], protecting silos from
rodents [18], and others. In addition, low-cost wireless sensor networks can be quite
vulnerable to external attacks and inconsistent data. Several researchers have developed
current solutions to address vulnerability to attack the network and the consistency and
quality of the collected data [19]. The proposed platform uses the WSN approach to collect
data in the plantation. In addition, the platform uses a machine learning model to detect
inconsistent data throughout the collected data and store and display all the collected
data. The communication between the devices is done through LoRa technology, ensuring
greater coverage and lower consumption in the transmission and reception of data.

2.2. Computer Vision

Over the last years, CV applications have gained space in several fields, with deep
learning being the most preeminent method. CV applications comprise collecting image
resources and identifying them through artificial intelligence techniques. Deep learning
allows computational models to learn and represent data, mimicking how the brain per-
ceives and understands information [20]. Deep learning extends classical ML by adding
complexity to the model thought layers and transforming the data using various func-
tions. For example, deep learning belongs to the ML field and is similar to artificial neural
networks. In contrast, deep learning has the “deeper” aspect of neural networks that
supply a hierarchical data characterization by various convolutions. An advantage of
deep learning is feature learning, which is the automatic feature extraction from raw data.
The disadvantage of the DL approach is the longer training time that it can consume and
the computational requirement.

Images are part of the data that can be used to infer the actual status of the farm.
Imaging analysis is an important area in the agricultural domain because data analysis
techniques are already being used for anomaly detection and classification/detection
purposes. Several approaches and computational applications for agriculture have already
been thought of and proposed [21,22], including the detection of diseases in plantations.
Disease identification tasks use Deep Neural Networks, and several applications have
been developed to improve the detection and correctness of the disease on the plantation.
In addition, thermal cameras to detect the humidity and prediction of disease on leaves [6],
classification of soil conditions [23], and automatic irrigation of the plantation [24] already
were proposed.

Robots use computer vision for disease detection and herbicide application. In this
approach, small autonomous robots that can monitor and apply herbicides autonomously
have already been proposed [25]. The researchers used Artificial Neural Networks for
real-time disease detection in the field. The robot uses a Raspberry Pi board for processing
at the edge and achieves an accuracy of 96.83%. Another proposed approach uses wireless
sensor networks and autonomous robots for disease monitoring. The robots spread across
the plantation and autonomously monitor and search for diseases in the plantation [26].
In the proposed solution, the researchers united the entire data collection process with
computer vision but in a mobile manner. Therefore, the sensors are not fixed in one place
for collection but move around the plantation, collecting and storing temperature, humidity,
and light data.

Approaches using Convolutional Neural Networks for leaf disease detection have
also been proposed. In [27], the authors presented a new way of using the transfer learning
techniques in neural networks to detect plant diseases. This detection happens through
characteristics of the diseases present on the leaf. Several architectures were used and
results were presented.
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2.3. Machine Learning

Artificial Intelligence has presented significant advances over the last few years in
the most diverse areas. ML is a sub-area of Artificial Intelligence that aims to develop
computational techniques related to learning, besides building systems and applications
capable of gaining knowledge autonomously. ML algorithms can be used to abstract the
understanding of underlying phenomena in the form of a model and predict future values
of a phenomenon using the above-generated model. In addition, ML models can detect
anomalous behavior exhibited by a phenomenon under observation.

Many papers proposed machine learning techniques on edge using IoT approaches.
Moreover, Isolation Forest models have been used to detect cyber attacks on embedded
devices. The ML technique analyzes and distinguishes between inliers and outliers values if
some man-in-the-middle attack changes the package [28]. Other authors proposed malware
detection using Isolation Forest Classification. The proposed system analyzes packets and
can detect anomalies in flow information [29]. In fact, most isolation forest applications in
IoT aim to capture attacks on devices used in applications and systems.

In the agriculture field, machine learning applications are used for disease prediction.
For example, an IoT system that used machine learning capabilities to detect diseases early
on in grapes farming is proposed in the literature. The system used the Markov model to
analyze and classify the input data based on the crop capture metrics, detecting the disease
early [30]. Researchers have also proposed new approaches to Isolation Forest models for
outlier detection. Implementing the fuzzy method along with Isolation Forest improves the
method’s accuracy and speed in its operation [31].

3. Literature Review

Applications of vision systems and Artificial Intelligence techniques for disease de-
tection have already been discussed, and several solutions have been proposed in the
literature. For instance, Antonio Oliveira-Jr et al. [32] proposed using a self-supervised
technique for leaf disease detection. The system can identify diseases in the leaves of plants
such as tomato, citrus, potato, and pear. Several other authors have proposed systems for
the diagnosis of specific diseases. Bo-Yuan Liu et al. [33] investigated and proposed using
Convolutional Neural Networks for diagnosing the severity of Alternaria Leaf. Alternaria
is a group of fungal diseases in plants, which have a variety of hosts and can infect diverse
plants. However, the authors focus on diagnosing the severity of the disease present on
the apple leaf. Other authors [34] have proposed improvements in disease detection in
apple crops using segmentation and disease detection. Segmentation is typically used to
locate objects and shapes in images and refers to the process of dividing a digital image
into multiple regions or objects. Convolutional Neural Networks have also been applied
for classifying diseases present in tomatoes and showed a promising result regarding the
performance of the model and the performance of the [35] algorithm.

Researchers have also proposed computer vision applications for Kiwi crop disease
recognition that use the YoloX architecture for detection and achieve satisfactory results
in their experiment [36]. However, one of the difficulties may be integrating several
technologies within a single application. Knowing this, researchers developed platforms
to unify heterogeneous technologies while promoting scalability, privacy, and reliability
in data and processes [37]. The possibility of integration between applications brings
the possibility of using data from sensors and images together, making better use of the
variables offered. Wireless sensor networks have already been proposed in the literature to
make planting and cultivation sustainable and, at the same time, more intelligent so that
the data collected in the field are used for improving planting and production [38]. Some
wireless sensor networks have a particular monitoring variable such as the one proposed
by Jaime Lloret et al. [39] with soil mixture monitoring as its central focus. In fact, the soil
and its characteristics have a vital role in the quality of the fruit and the health of plants,
and periodic maintenance should be done regarding nutrients and minerals.
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Applications of computer vision for disease detection, unified platforms, and wireless
sensor networks have already been extensively proposed in the literature, but merging
all of these into one more strawberry-specific application has not been found. Therefore,
an IoT platform using Yolo v5 architecture, WSN, and LoRa technology was developed to
detect strawberry diseases and remotely monitor ambient conditions using long-distance
and low-power communication technology.

