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Abstract: In order to balance the performance index and computational efficiency of the active
suspension control system, this paper offers a fast distributed model predictive control (DMPC)
method based on multi-agents for the active suspension system. Firstly, a seven-degrees-of-freedom
model of the vehicle is created. This study establishes a reduced-dimension vehicle model based
on graph theory in accordance with its network topology and mutual coupling constraints. Then,
for engineering applications, a multi-agent-based distributed model predictive control method of
an active suspension system is presented. The partial differential equation of rolling optimization is
solved by a radical basis function (RBF) neural network. It improves the computational efficiency of
the algorithm on the premise of satisfying multi-objective optimization. Finally, the joint simulation
of CarSim and Matlab/Simulink shows that the control system can greatly minimize the vertical
acceleration, pitch acceleration, and roll acceleration of the vehicle body. In particular, under the
steering condition, it can take into account the safety, comfort, and handling stability of the vehicle at
the same time.

Keywords: active suspension system; distributed model predictive control; multi-agent; RBF neural
network

1. Introduction

The pitch and roll motions of the vehicle will cause the occupants to shake, which
seriously affects the ride comfort of the vehicle. Therefore, research on the restraint of the
pitch and roll motion of the vehicle has great practical significance [1,2]. With the gradual
intellectualization, networking, electrification, and sharing of the automotive technology
field, people have higher demands for computing power, ride comfort, and driving safety.

Compared with passive and semi-active suspension, active suspension reduces the
vibration of sprung mass caused by road excitation in an active way, so the damping effect
is more obvious [3]. Active suspension can isolate the road vibration and enhance the road
grip better under the control of its controller, which can not only enhance the comfort of
the passengers but also ensure the safety of the vehicle. In addition, active suspension
can realize multi-objective control, thus balancing the conflict between ride comfort and
driving safety in electric vehicles [4,5].

At present, the more common control methods to improve suspension performance
include optimal control [6], neural network control [7], adaptive control [8], sliding mode
control [9,10], fuzzy control [11], and model predictive control [12–14]. Ding et al. [6]
proposed the optimal selection strategy of anti-interference coefficients in the time-delay-
dependent H-infinity/H-2 controller, and the effectiveness of the proposed method is
verified by simulation. Wang et al. [7] proposed an output feedback algorithm based on a
neural network for the active suspension system. They constructed an auxiliary system to
compensate for the input saturation constraint, and riding comfort and safety conditions
were ensured. Hao et al. [8] presented a novel multi-objective command-filtered adaptive
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control strategy for active suspension systems with nonlinear hydraulic actuators, which
effectively improves the ride comfort. Control methods such as PID and LQR cannot
provide the best effect for improving vehicle vibration; Chen et al. [9] proposed a revised
active disturbance rejection sliding mode controller to improve the vertical stability of UGV.
Liu et al. [10] proposed an adaptive sliding mode control method for active suspension sys-
tems with specified performance, which can stabilize the suspension system′s displacement
and speed in finite time. Robert et al. [11] developed fuzzy control of active suspension
system, and the results obtained from the simulation of the road profile show that the
proposed fuzzy control performs better than the conventional controller in terms of body
displacement and body acceleration. For the past few years, MPC has been widely studied
by many scholars in dealing with large and complex systems, such as online processing
of system state, output and control input constraints, high flexibility and fault tolerance,
model dimensionality reduction, computation reduction, and control efficiency improve-
ment. Myron et al. [12] presented a model predictive controller combined with radial basis
function networks for the active suspension system, which demonstrated excellent perfor-
mance in all scenarios when compared with passive suspension. Mai et al. [13] presented
an explicit model predictive control method for the semi-active suspension system with
magnetorheological dampers subject to input constraints, which effectively improved the
comfort of a semi-active suspension system. The team led by Yu [14] designed a road
preview model predictive control scheme for the semi-active suspension system with the
magneto-rheological damper to improve the comprehensive performance of the semi-active
suspension. In addition to some individuals, there are also many teams studying integrated
control. In order to address both braking safety and ride comfort, Zhang et al. [15] estab-
lished a comfort braking dynamics model for brake-by-wire vehicles, taking into account
the relationship between braking and suspension dynamics. Liang et al. [16] proposed
a decentralized cooperative control framework to achieve the integration of the active
front steering system and the active suspension system by applying a multi-constrained
distributed model predictive control approach.

