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Abstract: The onboard atomic frequency standard (AFS) is a crucial element of Global Navigation
Satellite System (GNSS) satellites. However, it is widely accepted that periodic variations can influ-
ence the onboard AFS. The presence of non-stationary random processes in AFS signals can lead to
inaccurate separation of the periodic and stochastic components of satellite AFS clock data when
using least squares and Fourier transform methods. In this paper, we characterize the periodic varia-
tions of AFS using Allan and Hadamard variances and demonstrate that the Allan and Hadamard
variances of the periodics are independent of the variances of the stochastic component. The proposed
model is tested against simulated and real clock data, revealing that our approach provides more
precise characterization of periodic variations compared to the least squares method. Additionally,
we observe that overfitting periodic variations can improve the precision of GPS clock bias prediction,
as indicated by a comparison of fitting and prediction errors of satellite clock bias.
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1. Introduction

The onboard atomic frequency standard (AFS), commonly referred to as the satellite
clock, is a crucial component of the Global Navigation Satellite System (GNSS) satellites.
This is due to the close relationship between their characteristics and the system’s geode-
tic performance [1-3]. While ground-based AFS processing methodologies such as the
power-law noise model [3], the offset and drift model for atomic clocks [4], Allan variance
(AVAR) [5], and Hadamard variance (HVAR) [6] are useful in dealing with onboard clock
data, they may not be sufficient. The behavior of satellite AFS differs from that of ground
AFS due to an integrated non-dispersive effect affecting the broadcast timing signals ob-
served from the ground [2,5,7-10]. For instance, sub-daily periodic components can cause
a clock bias up to 7.80 £ 1.61 ns [5] (about 2.33 &= 0.48 m equivalent light travel distance).
Therefore, a more comprehensive modeling of periodic variations in GNSS satellite clocks
is necessary to optimize the current system and plan future improvements.

GNSS satellite clocks are aligned with terrestrial time (TT) [11-14], which is annually
realized by the Bureau International des Poids et Mesures (BIPM) as “TT BIPMxx" (“xx”
indicates the year of calculation) [15]. Although TT is currently the most accurate and
stable timescale, the post-processed timescale is not suitable for real-time applications. The
International Atomic Time (TAI), established by the Consultative Committee for Time and
Frequency (CCTF) and maintained by BIPM after the adoption of the atomic definition of
second in the 13th General Conference on Weights and Measures (CGPM)), is probably the
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most reliable “real-time” timescale in application. It is generated by more than 400 atomic
clocks spread globally as an EAL (échelle atomique libre, or free atomic timescale), and
the frequency of the EAL is steered by measurements of 12 primary or secondary fre-
quency standards [15]. While GNSS timescales (e.g., GPS [11], GLONASS [12], Beidou [13],
Galileo [14], etc.) are aligned with TAI in the long-term frequency, each satellite system
has its own timescale. Therefore, the International GNSS Service (IGS) developed its own
timescale, the International GNSS Service timescale (IGST), for GNSS research and applica-
tion. IGST is also aligned with TAI in the long-term frequency [16]. Additionally, both the
timescale algorithm of merely onboard AFS [4] and the IGST generated from both onboard
and ground AFS [16] use the same time offset-frequency offset-drift (or aging) clock model
as TAI[15,17]. Although time and frequency metrology techniques are essential to GNSS
applications, it should be mentioned that the GNSS technique plays a significant role in
resolving demands for universal timescales following scientific and industrial progress [18].

The behavior of space AFS is different from that of ground AFS [3]; however, electri-
cal, gravitational, atmospheric, and thermal variations can cause magnetic field [19,20],
microwave energy [21], light [22], thermally induced frequency shifts [23] of the clock.
For instance, oblateness of geopotential causes periodic variations whose fundamental
frequency is 2 cpd (cycles per day) in GPS satellite AFS [7]. Therefore, a satellite clock
should be considered as the integration of AFS and “non-dispersive effects of all satellite
components that affect the broadcast timing signals as observed from the ground” [5].