4. Proposed IoT Plataform

This work developed an IoT platform that used Raspberry Pi 4B, Arduino, Sensors
(DHT11, hygrometer, and camera), and a LoRa module. Briefly, the platform that can be
found in the Github repository (Github of the proposed platform: https://github.com/
matteuscruz/Smart-Strawberry-Farming-using-Edge-Computing-and-IoT, accessed on 15
July 2022) uses sensors connected to Arduino for collecting local data and sending it to the
Collector node. All data exchanged locally between the devices uses LoRa communication
technology, while other services such as uploading and storing data in the cloud make
use of the 802.11n standard. Figure 1 illustrates the entire solution and their perspectives
layers. The entire platform has four layers, each corresponding to specific tasks. The L1
is composed of sensor nodes, and L2 is composed of collector nodes. Web services are
deployed in L3, and user applications are deployed in L4.

Figure 1. Overall IoT system architecture.

Layer one is responsible for collecting the local data, pre-processing, and transferring.
Processes in this layer are entirely local and cover all local data collection and data transfer.
The Arduino board is responsible for correctly reading and structuring the data collected by
the sensors, using the JavaScript Object Notation (JSON) format to send the data. Layer two
is responsible for all data processing, organization, storage, and uploading. The training
of the CV model is done via Google Colab. The Yolo v5 and Isolation Forest models is
stored and run locally on the Raspberry Pi board. As for the ML model, training is also
done off-board, using only the Scikit Learn library and the already trained model to run
the application. The data are first interpreted by the LoRa receiver, processed and stored
locally by the Raspberry Pi board, and sent to the cloud via the Wi-Fi connection.

Layer three is an intermediary between local and remote tasks running on the platform.
The alarm task is done locally in real time, but once activated, it requires cloud services to be
completed. In an analog way, online and offline dashboards were developed, thus allowing
more coverage of possible application scenarios. Finally, layer four offers users access to
applications and services offered by the platform. Therefore, the layer is responsible for

https://github.com/matteuscruz/Smart-Strawberry-Farming-using-Edge-Computing-and-IoT
https://github.com/matteuscruz/Smart-Strawberry-Farming-using-Edge-Computing-and-IoT
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providing the user with all access to the services provided within the IoT platform. This
layer provides Virtual Network Computing (VNC) access to the CV application, reading
and analysis of the collected data, and configuration of the collector node operation mode,
among other resources.

4.1. The IoT Platform

The platform uses two wireless technologies, one for device communication and
another to upload the data to the internet. Data exchange between the devices is performed
by LoRa, while the data upload to the internet is over Wi-Fi through the Message Queuing
Telemetry Transport (MQTT) protocol. LoRa can reach large distances with low energy
consumption but has a narrow channel for transferring data. Wi-Fi in the collector node is
necessary to upload data to the internet, providing a cloud dashboard and storage system
that can be accessed everywhere by the internet. Figure 2 illustrates each layer of the
entire architecture.

Figure 2. Layers of the IoT architecture.

The CV application runs at the collector node Raspberry Pi board, where a camera is
connected, and an internet connection is available. The camera is necessary for capturing
real-time images from strawberry plants, and an internet connection is used to guarantee
access to the real-time detection completed by the detection model. A more detailed vision
of the pipeline utilized on CV application is illustrated in Figure 3.

Figure 3. Computer vision system components.
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The camera is installed at the perception layer for capturing and sending real-time
images to the Raspberry Pi board. The detection layer contains a Yolo v5 model, an internet
connection, and a VNC server installed. The visualization layer offers remote access to Yolo
v5 output.

4.1.1. Detailed Overview of the Hardware

One aim during the development of the sensor nodes is to choose the hardware
components that make it easy to replicate the project. However, another important aim
of the project is to be suitable for heterogeneous farms. This way, the platform has been
built and elaborated with prototype boards (with easy development and use purposes) and
plug-and-play approach sensors.

The Raspberry Pi is the main component of the platform, which is responsible for
edge CV and machine learning tasks. The CV system is responsible for executing the
Yolo v5 locally and consequently making detections and classifications of the diseases.
Moreover, an ML model searches for outliers and errors in sensors’ local readings using an
Isolation Forest model. In addition, the board offers a Wi-Fi connection natively, acting as a
gateway for uploading the collected data from the sensor nodes sent by LoRa. A Universal
Serial Port (USB) High Definition (HD) camera is also present on the board, serving as an
input for the detection model. Capturing images for the neural network can be made by a
Camera Serial Interface (CSI) Raspberry Pi compatible camera or a USB webcam. A USB
HD camera is used in tests made on the field. Some components used on the collector node
are illustrated in Figure 4.

Figure 4. Collector node components.

The main components of the collector node hardware are:

• Raspberry Pi 4B: A only computer board with 4 GB of RAM, Broadcom BCM2711,
Quad-core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5 GHz. The board presents a native
Wi-Fi connection.

• Radio Frequency Wireless module LoRa 915 MHz [flip-flop]. A Lord module that
operates in the 850.125–930.125 MHz range, with reception sensibility of −147 dBm
and transfer range of 2.4–62.5 Kbps.

• HD USB Camera: An 1080p camera compatible with Windows and Linux systems,
USB 2.0.

The sensor node comprises an Arduino board, LoRa module, batteries, humidity,
and temperature sensors. Arduino handles the systematic data collection from the sensors
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and sends the data to the collector node via the LoRa link. The Arduino is chosen for four
reasons: (i) price, (ii) availability, (iii) community, and (iv) learn curve. The board has a
microcontroller that does low-level control of the GPIO (General Purpose Input Output)
included, facilitating the implementation of the project. In addition, the development and
deployment of the platform through Arduino facilitate the replication and implementation
of the platform. The board also had a strong community of developers across the web
that uses and supports diverse projects in fields such as automation, robotics, and the
Internet of Things. The construction of the sensor node follows an easy-to-implement
approach, presenting an easy and quick approach. The sensors also use the power supply
from the Arduino board pins, not requiring another power source. Figure 5 illustrates the
components of the sensor node, which is used for capturing local farm data. A detailed
description of each component is given below:

• Humidity and temperature sensor DHT11: It is a sensor of relative humidity and
environment temperature. The sensor can capture relative humidity in a range of 20
to 90%. DHT11 also captures temperature on 0 to 50 °C with a precision of ±5.0% UR
and ± 2.0 ºC with a time to respond equal to 2 s;

• Soil humidity sensor hygrometer: Soil humidity sensor is based on LM393 comparator
with easy installation, low price, and large availability;

Figure 5. Sensor node components.