The constrained optimization control capability of MPC is mainly produced by solving
constrained quadratic programming (QP) problems online. Although the traditional QP
numerical algorithm has been widely used, it involves matrix inversion, which results in
the disadvantage of MPC in terms of solution speed. Yannic et al. [17] presented an optimal
control strategy for the high computational requirements of nonlinear model predictive
control by learning through artificial neural networks to speed up the computation while
obtaining good objective function values and satisfying constraints. In the framework of
a multi-agent network, Le et al. [18] proposed a collective neural dynamics optimization
method based on a recurrent neural network to solve the control method of a distributed
convex optimization problem, which avoids the calculation of matrix inversion and im-
proves the execution efficiency of the algorithm. Wysocki et al. [19] have given an improved
recurrent Elman neural network algorithm that can consider the time delay of the process
and provide an MPC for the network.

A Multi-Agent System (MAS) is a group of agents that can work together to compute.
Each agent completes tasks or reaches goals by working with other agents. MAS refers
to a set composed of multiple agents that can perform network computing, in which
agent completes tasks or achieves specific objectives through cooperation. It has been
widely used in the automotive field [20]. Based on multi-agent theory, Zhang et al. [21]
decomposed a four-wheel independent drive ASR system into four separate driving wheel
agent systems. For actuator faults, a Lyapunov function based on multiagent theory was
designed for a single driving wheel agent to avoid the impact of the coupling subsystem
fault. Wang et al. [22] proposed a multi-objective optimization coordinated control method
for ABS and AFS based on multi-agent MPC, and improved the braking safety and handling
stability of the vehicle. Zhang et al. [23] presented a four-wheel independent steering finite
time control method based on the theory of heterogeneous multi-agent, and the simulation
results verify that the proposed method can improve the yaw stability of the vehicle. The
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four suspensions in the active suspension control system are scattered at the four wheels,
and their communication is realized through the on-board CAN bus, which enables the
signals transmitted on one data line to be shared by multiple control units (systems).

In particular, based on the multi-agent theory and neural network fast partial differen-
tial equation solving idea, this paper regards the body′s vertical, pitch, roll, and the vertical
motion of the four wheels as seven agents. By using the mutual communication among the
agents, a distributed model predictive control method of active suspension for engineering
applications is proposed, which can improve the computational efficiency of the algorithm
under the premise of satisfying multi-objective optimization. The contributions of this
study are as follows:

(1) According to the dynamic mechanism of the vehicle and the working principle
of the active suspension control system, by redefining the control input and constraints,
the seven subsystems of the seven-degree-of-freedom vehicle model are regarded as seven
agents, and the graph-theory-based active suspension dimensionality reduction control
model is used to simplify the model dimension.

(2) Considering the influence of the state of other adjacent agents on its own agents,
a system control model based on multi-agents is established, and the vertical vibration
acceleration of the unsprung mass and the vertical acceleration of the vehicle body are
realized through the cooperation between the agents. Body roll angular acceleration and
body pitch angular acceleration follow their ideal values.

(3) In the model predictive control algorithm, the advantages of the simple structure
and global approximation capability of the RBF neural network are used to propose a fast
optimal solution method for the i-th intelligent body based on the RBF neural network to
quickly find the rolling optimal solution in the model predictive control algorithm.

The rest of this article is described as follows: In the second segment, a seven-degrees-
of-freedom vehicle model is established. In the third segment, in order to comprehensively
analyze the performance of the suspension according to its network topology and mutual
coupling constraints, a vehicle model is established based on graph theory with reduced
dimensionality. In the fourth segment, a multi-agent-based distributed model predictive
controller is designed. The RBF neural network is used to improve the solution speed of
partial differential equations, and the effectiveness of the proposed method is verified by
simulation. Finally, the fifth segment draws conclusions. The overall framework of this
paper is shown in Figure 1.
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Figure 1. Overall framework of the paper. 

2. Seven-DOF Vehicle Model 
At present, in the research of active suspension control, the 1/4 vehicle model, the 1/2 

vehicle model, and the whole vehicle model are the research objects [24–26]. Using the 
two-degrees-of-freedom model as the object of study can better reflect the problem of 
vertical vibration but it ignores the mutual coupling between the suspensions and the 
influence of the angular motion of the body in the pitch and roll directions on the com-
fort, and the control requirements for vehicle comfort cannot be fully described. The 
four-degrees-of-freedom model is often used to study the vertical jump of the front and 
rear suspensions and the body’s pitching motion. The seven-degrees-of-freedom model 
can fully reflect the vertical jump, pitch, and roll changes. Therefore, this paper selects the 
seven-degrees-of-freedom vehicle model as the research object, as shown in Figure 2. 