In fact, Senior et al. reported the detection of periodic signals at 7 x [2.0029 4 0.0005]
cpd forn =1,2,3,and 4 [5] in all GPS Block Il and Block ITA cesium and rubidium and Block
IIR and IIR-M rubidium clocks. The variations were also reported in Block IIF rubidium
clock and Block IIF cesium clock by Montenbruck et al. [9] and Fan et al. [2], respectively.
While Senior et al. point out that 12-hour variation has a satellite-type-dependent relation
with the sun—spacecraft—earth angle [5] and Montenbruck et al. suggest that solar illumi-
nation is the root cause of 12-hour period Block IIF Rb variations, they can not explain
the “robust” [5] difference (58 & 22 s) between the fundamental frequency (a weighted
mean) of sub-daily GPS periodics (n x [2.0029 & 0.0005] cpd) and the GPS mean orbit
period (2.0057 cpd) [24]. However, the reason for this discrepancy remains unexplained. In
addition, these studies are based on Fourier transform and least squares methods:

e  Satellite clock bias includes both deterministic and random signals: while the spectra
of deterministic signals are estimated from its direct Fourier transform, the spectra
of stochastic processes are calculated from the Karhunen-Loeve transform of its
covariance [25]. On the other hand, Dong et al. show that the Karhunen-Loeve
transform of covariance can distort the spectral response of deterministic signals [26].

¢  Additionally, Zhou et al. reported that there is no uniform method based on least
squares for detecting, fitting, and removing periodic variations in Beidou satellite
system (BDS) inclined geosynchronous orbit (IGSO), geostationary earth orbit (GEO),
and medium earth orbit (MEO) satellite clock periodic variations [27].

Instead of the frequency-domain Fourier transform and least squares methods, we
study the characterization of GPS onboard AFS periodic variations using frequency stability
in this paper. In Section 2, we demonstrate that if the AFS signal comprises sinusoidal and
random signals, the AVAR and HVAR of the sinusoidal signal are independent of those of
the random signals. Additionally, AVAR and HVAR of GPS AFS periodic variations are
formulated, and the method of fitting periodic variations from AVAR and HVAR estimates
are presented. In Section 3, the effectiveness of the proposed model is tested against both
simulated and real clock data.

2. Methods

To characterize the periodic variations of GNSS satellite AFS using its frequency
stability estimates, we derive the AVAR and HVAR of periodic variations in this section.
During the process, we demonstrate that the frequency stability of periodic variations
is independent of the frequency stability of the stochastic component of AFS signals.
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E [0-124VAR (x, T)]

E [UIZ-IVAR(XI T)]

Finally, we present the numerical method utilized in this paper for characterizing periodic
variations of AFS through frequency stability estimates.

2.1. Allan and Hadamard Variances of Periodic Variations

Suppose the satellite AFS clock bias, x(t), is composed of stochastic and periodic
signals, i.e.,
x(t) = %(t) + asin(wt + ¢o) = (t) + x(t),

then the theoretical values of AVAR and HVAR of the frequency standard are:

_ E{ (A H(%(t), 7)) —ZAZH(X(t)é;liiH(f(t)rT) + [AH(R(1), T)] T,w} 1)
and
_ E{ [AsH(x(t), T)]? —2A3H(f(t)6,;)2i§H(f(t)/T) + [AsH(x(1), 7)) T/w} ?)

respectively, where %(t) is the random part of x(t), a superposition of power-law noise
(PLN) processes. Next, ¥(t) denotes the periodic variations of the clock:

%(t) = asin(wt + ¢p).
For the sake of brevity, we define two auxiliary functions, AyH(x, ) and AsH(x, T):
AyH(x(t),7T) = x(t+21) — 2x(t + 7) + x(¢),

AsH(x(t),T) = x(t +37) = 3x(t +27) + 3x(t + 1) — x(¢),

respectively. The averaging interval T = mty, m should be a positive integer, and 1y is the
sampling interval of the data.
By the theory of statistics, for a fixed averaging interval 7,

E[A2H(x(t), T) A H(%(t), T)|7] = E[AH(x(¢), T) [T]E[ A2 H (%(t), T) | 7. ®)

Given a PLN process, f*, where f denotes the Fourier frequency, f* shapes the power
spectral distribution (PSD) of the PLN process. When « > —3, E[AyH(X(t), T)|7] = 0;
that is:

Theorem 1. For signals consistin of PLN processes, f*, & > —3, and sinusoidal variations, the
AVAR of the periodic variations is independent of the AVAR of the random signals.

Similarly, when « > —5, E[A3H(%(t), T)|7] = 0. As a consequence:

Theorem 2. For signals consisting of PLN noise processes, f*, & > —5, and sinusoidal variations,
the HVAR of the periodic variations is independent of the HVAR of the random signals.