All the components have great availability and a low price, making it easier to imple-
ment and develop the platform. A summary of the configuration of collector and sensor
nodes as well as the connection are illustrated in Figure 6.

4.1.2. Detailed Overview of Software

The aim is to implement an IoT platform with the respective resources: (i) local
data collection, storage, and visualization, (ii) reliable data approach, and (iii) fog disease
detection. The project must deliver the farm conditions in a friendly way, making it possible
for non-specialized users to comprehend the farm scenario. Because of that, a friendly and
customizing dashboard is used to show users the captured information.
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Figure 6. Software architecture.

The software behind data-collecting tasks is initialized in sensor node with Arduino
sensors readings, mediated by Raspberry Pi processing and upload, and finished in Cloud
Application Programming Interface (API). The Arduino scratch reads, interprets, and struc-
tures all the collected data in JSON format. After, the data are sent to the LoRa module
through the three and four Arduino General Purposes Input Outputs (GPIO) in string
format. The LoRa module sends the message to a predetermined address. On the other
side of the link, the collector node waits for some transmission. In order to organize all the
data, a specific period is reserved for each node. In this way, each node needs to wait for
her time to transmit. For energy-saving purposes, no activity is done by the microcontroller
during idle time. Figure 7 illustrates how the multiplexing schema runs to allow multiple
nodes to work in the same channel.

Figure 7. Multiplexing schema used with the IoT platform.

Data reaching the collector node are first sent to NodeRED flux through the MQTT
protocol. NodeRED is the main WSN software component in the collector node. NodeRED
is responsible for machine learning functions, data structuring, and service connection.
In order to structure the data for machine learning digestion, a JSON file is created with
temperature and humidity data on the NodeRED platform. After the JSON data are injected
into ML input and classified, the output is sent offline and to the Cloud database.

InfluxDB is the database service used for storing all the captured data and classifica-
tions completed by the IoT platform [40]. The database gives the user the option of storing
the data in the Cloud or locally. The primary motivation for using the platform is in the time
series format present in almost every task due to their natural temporal ordering, including
temperature and humidity. Other reasons are its performance on the Raspberry Pi, offline
availability and Cloud options for storing data, and additional integration with NodeRED
and Grafana. The time-series approach is essential to capture environment variables from
diverse plantation areas, where each data snapshot represents a unique farming condition.
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The sensor node collects the information from the sensor, sends it to the collector node,
retrieves a timestamp, and stores the timestamped data on a local and Cloud database.

The InfluxDB database is connected to Grafana through an API, presenting the col-
lected data in a customized, clean, and concise dashboard. Grafana is an open-source
analytic and monitoring solution for the database [41], and it is chosen because of the
stronger customization possibilities for the dashboard, clear dashboard visuals, and inte-
gration with InfluxDB. In addition, the service offers numerous tools to deeply analyze
the data such as tendency, median, mean, and standard deviation. Furthermore, the nu-
merous types of graphics offered by the platform to plot the captured data are essential to
extracting different collected metrics, such as temperature and humidity tendency, over the
month. In addition, all the machine learning outliers detections are plotted in a bar format,
representing how many wrong sensor readings were captured through time.

Access to the dashboard can be made from a smartphone, tablet, and laptop with
internet access. All devices offer access to the same dashboard plantation metrics in different
formats. The dashboard follows a web-based approach, not requiring the installation of
any mobile application to access all the information collected on the farm. On the other
hand, a user and password credential is necessary to access and modify the dashboard and
database. In order to better present the proposed dashboard for mobile devices, Figure 8
illustrates the dashboard view from smartphone and laptop.

Figure 8. Grafana dashboard interface captured from the smartphone and laptop.

4.2. Computer Vision System for Disease Detection

This section describes the CV system deployed on the collector node. In addition, we
explain how the model is generated, training and test phases, and parameter configurations.
The CV system can be divided into three central layers: (i) perception and image capturing,
(ii) model ingestion and detection, and (iii) user access to CV detection. The first two layers
are processed locally in the collector node, and the third can be processed remotely or
locally by the user. Furthermore, the development of the CV application for the platform
has three main objectives: (i) a way to implement and use a high-accuracy CV model in
remote locations with no internet connection, (ii) real-time strawberry diseases detection,
and (iii) identify seven of the most common diseases in strawberry farming. The final
deployed model can detect and classify seven of the most common diseases in strawberries.
Figure 9 [42] illustrates in more detail the presence of these diseases in strawberries. These
diseases are described as follows:

• Angular Leaf Spot: Known as “bacterial stain”, the disease is caused by Xanthomonas
fragariae bacteria. The name is given by the appearance of light green, increasing their
size later until they become visible on the sheet.

• Anthracnose Fruit Rot: It is a rot caused by agents such as Colletotrichum fragariae,
C. acutatum, and C. gloeoporioides. The rot is generated when the plant is submitted to
high temperature and humidity conditions.
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• Blossom Blight: Disease symptoms began with gray sporulation of the fungus on
the stigmas and anthers of strawberry flowers, followed by necrosis and complete
flower abortion.

• Grey Mold: Caused by the Botrytis cinerea Pers. F. fungi or simply Botrytis. The name
Gray Mold is given to the appearance of gray color mold formed in the leaf and calyx,
which may affect the fruit.

• Leaf Spot: Known as “Mycospherella spot”, the disease is caused by Mycosphaerella
fragariae fungi, and it is one of the most common diseases on the strawberry. The fungi
attack mainly the leaflets, presenting a purple color that posterior develops into a
brown color.

• Powdery Mildew Leaf: Caused by the Sphaerotheca macularis fungi. The powdery
mildew is caused when the plantation is submitted to a dry and hot climate. Manifes-
tation is given by the apparition of whitish spots on the inferior face of the leaf. It also
affects the fruits and can be observed by the fruit’s discoloration and spots.

• Powdery Mildew Fruit: It is caused by Sphaerotheca macularis fungi, affects the fruits,
and can be observed by the fruit’s discoloration and spots.

Figure 9. Samples of the diseases that the model is able to detect [42].