Figure 1. Overall framework of the paper.
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2. Seven-DOF Vehicle Model

At present, in the research of active suspension control, the 1/4 vehicle model, the
1/2 vehicle model, and the whole vehicle model are the research objects [24–26]. Using
the two-degrees-of-freedom model as the object of study can better reflect the problem
of vertical vibration but it ignores the mutual coupling between the suspensions and the
influence of the angular motion of the body in the pitch and roll directions on the comfort,
and the control requirements for vehicle comfort cannot be fully described. The four-
degrees-of-freedom model is often used to study the vertical jump of the front and rear
suspensions and the body’s pitching motion. The seven-degrees-of-freedom model can
fully reflect the vertical jump, pitch, and roll changes. Therefore, this paper selects the
seven-degrees-of-freedom vehicle model as the research object, as shown in Figure 2.
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Figure 2. Seven-DOF Model of the Full Vehicle.

The meanings of the symbols in Figure 2 are as follows: ms represents the sprung
mass of the suspension, zs represents the vertical displacement at the body centroid, ϕ
represents the vehicle roll angle, Iϕ represents the moment of inertia for mass roll angle on
the spring of suspension, θ represents the vehicle pitch angle, Iθ represents the moment
of inertia for mass pitch angle on the spring of suspension, q1, q2, q3, q4 represent road
excitation for wheels, zu1, zu2, zu3, zu4 represent the vertical vibration displacement of the
unsprung mass, zs1, zs2, zs3, zs4 represent the vertical vibration displacement of the sprung
mass, u1, u2, u3, u4 represent the actuation force for the actuator, cs1, cs2, cs3, cs4 represent
the damping coefficient of the suspension damper, ks1, ks2, ks3, ks4 represent the suspension
spring stiffness, ku1, ku2, ku3, ku4 represent the tire elasticity coefficient, mu1, mu2, mu3, mu4
represent the unsprung mass, L f represents the distance from the mass center on the spring
to the front axle, Lr represents the distance from the mass center on the spring to the
rear axle, Tf represents the distance from the sprung mass center to the front wheel, Tr
represents the distance from the sprung mass center to the rear wheel. The seven degrees
of freedom are zs, θ, ϕ, zu1, zu2, zu3, zu4.

When the pitch angle and roll angle are small, the dynamic differential equation of the
seven degrees of freedom vehicle model is as follows:
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Vertical displacements at the four endpoints of the body:

zs1 = zs − L f θ − Tf ϕ

zs2 = zs − L f θ + Tf ϕ

zs3 = zs + Lrθ − Tr ϕ

zs4 = zs + Lrθ + Tr ϕ

(1)

Vertical motion at the center of body mass:

ms
..
zs = Fs1 + Fs2 + Fs3 + Fs4 + u1 + u2 + u3 + u4 (2)

where Fsi is the resultant spring and damping force of the i-th suspension, ui is the actuation
force of the i-th suspension, i = 1, 2, 3, 4.

Body pitching motion:

Iθ

..
θ = −L f

2

∑
i=1

Fsi + Lr

4

∑
i=3

Fsi − L f

2

∑
i=1

ui + Lr

4

∑
i=3

ui (3)

Body roll motion:

Iϕ
..
ϕ = (Fs2 + u2 − Fs1 − u1)Tf + (Fs4 + u4 − Fs3 − u3)Tr (4)

Unsuspension mass vertical motion (four-wheel motion):

mu1
..
zu1 = ku1(q1 − zu1)− u1 − Fs1

mu2
..
zu2 = ku2(q2 − zu2)− u2 − Fs2

mu3
..
zu3 = ku3(q3 − zu3)− u3 − Fs3

mu4
..
zu4 = ku4(q4 − zu4)− u− 4Fs4

(5)

The resultant force of the spring and damper in the suspension:

Fs1 = ks1(zu1 − zs + L f θ + Tf ϕ) + cs1(
.
zu1 −

.
zs + L f

.
θ + Tf

.
ϕ)

Fs2 = ks2(zu2 − zs + L f θ − Tf ϕ) + cs2(
.
zu2 −

.
zs + L f

.
θ − Tf

.
ϕ)