By applying Theorem 1 to Equation (1), we can separate the AVAR of stochastic
fluctuations from the one of sinusoidal variations:

E [UIZLXVAR(XI T)} = E[‘TiVAR(f/ 7)} + E[UI%WAR(X/ T)]-

Since any continuous periodic signals in £2-space can be decomposed as the summa-
tion of a series of sinusoidal signals, AVAR of periodic variations of the satellite AFS is
independent of those of the stochastic vibrations of the clock. There are plenty of documents
on the characterization of AFS clock random vibrations; we will focus on characterizing
periodic variations of AFS clock using AVAR.
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After expanding E[0],,,z(%,T)] with the definitions of (t) and A;H(x(t),7) and
Equation (1), we have:

2
a . . .
E [U%VAR(X, 7)} = Z—TZE [s1n2(2w'c + wt+ ¢p) — 4sin(wT + wt + @p) sin(wt + @)
+4sin?(wT + wt + @p) — 4sin(2wT + wt + @) sin(wT + wt + @o)

+ sin?(wt + @g) + 2sin(2wT + wt + @g) sin(wt + @)

T, 4’0}

Since t goes from —oo to 400, the value of the initial phase, ¢y, makes no difference in
the computation of E[0%y,4 (%, T)]. By replacing wt + ¢ with wt and taking the following
relations into account,

E[sin(wT + wt) sin(wt)] = E[sin(2wT + wt) sin(wT + wt)]| = % cos(wT),

1
E[sin(2wt + wt) sin(wt)] = 3 cos(2wT),

and
E {sinz(Za)T + wt)} = E[sinz(aJT + wt)} =E [sinz(wt)} = %,

we formulate the AVAR of periodic variations as following:

_ 3 —4cos(wT) + cos(2wT)
E [UIZAVAR(XI T)] = 20272 @

Similarly, the mathematical expectation of HVAR for the periodic variations can be formu-
lated as following;:

_ 10 — cos(3wT) + 6 cos(2wT) — 15 cos(wT
E[‘TIZJVAR(XI T)} = ( ) 6a—2(72 ) (wr) ®)

Numerical computation of Equations (4) and (5) may result in negative values due to
truncation errors. To prevent numerical evaluations of Equation (4) from being negative
values, we recast Equation (4) as a summation of squares:

[cos(km) — 2 cos(2km) + 1]* + [sin(km) — 2 sin(2km)]>
4a—2m2 5

o3 (m7) =
Similarly, the mathematical expectation of HVAR for periodic variations, Equation (5),
can be reformulated as following;:

[1—3 cos (knt)+3 cos(2knt) —cos(3km)]*
120-2m2 7}

[3 sin (k) —3 sin(2km ) +sin (3km) >
120=2m2 7} )

Uzz(m’fo) =

+

2.2. Characterizing Periodic Variations Using Frequency Stability Estimates

To evaluate periodic variations from frequency stability estimates of GNSS satellite
AFS, we modify the stochastic model proposed in [28]:

min (Pph + Dsa — )" Q(Pph + Psa — o),
B(e)h+ ®sa — 0
—B(l1—¢)h—Dsa+o
s.t. —a <0. (6)
—h

—a
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where “s.t.” is the abbreviation of “subject to”; ¢ is a column vector of frequency stability
estimates (when the word “vector” is used, we mean column vector by default):

T
o = [0 (1) o, (210) -+ oF, (m170) 0B, (1) 0F, (270) -+ 0, (mamo) -+ .
Subscript k is used as a generic form that indicates different kinds of frequency stability:
00 ) Ny
o) = [ Sx(NIHA(A)df = 3 el D, )
i=1

Hi(f) is the transfer function of 0Z(7), Sx(f) is the PSD of PLN,

Ny
Sx(f) = ;haif“i = (27'cf2)5x(f). (8)

The variable & is a vector of noise intensity coefficients, hy,, a; = 2,1,- -+, —4,i=1,--- ,ap,,
corresponding to white PM (phase modulation), flicker PM, white frequency modulation
(WHEM), flicker FM (FLFM), random walk FM (RWFM), and random run FM, respectively.