In order to reach all these objectives, some requirements must be met. First, a lightweight
CV infrastructure must be used, ensuring good performance in embedded systems with low
computer power hardware. To meet this requirement, Yolo v5 architecture is deployed on
the board. Yolo v5 is part of object detection architectures, pre-trained on the COCO dataset,
and represents Ultralytics open-source research into future vision AI methods [43]. A good
dataset, parameter configuration, and training are necessary to guarantee a high-accuracy
model. The dataset chosen is available on the Kaggle community website and is named
the “Strawberry Disease Detection Dataset”. The dataset consists of 2500 images with the
corresponding segmentation annotation files for different types of strawberry diseases.



Sensors 2022, 22, 5866 12 of 33

4.2.1. Yolo v5 Architecture

Released on 18 May 2020, Yolo (acronym to You only look once) is one of the most
famous object detection algorithms developed. The algorithm uses an one-stage object
detection method [43]. In addition, Yolo v5 is the last architecture between various releases
by Ultralytics. Equally important, this version presents a better accuracy in detection
and a lower time to make inferences in predictions. Then, the main aim of the network
is the possibility of running on less powerful devices such as Raspberry Pi boards and
smartphones. In addition, there are four versions of the Yolo v5 network: (i) Yolo v5s,
(ii) Yolo v5m, (iii) Yolo v5l, and (iv) Yolo v5x. Each version has its own characteristics, Yolo
v5s owns among the other versions the best speed to calculus but has the lowest average
precision among them. In brief, the version chosen for deployment in our system is the
Yolo v5s, because this version presents models that are 75% smaller than the others, faster
recognition times, and better accuracy.

The Yolo v5 architecture can be divided into three main parts: (i) backbone, (ii) neck,
and (iii) output. The backbone is composed of a Convolutional Neural Network, which
is responsible for capturing the characteristics of the image. The images captured by the
camera go first into the focus structure, which is on the network backbone. The backbone
first layer has the function of reducing calculations made by the model, speeding up the
model training process. The image with resolutions equal to 640 × 640 × 3 will pass
through a slicing operation that will reduce the resolution down to 320 × 320 × 12. Finally,
via a normalization batch layer and the Hardwish function, the results are presented on the
last layer.

4.2.2. Dataset and Training Phases

For training purposes, a dataset with 2500 images is used to train and test the detection
model proposed. The dataset founded on the Kaggle community website is created, labeled,
and offered by members of the AI lab, Computer Science and Engineering department,
JBNU [42] and has images of strawberries with seven major and most common diseases:
Angular Leaf Spot, Anthracnose Fruit Rot, Blossom Blight, Grey Mold, Leaf Spot, Powdery
Mildew Fruit, and Powdery Mildew Leaf. The 2500 images are split into 80% for training
and 20% for the testing phase.

A significant advantage of using labeled datasets is the rapid training and implemen-
tation of the model in the field. Consequently, capturing and manually labeling all the
images comes at no cost. These tasks can also be more time consuming on all the pipelines
to develop an object detection model. Websites such as Kaggle provide a large collection
of datasets of images and raw data that can leverage artificial intelligence applications.
In addition, several professionals and universities contribute to the community, making
several datasets available to the public. Intending to demonstrate the developers label-
ing method for dataset development, Figure 10 shows the ground truth training data for
training purposes.

Raspberry Pi 4B boards present limited hardware capacities for training purposes.
Therefore, a computer with a powerful Graphic Process Unit (GPU) is required to expe-
dite the training phase. Training time and success are intimately correlated to GPU and
hardware used during the training phase [44]. Because of that, a cloud tool developed by
Google named ’Google Colab’ is used. The service offers access to high computational
power servers with GPU to write and run Python codes through notebooks for free.
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Figure 10. Ground truth data used to train the model.

To train an accurate object detection model, hyperparameters must be configured and
training well executed. Some parameters must be set to configure the training process
duration and execution. Epochs and batch size are parameters that configure the extension
of training. Batch size defines the number of samples to work before the model parameters
tuning. Epochs are related to controlling the number of complete passes of the model
through the training dataset. In addition, Yolo v5 offers diverse weight sizes that affect
the performance and accuracy of the model. Epochs are fixed at 100 and the batch size is
fixed at 16 for the proposed Yolo v5 model. This is because Google Colab limits the use
of the server, and this configuration requires less than three hours to complete. Moreover,
the weight size of the Yolo v5 model is iteratively changed during training. Table 1 [43]
presents the weights size available for model training. Briefly, Yolo v5n and Yolo v5s have
speed but low accuracy. In contrast, Yolo v5m, v5l, and v5x have less speed but more
accuracy than others.
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Table 1. Yolo v5 weights details [43].

Weight Size Weight Name mAP Speed (ms) FLOPS (MB)

Nano YOLOv5n 28.4 6.3 4

Small YOLOv5s 37.2 6.4 14

Medium YOLOv5m 45.2 8.2 41

Large YOLOv5l 48.8 10.1 89

XLarge YOLOv5x 50.7 12.1 166

4.3. Machine Learning

An ML application is developed to detect errors in sensor readings. The application
uses the Isolation Forest Classifier algorithm, which is a tree-based anomaly detection
model. The algorithm considers anomalies as data that differ from typical characteris-
tics [45]. Standard characteristics are those normally exhaled within a process, and outliers
are unexpected data. Specific regions exhibit well-known temperature profiles, so outliers
would be any outliers presented by the sensor node. These values are usually the result of
sensor, reading, or connection failure.

The reasons behind the choice of the algorithm are the small memory requirement and
low linear time complexity [45]. All this assures that the model will be performative in real-
time data analysis on a Raspberry Pi 4B board. The model installed in NodeRED analyzes
real-time data. That function provides more reliable data for user information about condi-
tions to which strawberries are subjected. In addition, this approach considers that sensors
readings can fail at any time, putting at risk all the IoT platform data-driven approaches.

Implementation and Working Pipeline

Isolation Forests is an anomaly detection model that uses a dataset where the model
target contains few samples among so many standard data. The few samples are denomi-
nated outliers. The goal of the model is to build trees to isolate these anomalies. Briefly,
the Isolation Forest is a set of Isolation Trees, similar to that seen in Random Forest [45].

Isolation Forests is an anomaly detection model that makes use of a dataset where
the target of the model contains few samples among so much normal data. The goal
of the model is to build trees to isolate these anomalies. The model is part of the Scikit
Learn library [46] and deployed into the NodeRED dashboard tool. The tool allows
the development of an ML flow for real-time ingesting sensor data and verifying outlier
presence. The development and training phases are done locally using Anaconda Navigator
and Python. First, a dataset is defined for training purposes. The dataset consists of
temperature and humidity readings captured in the southwest region of Brazil. The use
of correct data for training is essential to ensure that the model captures the correct data
characteristics. Any data that do not have standard characteristics can be classified as an
outlier. The model parameters are listed below:

• Bootstrap: False;
• Contamination: Auto;
• Maximum Features: 1.0;
• Maximum Samples: 100;
• Number of Estimators: 100;
• Number of Jobs: None;
• Verbose: 0.