E {(7,31 (sin(ant),m)} E {(7131 (sin(wzt),ro)} ... E [(7,%1 (sin(a;lt),To)}

E {‘7131 (sin(wt), 270)} E [U,fl (sin(wyt), 21’0)} .-+ E [‘71%1 (sin(wyt), 270)}

P = E[o? (sin(wyt), my )] B[ (sin(wat), m1 ) . B[ (sin(ewyt), mi )
k1 15/, 1110 k 2t),m1T0 k) 1t), mT
E [‘TI%Z (sin(wlt),'ro)} E {Uﬁz(sin(wzt), To)} -~ E [Ulfz(sin(wlt),'ro)}

a is a vector of amplitudes of sinusoidal variations, and @} is a matrix comprised of
cI)k (lxi ’ T):

@ule7) = [ FHHIS.
B(e) and B(1 — ¢) are matrices composed of Bi(«, T, ¢€):

F~Y(EDFy(a, 7)/2,¢€) - @y (a, mTp)
EDFy (a, 7) '

Bi(a,T,€) =

EDFy(a, T) is the equivalence degree of freedom (EDF):

D 2

F~1(-) is the inverse of cumulative distribution function:
62(7) JEDF((1)/2

FA® 240) = L) wrrErmm

The independent variables of Equation (6) are & and a. To solve the optimization problem,
we set ¢ = 0.0025 and Q = [diag(c)] 2.
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Since ¢ is nonzero, the feasibility of Equation (6) depends on the values of frequency
stability estimates. When Equation (6) is infeasible, which means the optimization problem
has no solution, we use the following alternative model:

min Il =+ [lvll,

[ B(e)h+ ®sa — diag{c}y — 0o

—B(1—¢)h — Psa — diag{o}v+o
—h

s.t. —a <o. )
—H
—v

v—1

The independent variables of Equation (9) are y, v, h, and a; 1 and v are auxiliary variables
defined such that nonzero components of 4 and v indicate violations of the inequalities
B(e)h + ®sa < o and B(1 —e)h + ®sa > o, respectively. Details about the optimiza-
tion models, Equations (6) and (9), and their numerical solutions can be found in refer-
ences [28,29].

3. Results

In this section, we test the proposed model, Equations (4) and (5), with both simulated
and GPS clock data using the method described by Equations (6) and (9).

3.1. Simulated Data

To verify Equations (4) and (5), we generate sinusoidal signals with frequencies,
ix20029,i =1, 2, 3 cpa, and list their amplitudes in the second column of Table 1.
(The frequencies and amplitudes are set according to reference [5]). As demonstrated in
Figure 1la—c, the AVAR computed from Equation (4) (represented by red dots in Figure 1)
aligns with the one estimated from the simulated sinusoidal signals (represented by black
solid lines in Figure 1). The same holds true for Hadamard variances (HVAR), though these
results are not presented here in the interest of brevity.

Table 1. Amplitudes of simulated periodic variations estimated by least squares method and solving

Equation (6).
Frequency (cpa) Input Equations (6) and (9) Least Squares
2.0029 9.00 x 10710 892 x 10710 1.62 x 107°
2 x 2.0029 3.30 x 10710 3.40 x 10710 3.83 x 10710
3 x 2.0029 6.00 x 10711 1.35 x 10710 3.09 x 10~10
4 % 2.0029 0 0 3.53 x 10710

In Figure 1d, AVARs estimated from simulated clock data and their “theoretical” values
are represented as a black solid line and red dots, respectively. The “theoretical” AVAR is
computed as the sum of Equations (7) and (4), and the simulated satellite clock biases are
comprised of white PM, flicker PM, white WHFM, FLEM, RWEM, and sinusoidal variations
of 12-, 6-, and 4-hour cycles (whose AVARs are shown in Figure la—c, respectively). As
shown in Figure 1d, the two AVARs are close to each other, except for the values around
averaging times 10* s. It can be observed from Figure la—c that the AVAR of 12-, 6-, and
4-hour sinusoidal variation reaches its maximum near averaging times 5 x 10%, 10%, and
2 x 10* s, respectively. Discrepancies between the two AVARs can be explained by the
interactions between stochastic and periodic variations due to the finite data set.
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(a) 12 hour period (b) 6 hour period

Allan Deviation

10—14 L

Allan Deviation

10—18 L

jot4 b

10-16 L

10—14 L

10—18 L

——9.0x10"%in(w, 1+0.45)
———theoretical

——3.30x10"%sin(w,t+0.29)
———theoretical

10—18 L

1 1 1 0—1 8 1 L
103 10* 10° 103 10* 10°
(c) 4 hour period (d) Simulated data (with periodic variations)
‘ 10712 p ‘ [
simulated clock biases
———theoretical
——6.0x10"""sin(w,1+0.29)
———theoretical 10718 F
10° 10* 10° 10° 10 10°
Averaging interval (second) Averaging interval (second)

Figure 1. Allan variances of sinusoidal signals and simulated clock bias with periodic variations.

Furthermore, to compare the effectiveness of detecting periodic variations from satel-
lite clock biases directly using the least squares method and from Equations (4) and (5)
using Equations (6) and (9), the periodic variations in the simulated data are fitted and
removed using both methods. The amplitudes given by the least squares method and
Equations (6) and (9) are listed in the third and fourth columns of Table 1, and AVARs of
the resulting periodic variation-free clock biases are plotted as a red dash—dot line and blue
dots, respectively, in Figure 2. In the least squares estimation process of this article, the
satellite clock biases are are firstly detrended by fitting and removing a second-order poly-
nomial. Then, a 12-hour sinusoidal signal was fitted and removed, followed by a 6-hour
sinusoidal signal, a 4-hour frequency signal, and, finally, a 3-hour sinusoidal signal. While
the least squares method gives greater periodic variation amplitudes than the set values of
the simulated variation amplitudes and the ones estimated by Equations (6) and (9), AVARs
estimated from simulated satellite clock bias with periodics fitted and removed by the least
squares method does not seem to be periodic-variation-free. It can be observed in Figure 2
that in comparison to the AVARs estimated from the simulated data (plotted as a black
solid line in Figure 2), the “lump” near averaging intervals 5 x 10° suggests an extra 4-hour
variation. In other words, the least squares method overfits the periodic variations. On
the other hand, AVARs computed from simulated data with periodic variations fitted and
removed using Equations (6) and (9) are the most periodic-variation-free AVARs among
the three. To have a closer look at the overfitting problem, the root mean square (RMS)
of the detrended simulated clock bias, detrended simulated data with periodic variations
fitted and removed using the least squares method, and detrended simulated data with
periodic variations fitted and removed using Equations (6) and (9) are computed: the
result are 8.02 x 107, 7.80 x 107, and 7.95 x 10~ ns, respectively. While the least squares
method provides the lowest fitting errors, it seems to overfit flicker noise with a 4-hour
periodic variation.
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L —— (1) simulated clock bias ]

--=-=+(2) periodic variations removed using least square | |

(3) periodic variations removed using Eqn(6) & (9) | |
s
2
>
[0
o
c
K]
<

10718 -

108 104 10°
R Averaging interval (second)
Figure 2. AVARs of simulated clock data 12-, 6-, 4-, and 3-hour periodic variations fitted and removed
by least squares and by Equation (9), respectively.

3.2. GPS SVN63 Clock Data

To verify the effectiveness of Equations (4) and (5), we computed the AVAR of the
GPS PRNO1 (SVN63) onboard rubidium AFS, which is shown as a black solid line in
Figures 3 and 4. The IGS final combined precise clock and orbit data from MJD 56739.0 to
MJD 56745.9965 [30,31] are used in the computation. In this paper, the preprocessing of all
IGS satellite clock data includes:

*  Removing the ]2 relativistic effect using Kouba’s method [7] and cubic spline interpo-
lation of IGS final combined orbit data;
*  Removing the day boundary discontinuities using Yao et al.’s methods [32].

For comparison, AVARs of 12-, 6-, and 4-hour periodic variations are plotted as
a purple dash—dot line, blue dots, and a red dash line, respectively, in Figure 3. The values
of these AVARs are normalized to be tangent to the AVAR of SVNG63 satellite AFS at the
maxima of their AVARs.

T ] |
i oL N
14 L B I I L = P E
0 é e i M "o TN R\ B E
=7 Rt i : " ; &
A \ /" | R /.
] P g LN I
. - iy \ | Y ;!
S V U
5 \ I L iy
| ! {
8 1018 E | ‘; lﬂ"
: I I 5{
5 I ! !;‘
< ——PRNO1 | Ji]
e 12-h periodic "J ‘:
[ 6-h periodic H[ |
10718 E |- ——4-h periodic "f ! l
L Ll L . 1 L TR S ‘ ‘ I ‘ l
10° 10° 105

Averaging interval (second)

Figure 3. AVARs of GPS SVN63 onboard rubidium clock bias from MJD 56,739.0 to MJD 56,745.9965
12-, 6-, 4-, and 3-hour sinusoidal signals. AVARs of 12-, 6-, 4-, and 3-hour sinusoidal signals are
magnified to be tangent to AVARs estimated from SVN63 clock bias at their maxima.