The input of the ML model is provided by sensor nodes responsible for collecting
and structuring the captured data. All the data structured in JSON format are injected
into the model input in real time, making the system automatically analyze and search for
temperature and humidity changes. The model output is sent to the InfluxDB cloud and
offline database. The Grafana API obtains the data in real time and plots the information
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in the dashboard into a bar graph for the user. All outliers detected can be consulted in
a database or dashboard. Additionally, problems related to sensors can be more easily
detected with applications with dozens of sensor nodes.

4.4. Encapsulation

Agriculture applications demand a hard case to protect the hardware components
from climate change. At the same time, periodic maintenance needs to be the minimum
possible for two reasons. First, the devices can spread a considerable distance between them.
Second, many devices can make it difficult or impossible to repair regularly. Because the
platform is being developed for operation in outdoor plantations and is subject to extreme
environments and situations, encapsulation is more necessary so that every electronic
part of the project is fully protected from (i) dust, (ii) moisture, (iii) friction, and (iv) rain.
Therefore, one case is developed to protect the platform and another is developed to protect
the sensor nodes.

Some features were taken into account. First, the protection case needs to accommodate
all the electronics and batteries. Second, the protection case needs to accommodate the
antenna of the LoRa module and the sensors on the outside, because electronics heat can
influence the environment’s measured metrics. In addition, the radio signal of LoRa can
be mitigated by protection. Another essential feature of protection case development is
the material that is constructed. Furthermore, another important aspect is the construction
material. Large deploying can add some environmental impacts because of the addition of
plastic, metal, and other materials used on the project. Consequently, the case is made of
polylactic acid (PLA) to mitigate the environmental impacts of large-scale deployments.

PLA is the second most-produced biodegradable plastic. PLA is an excellent option
for the chemical versatility that presents good form stability. The material has good stability
through temperature change, presenting deformation only above 80 Celsius degree [47],
making it suitable for the application. The following phase is to bring the design to the
physical world. For this, 3D printing is used. In brief, 3D printing is the process of joining
materials to make objects layer upon layer from 3D model data. At its beginning in the 1980s,
the first applications were prototyping, but in the following decades, the manufacturing
technologies and materials transformed, and new fields of application appeared [48].
The wrapper proposed is developed through Fusion 360 software, where all the necessary
adjustments are made.

A design model needs to be created to print a case for the devices physically, and Au-
todesk Fusion 360 is the software used to create the design file for the protecting case.
The software offers quick and easy modeling tools, enabling a fast prototyping schema.
Two design models are created on the software, one for the collector and another for the sen-
sor node. A custom case allows the sensors, LoRa antenna, and camera devices to remain
in a convenient location while the rest of the circuitry remains protected. The 3D printing
used is the Creality Ender Pro, and the slicer utilized is the Ultimaker Cura, the software
supports many formats, but the STL format is the most common, widespread, and used
by the maker community. Consequently, this is the format utilized for the proposed case.
Figure 11 illustrates which final design was chosen for the development of the cases.

After developing the 3D model file, the 3D printer must be configured to create a
solid and hard case for deployment. Cura software offers a lot of configuration tools for
printing objects. At the same time, it offers a basic configuration system for non-expert
users. The Creality Ender 3 Pro takes 13:24 h to print the body and more than 5:46 h to
print the cover for each sensor node. In addition, the collector node takes 13:45 h to print
the body and the same time for the cover because the cover design is the same for both.
In addition, two sensor nodes and one collection node case protection are created, resulting
in 57:51 h to print all. The final result can be seen in Figure 12.
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Figure 11. Sensor node and collector node digital design.

Figure 12. Sensor and collector nodes printed.

4.5. Cost Analysis

The proposed IoT platform uses several hardware and software components to provide
all the necessary functionality. The hardware components present the highest cost for
developing the sensor and collector nodes, since most of the software is or presents free
options for their usage. Thus, the total cost to develop the platform was calculated, being all
products quoted from reliable suppliers and recommended by the brands. Table 2 presents
the items, their values, and the quantities.

Table 2. List of components and items needed for the development of the platform.

Hardware Quantity Price

Raspberry Pi 4B 1 $107.00

Micro SD card 16 GB 1 $18.00

Pi Camera 1 $25.00

Batteries 3 $15.00

Arduino Board 2 $28.00

DHT11 2 $3.00

LoRa Module 3 $25.00

PLA Filament 1 $20.00

$241.00
Values from Digikey.com. Access date: 25 July 2022.

The construction of the collector node is the most expensive process in platform
development. However, the development of only one collector node may be sufficient to

Digikey.com
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support multiple sensor nodes deployed over the farm. The lower cost of sensor nodes
enables greater application scalability. This way, the farmer can affordably and efficiently
monitor several processes and locations simultaneously. Other costs in developing the
platform are related to the software used. However, a large part of the software offers
no additional cost to the farmer or offers free option plans. Preferring not to incur these
costs, the farmer still has the option of not using any of the tools offered. Most of the
tools presented operate independently and do not require the use of the tools together to
execute their functionalities. The only set of software that must be implemented together
is the InfluxDB database and the Grafana dashboard if the user chooses to present the
information in Grafana. This is due to Grafana API capturing the data directly from the
InfluxDB database for display. Table 3 summarizes all the software used.

Table 3. List of software and tools needed to run the functionalities in the platform.

Software Price

Raspbian OS Free

NodeRED Free

Yolo v5 Free

Python Free

Grafana Free with Limitations

InfluxDB Free with limitations

Autodesk Fusion 360 $60 month

Ultimaker Cura Free

Using LoRa technology for communication between the devices lowers the final cost
of the platform since no bandwidth licensing is required. Several other tools can be used to
reduce the cost, but none of them were considered in the proposed development. In sum-
mary, all logistical costs, app development, installation, and maintenance are disregarded
in the first moment. The platform offers a considerable cost and can be used by small and
large producers.