It can be observed from Figure 3 that the local maxima and minima of AVARs estimated
from SVN63 clock bias and the 12-hour sinusoidal coincide for averaging time T > 10 s,
suggesting the influence of 12- and 6-hour periodic variations. This consistency reinforces
the conclusion that GPS onboard atomic frequency standards are influenced by 12-hour
periodic variations. To quantify the influence of periodic variations, the variations are
fitted and removed using both the least squares method and Equations (6) and (9); AVARs
computed from the resulting clock biases are represented as a red dash—dot line and blue
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dots, respectively, in Figure 4. It seems that the least squares method may overfit the 12-,
6-, 4-, and 3-hour periodic variations of the GPS Block IIR rubidium AFS with frequency
noise: gaps between the black solid line (AVAR estimated from IGS final combined SVN63
clock data) and the red dash-dot line (AVAR resulting from the least squares processing)
keep increasing after averaging time 2 x 10*. On the other hand, after processing with
Equations (6) and (9), the sigma-tau plot of the resulting AVAR estimates is the closest
to the classical sigma—tau plot of the AVAR calculated from the summation of white PM,
flicker PM, white WHFM, FLFM, and RWEM noise processes.

1073 ‘ ‘
r (1) PRNO1 clock bias
e (2) periodic variations removed via least square
(3) periodic variations removed using Eqn (6) & (9) | 1
c
2
kS
>
[}
[a]
é 1014 -
<
L . N S S S S . S S S S

108 104 105
Averaging interval (second)

Figure 4. AVARs of GPS SVN63 onboard rubidium clock bias from MJD 56,739.0 to MJD 56,745.9965 12-, 6-,
4-, and 3-hour sinusoidals fitted and removed by least squares and by Equations (6) and (9), respectively.

3.3. Other GPS Clock Data

To verify the general applicability of Equations (4) and (5), we compute the AVARs of
GPS PRN02~32 onboard AFS using IGS final combined precise clock data, clock biases with
periodic variations removed by the least squares method, and Equation (9); the resulting
AVARs are drawn as a black solid line, a red dash—dot line, and blue dots, respectively,
in Figures 5 and 6. During the time-span of IGS clock data used in this study (from 23
March 2014 to 27 December 2020), several satellites, such as PRN04, PRN14, PRN18, PRN23,
and PRN32, were replaced. In addition, some PRN satellites, such as PRN04, have been
substituted several times. For brevity, we only chose the oldest and most recent SVN
satellites of these satellites from the dataset.
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Figure 5. AVARs of GPS PRN02~17 onboard clock bias 12-, 6-, 4-, and 3-hour sinusoidals fitted and
removed using least squares method and Equation (9), respectively.
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Figure 6. AVARs of GPS PRN18~32 onboard clock bias 12-, 6-, 4-, and 3-hour sinusoidals fitted and

removed using least squares method and Equation (9), respectively.

By comparison with Figure 1, we can make the following observations from Figures 5 and 6:

e For more than half of the satellites, the sigma-tau plot of the AVAR computed from
clock bias with periodic variations removed using Equation (9) is closer to the standard
sigma-tau plot of AVARs than the least squares method.

*  “Lumps” of AVARs estimated from PRN01, PRN02, PRN05, PRN07, PRN11, PRN12,
PRN13, PRN14 (SVN41), PRN15, PRN16, PRN17, PRN18 (SVN54), PRN20, PRN21,
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PRN22, PRN23 (SVN76), PRN25, PRN28, PRN30, PRN31, PRN32 (SVN23), and PRN32
(SVN70) clock bias with periodic variations removed using Equation (9) at an averag-
ing time around 4 x 10* s suggest underestimation of 24-hour periodic variations.

. “Lumps” of AVARs estimated from PRN01, PRN02, PRN03, PRN04 (SVN34), PRN04
(SVN74), PRNO5, PRN06, PRN09, PRN12, PRN14 (SVN77), PRN18 (SVN75), PRN19,
PRN23 (SVN60), PRN23 (SVN76), PRN24, PRN26, PRN27, PRN30, and PRN32
(SVN23) clock bias with periodic variations removed using Equation (9) at an av-
eraging time around 2 x 10* s suggest underestimation of 12-hour periodic variations.

*  “Lumps” of AVARs estimated from PRN04 (SVN34), PRN04 (SVN74), PRN05, PRN07,
PRN10, PRN11, PRN12, PRN14 (S§VN41), PRN17, PRN18 (SVN75), PRN20, PRN21,
PRN22, PRN24, PRN25, PRN27, PRN29, and PRN32 (SVN70) clock bias with periodic
variations removed using Equation (9) at an averaging time around 10* s suggest
underestimation of 6-hour periodic variations.