5. Results
5.1. Case of Study

This subsection is dedicated exclusively to the field testing of the IoT platform, pre-
senting materials and methods used for implementation and testing. The validation was
performed on a strawberry farm located in a rural area. The entire plantation is approx-
imately 18,896 m² in size, and an area view of the entire plantation area can be seen in
Figure 13. The plantation has a total of 104.000 San Andreas species planted. The cultivation
began on 14 March 2022 because San Andreas strawberry is a moderate day-neutral with a
production pattern. Two sensor nodes and a collector node are deployed to cover the area.
The sensors nodes collect the local temperature and humidity condition and send thought
LoRa communication to the collector node. The collector node uploads all the data to the
internet, presenting the information on a dashboard, analyzing the climate condition of the
plant, and storing all the data on an online database.

First, the location of the sensor nodes needs to be chosen. The positioning schema of
the sensor nodes also needs to be sufficient to cover the most critical parts of the plantation.
The strawberry farm chosen has a small area, and because of that, two sensor nodes are
sufficient to validate the IoT platform. Second, the variables collected need to be relevant
to the plantation health and quality. As well as many other plants, strawberries are fragile
fruits that take damage by some heat and humidity conditions. Because of that, the DHT11
and hygrometer sensor are chosen to validate the Machine Learning algorithms.
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Figure 13. Total area of the plantation.

To finish, the real-time capture and detection performed by the CV application need
to be validated. The CV application can detect seven disease types on the strawberry.
However, finding these diseases on a unique farm is challenging. In order to find strawberry
specimens that contain the diseases present in the dataset, a small plantation area was
selected and continuously presented in real-time to the collector node.

The test roadmap for the IoT platform is written as follows: (I) implementation
of the sensor nodes, (II) implementation of the collector node, (III) verification of the
connection between the nodes, (IV) collection and access to the collected data, (V) storage
and visualization of the data, and (VI) validation of the computer vision model in the field.
Sensor nodes are deployed on the two middle points related to the center and borders of
the plantation. This approach maximizes the coverage area through three points and good
platform deployment. Nevertheless, the sensor nodes can be dispatched to the more critical
areas of the plantation, covering the most exciting points.

LoRa communication is used because the local does not offer Wi-Fi connectivity.
The online dashboard and database also cannot be used by a lack of internet connection.
In addition, offline dashboards and databases are used as an alternative. Because of that,
all the data are collected but available only locally. No wireless LAN was created for the
application tests, so a notebook is used to check the collected data and the detections
performed. The goal of the real-time test is to validate the model ability to perform
processing entirely at the edge, enabling its implementation in smart greenhouses or
autonomous rovers. Figure 14 shows the connection schema applier for test purposes and
Figure 15 illustrates a possible application of rover.

Figure 14. Platform connection schema used in strawberry farm.



Sensors 2022, 22, 5866 19 of 33

Figure 15. Possible application of the collector node.

Since the application will be executed at the edge through the collector node, a rover
can be used for autonomous monitoring through the plantation. In addition, the collector
node can also be used in vertical plantations to monitor and detect disease. Otherwise,
the platform is useful when the farm does not count on the internet. This means that all
the data are centralized on the collector node and available locally only. This is necessary
to serve a larger number of users since several farms are located distant from cities and
connections. In addition, this makes it possible for the platform to be implemented in more
scenarios. Figure 16 shows the sensor node implanted on the plantation.

Figure 16. (a) Two sensor nodes and the computer used to present the dashboard, (b) sensor node
positioned, and (c) sensor node deployed on the plantation.

The sensor nodes were the first to be deployed along the plantation. The deploy-
ment locations were strategically selected considering the maximum distance between the
collector node and the sensor nodes. The local dashboard displayed on the computer is
responsible for clearly presenting all the data collected by the sensor nodes implemented
on the plantation. The presented data are also saved in a local database to guarantee
future queries by the user. All data sent by the sensor nodes are centralized in the collector
node in order to maintain a greater organization of the captured data for presentation and
storage. To organize the data, a Python script always keeps the collector node waiting for
new data sent by the sensor nodes by LoRa connection. After, the data are forwarded to
local NodeRED. The offline dashboard is created on NodeRED and displays all the metrics
captured (see Figure 17). The sensor nodes names can be personalized on the platform,
but test numbers are designed for the name.
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Figure 17. Offline dashboard applied on NodeRed.

The CV application is tested with a quick walk with the collector node. An implemen-
tation in a real scenario analyzes the deep learning algorithm detecting capabilities in real
time. The test consists of a search for some signal of disease in strawberries and pointing
the camera at the leaf. The learning model can detect the diseases present on the plantation.
In the field test, the detected diseases are Angular Leaf Spot and Leaf Spot. Figure 18 shows
the outputs presented by the model:

Figure 18. (a) Local detection of Angular Leaf Spot and Leaf Spot diseases, (b) multiple Leaf Spot
diseases, and (c) single Leaf Spot.
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Detection is completed in real time through a deep learning model installed on Rasp-
berry Pi. A notebook is connected through an Ethernet cable to the Pi board to see the
detections. In real platform implementations, the pi screen needs to be streamed to a
smartphone or laptop screen through a VNC connection over the internet.

Computer Vision

The performance of the proposed model is evaluated through metrics such as (i) mean
average precision, (ii) precision, (iii) recall, (iv) accuracy, and (v) box loss. A detailed
description and the equation of all these metrics are shown above:

• Mean average precision (mAP): The metric presents the mean of the average precision
(AP), in which AP is represented by the area below the curve.

• Precision: Relation of all the classifications by the model to the correct ones. In general,
it is used in situations where false positives have more weight than false negatives;

Precision =
TP

TP + FP
(1)

• Recall: Relation between all the true positives by the sum of true positive and false
negative. It is like precision but used in situations where the false negatives are
considered more harmful than the false positives.

Recall =
TP

TP + FN
(2)

• Accuracy: Tells about the general performance of the model, being the relation of the
correct by all the classifications performed by the model. Accuracy is a good general
sign of the performance of the model.

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

• Box loss: Measures how close the bounding box is from the true box.

First, metrics regarding the model performance during the training are captured
through a training dataset. A training dataset is a set of data used during model learning,
making parameter adjustments such as weights to ensure better detection and classification
capabilities. The metrics presented above are used during the training phase to follow the
performance of the model during each epoch. Each epoch represents one time that the
model ran through all the images. Moreover, all the metrics are applied in different weight
sizes to search for a better and more performative model. In addition, all the tests between
the different weight sizes are summed up in Table 4.

Table 4. Results obtained from the different weight sizes.