. “Lumps” of AVARs estimated from PRN02, PRN04 (SVN34), PRN05, PRN06, PRN07,
PRNO08, PRN09, PRN11, PRN13, PRN14 (SVN41), PRN15, PRN16, PRN18 (SVN75),
PRN19, PRN22, PRN23 (SVN60), PRN25, PRN32 (SVN23), and PRN32 (SVN70) clock
bias with periodic variations removed using Equation (9) at an averaging time around
5 x 10° s suggest underestimation of 4-hour periodic variations.

e “Lumps” of AVARs estimated from PRN09, PRN11, PRN13, PRN18 (SVN54), PRN18
(SVN75), PRN22, PRN24, PRN27, PRN29, PRN31, PRN32 (SVN23), and PRN32
(SVN70) clock bias with periodic variations removed using Equation (9) at an av-
eraging time around 3 x 103 suggest underestimation of 3-hour periodic variations.

In other words, the optimization model Equation (9) is “conservative”: it tends to
underestimate periodic variations of GPS satellite AFS. In effect, a large portion of the
numerical solutions of 4- and 3-hour variations returned by solving Equation (9) are zero.
According to the theory of statistics, the least squares method makes huge assumptions
about data structure and produces stable results. On the other hand, Equation (9) only
requires the least violation of the 95% confidence intervals by the AVAR estimates; it does
not require optimal estimation of the amplitudes for periodic variations. By comparison
with AVARs computed using the least squares method, as shown in Figures 5 and 6,
Equation (9) underestimates the periodic variations of PRN01, PRN03, PRN04 (SVN34),
PRNO04 (SVN74), PRN08, PRN09, PRN10, PRN19 (SVN75), PRN20, PRN21, PRN26, PRN27,
and PRIN29.

It can also be observed from Figures 4-6 that the AVARs computed from clock biases
with periodic variations fitted and removed using Equation (9) are always smaller than the
AVARs computed from IGS final combined clock biases, and the two coincide at averaging
intervals greater than 4 x 10* s. For most cases, this also holds for AVARs estimated from
clock bias with periodic variations fitted and removed using the least squares method.
There are only two exceptions:

e The gap between the AVAR estimated from PRNO1 clock bias with periodic variations
fitted and removed using the least squares method and the AVAR computed from
PRNO1 clock bias enlarges with increasing averaging interval. Since the tail of AVAR
estimated from PRNO1 clock bias with periodic variations removed using the least
squares method has a similar shape to the AVARs of 12-hour sinusoidal variations,
and the AVAR computed from PRNO1 clock bias with periodic variations fitted and
removed using Equation (9) suggests strong frequency noise, the discrepancies be-
tween the AVAR estimated from PRNO1 clock bias with periodic variations fitted and
removed using the least squares method and the AVAR computed from PRNO1 clock
bias is caused by overfitting the periodic variations by taking a portion of frequency
noises as 12-hour variation.

¢  The AVAR estimated from PRN22 clock bias with periodic variations fitted and re-
moved using least squares method is greater than the AVAR computed from IGS
final combined PRN22 clock bias around averaging time 2 x 10* s. Since AVARs
computed from the three PRN22 clock biases increase with the averaging interval for
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T > 2 x 10* s, PRN22 AFS is influenced by strong FM noise processes. It seems that
the least squares method overfits the periodic variations of PRN22 by taking a portion
of frequency noises as 12-hour variation.

Therefore, Theorems 1 and 2 hold for GPS onboard AFS.
Overfitting of periodic variations can sometimes help improve GNSS onboard clock

prediction, as shown in Table 2. By taking frequency noises as sinusoidals, the RMS of
one-day GPS onboard atomic clock prediction under two-day observation is decreased.
However, removing periodic variations based on Equations (6) and (9) can increase the
prediction RMS. This could be due to several reasons:

Overfitting of periodic variations can reduce the clock residuals caused by power—
law noise processes. When periodic variations are removed, the interaction between
random clock behaviors and periodic variations is suppressed, leading to an increase
in clock residuals and prediction RMS.

Only high-variability estimates (HVAR) are used in solving Equations (6) and (9),
which may not capture all the periodic variations present in the data. The maximum
averaging time of HVARs estimated from two-day GPS clock bias is 1.44 x 10* s, while
the first local minimum of Equation (5) appears at averaging interval T = 2 x 10* s.
This means that some periodic variations may not be captured by HVAR estimates
and could contribute to an increase in the RMS prediction when removed.

Table 2. One-day GPS clock bias prediction RMS (root mean square) of fitting and removing first- or

second-order polynomial 12-, 6-, 4-, and 3-hour sinusoidals against two-day observations by using

least squares and solving Equations (6) and (9), respectively.