Weight
Size mAP 0.5 mAP

0.5:0.95 Precision Accuracy Recall Box Loss

Yolo v5s 0.9465 0.687 0.8729 0.9074 0.9123 0.00293
Yolo v5m 0.9642 0.768 0.909 0.9021 0.9286 0.00196
Yolo v5l 0.967 0.766 0.916 0.937 0.9295 0.001896
Yolo v5x 0.975 0.771 0.920 0.954 0.9524 0.001696

In brief, all the models performed in a similar way under the same hyper-parameters,
and some detections made on the training dataset can be seen in Figure 19.
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Figure 19. Detected diseases with Yolo v5 model.

However, models with large weights consume more space on the SD card and have
little performance difference to the final result. Because of that, the Yolo v5s is the chosen
model for the task of disease detection on a strawberry farm. The model also showed
promising results on the test dataset. A test dataset is a set of data independent of the
training dataset and is an excellent way to test the model detection capability in different
scenarios and situations. The performance presented by the model on the test set shows
satisfactory results with a mean Average Precision (0.5) of 78.7%, Accuracy of 92.8%, Recall
of 90.0%, and an F1-Score of 76% as shown in Figure 20. The confusion matrix presented in
Figure 21 also presents satisfactory results of the model, presenting a good ability to detect
the model in six diseases. However, the model presents some problems recognizing the
Angular Leafspot disease, scoring only 0.23 in the obtained matrix.
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Figure 20. Model performance on the test set.

Figure 21. Confusion matrix obtained on the test dataset.
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Several analyses have been performed in order to find the reason behind the perfor-
mance of the Angular Leafspot class concerning the other classes. The first test consists
of applying the Gradient-weighted Class Activation Mapping (GRAD-Cam) technique to
the model to see which features were considered for the final classification. In summary,
GRAD-Cam is a technique that produces visual explanations of decisions in CNN-weighted
models. Through this technique, it is possible to observe through a heat map which regions
in the image are the most important for the model classification and prediction processes.
However, during testing, the model could not accurately identify the disease’s main fea-
tures (the spots created on the leaves) in all detections. Figure 22 shows an example of
which features were considered relevant in classifying the Angular Leafspot disease.

Figure 22. Grad-CAM test on Angular Leafspot sample.

In further tests using GRAD-Cam on the other classes, it is possible to see the model’s
accuracy in determining which regions present relevant characteristics of each disease.
For example, in the Powdery Mildew Fruit disease, the model could perceive which visual
changes presented in the fruit were the results of the disease. Figure 23 presents an example
of GRAD-Cam applied to the Powdery Mildew Fruit class.

Figure 23. Grad-CAM test on Powdery Mildew Fruit sample.

The dataset was also analyzed, as unbalanced examples between classes in a dataset
can cause different performance between classes. The first step quantified how many
samples (images) of each class were provided to the model during the training stage.
A summary of the information found can be seen in Table 5. Although having an unbal-
anced dataset, Angular Leafspot has a considerable number of images when compared with
the other classes. Thus, tests with a larger dataset and new images should be performed to
prove their impact on the model results.

Table 5. Training Sample Size for Different Classes.

Class Training Sample Size

Angular Leafspot 245
Anthracnose Fruit Rot 52

Blossom Blight 117
Gray Mold 255
Leaf Spot 382

Powdery Mildew Fruit 80
Powdery Mildew Leaf 318
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Since this is an application developed to be run in the field, the brightness variation
in the captured images can change the detections performed by the application. With this
in mind, a test was made to present several images to the model with different bright-
ness profiles to test the model performance in several brightness variations. For that,
a Python algorithm that iteratively changes all image brightness in the test dataset was
used. An illustration of the final images presented by the model can be seen in Figure 24.

Figure 24. Brightness adjustments performed on the dataset.

The model achieved considerable performance even when darkness was 40%, while
difficulties appear when the model is exposed to images or scenes with low lighting, where
the disease detection is impaired. Table 6 shows what precision, accuracy, and recall were
obtained from the model under different brightness conditions, and Figure 25 shows a
sample of the detections performed by the model in the different dark conditions.

Table 6. Model performance in different brightness profiles.

Darkness
Level mAP 0.5 mAP 0.5:0.95 Precision Accuracy Recall

0% 0.9369 0.675 0.869 0.9112 0.951
20% 0.9324 0.762 0.919 0.9074 0.9178
40% 0.8915 0.727 0.872 0.8621 0.8562
60% 0.6256 0.623 0.697 0.6517 0.6515
80% 0.2582 0.202 0.351 0.3954 0.3174

Figure 25. Detections performed in different brightness profiles.

A new dataset with images with different brightness profiles has been developed to
solve the model errors in different lighting conditions. This new dataset was used to retrain
the model using the parameters described in the previous steps but now with four times
more images. In the end, the model was presented with images with different lighting
configurations and could detect the diseases in them accurately. Figure 26 demonstrates
the ability of the model to detect and classify diseases in different lighting profiles. An LED
next to the collector node pointing directly at the plant may also be also enough to avoid
problems with illumination.
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Figure 26. Successful detections performed in different brightness profiles.

Finally, another field test was performed at different times during the day to evaluate
the model ability to detect and classify different diseases in different illuminations. Four
schedules were defined for capturing and presenting images for the proposed model.
The chosen times should be aligned with the test proposal and the conditions offered by
local farmers. So, the test times were defined as 7:00 a.m., 9:00 a.m., 2:00 p.m., and 5:00 p.m.
At 7:00 a.m., the light conditions are more sparse, offering a higher challenge for the model
to discern the various diseases that can be detected. At 9:00 a.m., local light conditions
are more abundant, and the model appears to have higher confidence in its detections.
At the same time, at 2:00 p.m., the environment is so bright that model performance is
impaired. Finally, at 5:00 p.m., the color change due to sunset significantly impacts model
performance, causing some specimens with diseases to go unnoticed by the detector. Some
detections made by the model can be seen in Figure 27.

Figure 27. Detections performed by the model on images captured in the field.
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Benchmarking of the proposed model performance on edge has also been completed
and the metrics captured. The model runs on the edge through a Raspberry Pi 4B board
with a Broadcom 2711 Quad-core Cortex-A72 64-bit SoC @ 1.5 GHz and 4 GB of RAM. Both
processor and RAM were monitored at 1-minute intervals for a total of 1 h, resulting in
60 samples of each. The temperature displayed by the board, frame rate and processing
time displayed by the model, and total processor usage by the board were also observed.
However, Equation (4) was considered for calculating the frame rate presented by the model.
Figure 28 displays the behavior of the board running the detection model in real time.

Frame Rate =
1

Processing Time
(4)

Figure 28. Benchmarking metrics captured during the tests performed.

Some improvements must be made in the collected node, the first being the addition
of some active heat dissipation method due to the high temperatures reached during
the execution of the computer vision application. The temperature achieved of 85 °C is
critical for the Raspberry Pi health if it is maintained for long periods. Another point to be
considered is the significant processing time presented by the model, which on average
is 2 s. Thus, the model improvements are necessary to reduce its need for computational
power and thus increase its performance.

Briefly, the model achieved an accuracy of 92% on the training set and 92.8% on the
training dataset. The model also maintained good quality in its detections when used in
real time in crop applications and made accurate detections even in different illuminations.

5.2. Machine Learning

The dataset presented to the model is split into 80% for training and 20% for testing.
The outliers were generated through a uniform distribution function in Python language.
The function generates values between 0 and 50 for temperature and values between 0
and 100 for humidity variable. After, these values are appended to the original dataset.
The model obtained an accuracy of 93.562% on the test set in the tests performed. Plots
illustrating the temperature, humidity observations, and the outliers generated are shown
in Figures 29 and 30.
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Figure 29. Temperature observations used to train and test the Isolation Forest model.

Figure 30. Humidity observations used to train and test the Isolation Forest model.

In order to better understand the decision criteria used by the model to detect outliers,
the Shapley Additive exPlanations (SHAP) framework presented by Lundberg is used,
which is based on Shapley values and built on concepts of game theory. The framework
aims to use Shapley values to describe how much each predictor contributes to the model
final result. The framework makes use of Equation (5) to obtain Shapley values [49].
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φi = ∑
S⊆F\{i}

|S|!(|F| − |S| − 1)!
|F|! [ fS∪{i}(xSU{i})− fS(xs)] (5)

The model has only two alternatives as output, inlier or outlier. These values are
calculated from the Shapley values obtained where the marginal contribution of each
observation is i. If a given observation is detected as an outlier, the model output will be
‘−1’, while observations detected as inliers will be ‘1’.

The SHAP framework offers several tools for generating interpretable graphs. These
graphs show what impact a given variable had on the final model ranking based on
the model input observation. This impact, in turn, considers the Shapley value for rele-
vance within the ranking. Figure 31 illustrates eight classifications made on samples from
the dataset.

Figure 31. Classifications and their respective impact in the model output.

From this sample, it is possible to observe the importance that each value and variable
had within the final classification made by the model. For example, given the training
sample presented to the model during training, temperature values much higher than
expected can be classified as outliers. Similarly, given the temperature sample presented to
the model during the training stage, values much lower than expected may be detected and
classified as outliers. The SHAP framework offers several tools for generating interpretable
graphs. These graphs show what impact a given variable had on the final model ranking
based on the model input observation. This impact, in turn, considers the Shapley value
for relevance within the ranking. In summary, the implemented model can detect outliers
presented and distinguish between the actual temperature and humidity values and not.
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6. Conclusions

This article proposes an intelligent Internet of Things (IoT) platform. In addition,
the platform was validated through practical application on a strawberry plantation.
The platform offers several opportunities for the implementation of a digital farm. In ad-
dition, CV, ML, and WSN technologies are included on the IoT platform. The proposed
platform has a focus and is validated on strawberry farming. In contrast, flexible architec-
ture and construction offer other opportunities for modifications and implementations in
other plants. The CV model can be retrained to detect other diseases related to other plants.
The ML model can also be retrained to fund outliers in different temperature and humidity
scenarios. All WSN architecture can be reused for other farming processes because the data
collection process is not linked to the fruit produced.

The sensor nodes collect essential metrics that influence plant health, such as tem-
perature. The CV model is tested and detects diseases on edge, not requiring an internet
connection. However, at sunset, the model did not detect all the diseases presented and
maintained a low frame rate, requiring improved performance in different lighting pro-
files and better performance at the edge. All these suggestions remain for future work.
In addition, 3D-printed cases offer hardware protection and durability to the platform.
On validations, the case protected the hardware from dust and humidity on the farm for
a brief period. However, sensors such as DHT 11 profs are not prepared to deal with the
agricultural environment. Because of that, other sensors need to be considered in real
applications. The 3D printing approach in case construction allows users to adjust for
other sensors.

LoRa communication is also validated in the practical scenario. The LoRa multiplexing
schema is validated, and all packages seeded at the sensor node were successfully delivered.
Only one channel is used to connect multiple sensors, lowering the cost of implementation
and not requiring a high-cost LoRa gateway to upload the data to the internet. Package
collision is avoided through more significant time intervals between device publishing.
Slow changing profiles of environment variables allow working with multiple sensors with
large intervals between them. The narrow bandwidth of Lora RF technology does not
present any challenge for WSN applications.

In order to attend to more farming scenarios, Cloud and local dashboards are available
to present data for the users. In contrast, a Cloud dashboard developed in the Grafana
environment allows users to use advanced tools. The local dashboard uses the NodeRED
environment, not offering advanced tools for graphics analysis and customization op-
tions. On the other hand, it offers local access to data for farms that do not have an
internet connection.

ML models enable real-time monitoring the quality of collected data, searching for
outliers or errors. The ML application is necessary for reliable data, allowing a more secure
data-driven approach. The ML model’s low requirements allow deploying an independent
Isolation Forest classifier model for each node. The low-computation requirement of the ML
application allows the scalability of sensors nodes and the IoT platform. In addition, CV
applications could real-time detect diseases in strawberry farming on edge. In addition, this
approach allows more farmers to use Vision applications in the farming process. The model
can be adjusted through a transfer learning approach, allowing users to quickly modify
and deploy other detection models. The model performance fulfills the requirement for
disease detection in stable objects.

The 3D-printed case protects the sensor and collector node hardware. In addition,
PLA material mitigates the environmental impact of IoT platform implementation. Green
renewable sources such as starch, corn, or sugar cane create PLA filament. This means
that it is better for the environment than other materials, as it can be recycled. For future
research, a rover or drone can be developed to move the collector node and CV system
autonomously through the crop. This creates more applications for the computer vision
approach. In addition, a greenhouse can be a scenario for validating the WSN application
and CV vision approach. To validate the case, the application can be deployed more often



Sensors 2022, 22, 5866 31 of 33

in the farming process, searching for improvement points. Finally, the ML application can
be retrained for other temperature and humidity profiles.
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