PRN With Periodics Equations (6) and (9) Least Square Time-Span

GO01 0.52 0.65 0.42 03-23-14~12-27-20
G02 0.72 1.64 0.72 03-23-14~12-27-20
G03 0.82 0.94 0.78 03-23-14~12-27-20
G04 1.61 1.61 1.58 03-23-14~12-27-20
G05 0.71 0.80 0.62 03-23-14~12-27-20
G06 0.53 0.64 0.50 03-23-14~12-27-20
G07 1.13 1.93 1.11 03-23-14~12-23-20
G08 3.39 3.61 3.36 03-23-14~12-27-20
G09 0.66 0.77 0.61 03-23-14~12-27-20
G10 1.39 1.48 1.38 03-23-14~12-27-20
G11 1.34 1.85 1.31 03-23-14~12-27-20
G12 0.62 5.73 0.52 03-23-14~12-27-20
G13 1.07 1.24 1.05 03-23-14~12-27-20
G14 0.73 1.00 0.73 03-23-14~12-25-20
G15 0.47 0.52 0.42 03-23-14~12-27-20
Glé6 0.62 0.62 0.49 03-23-14~12-27-20
G17 1.56 1.70 1.53 03-23-14~12-27-20
G18 0.92 1.86 0.88 03-23-14~12-27-20
G19 0.58 0.65 0.57 03-23-14~12-27-20
G20 0.62 0.95 0.61 03-23-14~12-27-20
G21 0.76 142 0.72 03-23-14~12-26-20
G22 1.09 1.64 1.06 03-23-14~12-27-20
G23 0.53 1.04 0.53 03-23-14~12-27-20
G24 4.18 4.57 4.24 03-23-14~12-27-20
G25 0.42 0.42 0.36 03-23-14~12-26-20
G26 0.63 0.76 0.59 03-23-14~12-27-20
G27 0.48 0.59 0.42 03-23-14~12-27-20
G28 3.71 3.73 3.71 03-23-14~12-27-20
G29 1.26 147 1.22 03-23-14~12-27-20
G30 0.56 0.67 0.51 03-23-14~12-27-20
G31 1.15 1.81 1.14 03-23-14~12-27-20
G32 0.87 0.94 0.77 03-23-14~12-27-20
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4. Conclusions and Discussion

The detection of periodic variations in GNSS satellite AFS presents a dilemma: while
the spectra of deterministic sinusoidals can be estimated directly from the Fourier transform,
those of power—law noise processes, which are random, must be calculated from the
Karhunen-Loeve transforms of their covariance. Currently, time domain methods are
generally used in the evaluation of AFS and timescales. In this paper, we characterize the
periodic variations of GNSS satellite AFS clock bias using AVAR and HVAR. In addition,
we demonstrate that the AVAR and HVAR of sinusoidal signals present in the clock bias
are independent of the AVAR and HVAR of the random vibrations of the satellite AFS. The
method to detect periodic variations using these characterizations is given, and it is test
against both simulated and real data.

The proposed method characterizes the periodic variations of satellite AFS more
accurately than the least squares method, as demonstrated in both simulated and real
clock data tests. Therefore, the method developed in this article can serve as a criterion
for detecting periodic variations. The least squares method tends to overfit the 12-, 6-,
4-, and 3-hour frequency variations, resulting in sinusoidals that may have no physical
meaning. However, the overfitting demonstrated by the least squares method suggests
that by treating some of the frequency noise as periodic variations, we can improve GPS
prediction precision in practice.
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Abbreviations

The following abbreviations are used in this manuscript:

AFS atomic frequency standards

BDS Beidou Satellite System

BIPM Bureau International des Poids et Mesures

CCTF  Consultative Committee for Time and Frequency
CGPM  General Conference on Weights and Measures
CLS Collecte Localisation Satellites

cpd cycles per day

EAL échelle atomique libre (or Free atomic time scale)
GNSS  Global Navigation Satellite System

GPS US Global Positioning System

HVAR Hadamard variance

1GS International GNSS Service
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IGST International GNSS Service Timescale
JAXA  Japan Aerospace Exploration Agency
MGEX  Multi-GNSS Experiment

PRN Pseudorandom Noise

RAFS  Rubidium Atomic Frequency Standard
RMS root mean square

PLN power—law noise

PSD power spectral distribution

SVN Satellite Vehicle Number

TAI International Atomic Time

TT Terrestrial Time

UTC Coordinated Universal Time
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