Fs3 = ks3(zu3 − zs − Lrθ + Tr ϕ) + cs3(
.
zu3 −

.
zs − Lr

.
θ + Tr

.
ϕ)

Fs4 = ks4(zu4 − zs − Lrθ − Tr ϕ) + cs4(
.
zu4 −

.
zs − Lr

.
θ − Tr

.
ϕ)

(6)

Equation (2) is the acceleration term of the suspension sprung mass; Equation (3) is
the pitch angular acceleration term of the suspension sprung mass; and Equation (4) is
the roll angular acceleration term. They are all affected by the vibration displacement
zu1, zu2, zu3, zu4 of the wheel. Equation (6) is the dynamic equation of each wheel, and the
vibration of each wheel is affected by the road surface excitation.

2.1. Dimension Reduction of System Model

Redefine the input variables for vertical motion (2), pitch motion (3), and roll motion
(4) at the center of body mass, so that

u5 = 1
ms

u1 +
1

ms
u2 +

1
ms

u3 +
1

ms
u4

u6 = − L f
Iθ

u1 −
L f
Iθ

u2 +
Lr
Iθ

u3 +
Lr
Iθ

u4

u7 = − Tf
Iϕ

u1 +
Tf
Iϕ

u2 − Tr
Iϕ

u3 +
Tr
Iϕ

u4

(7)
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The 7-DOF vehicle model is organized as follows:

..
zu1 = a11zu1 + a12

.
zu1 − u1/mu1 + h1 (8)

..
zu2 = a21zu2 + a22

.
zu2 − u2/mu2 + h2 (9)

..
zu3 = a31zu1 + a32

.
zu1 − u3/mu3 + h3 (10)

..
zu4 = a41zu1 + a42

.
zu4 − u4/mu4 + h4 (11)

..
zs = a51zs + a52

.
zs + u5 + h5 (12)

..
θ = a61θ + a62

.
θ + u6 + h6 (13)

..
ϕ = a71 ϕ + a72

.
ϕ + u7 + h7 (14)

In the formula, a11 = −(ku1 + ks1)/mu1, a12 = −cs1/mu1, a21 = −(ku2 + ks2)/mu2,
a22 = −cs2/mu2, a31 = −(ku3 + ks3)/mu3, a32 = −cs3/mu3, a41 = −(ku4 + ks4)/mu4,

a42 = −cs4/mu4, a51 = −
4
∑

i=1

ksi
ms

, a52 = −
4
∑

i=1

csi
ms

, a61 = −
L2

f
Iθ

2
∑

i=1
ksi − L2

r
Iθ

4
∑

i=3
ksi,

a62 = −
L2

f
Iθ

2
∑

i=1
csi − L2

r
Iθ

4
∑

i=3
csi, a71 = −

T2
f

Iϕ

2
∑

i=1
ksi − T2

r
Iϕ

4
∑

i=3
ksi, a72 = −

T2
f

Iϕ

2
∑

i=1
csi − T2

r
Iϕ

4
∑

i=3
csi,

h1 = 1
mu1

(
ku1q1 + ks1zs − ks1L f θ − ks1Tf ϕ + cs1

.
zs − cs1L f

.
θ − cs1Tf

.
ϕ
)

,

h2 = 1
mu2

(
ku2q2 + ks2zs − ks2L f θ + ks2Tf ϕ + cs2

.
zs − cs2L f

.
θ + cs2Tf

.
ϕ
)

,

h3 = 1
mu3

(
ku3q3 + ks3zs + ks3Lrθ − ks3Tr ϕ + cs3

.
zs + cs3Lr

.
θ − cs3Tr

.
ϕ
)

,

h4 = 1
mu4

(
ku4q4 + ks4zs + ks4Lrθ + ks4Tr ϕ + cs4

.
zs + cs4Lr

.
θ + cs4Tr

.
ϕ
)

,

h5 = 1
ms

4
∑

i=1

(
ksizui + csi

.
zui
)
+

L f
ms

2
∑

i=1

(
ksiθ + csi

.
θ
)
− Lr

ms

4
∑

i=3

(
ksiθ + csi

.
θ
)

+
Tf
ms

2
∑

i=1
(−1)i+1(ksi ϕ + csi

.
ϕ
)
+ Tr

ms

4
∑

i=3
(−1)i+1(ksi ϕ + csi

.
ϕ
) ,

h6 =
L f
Iθ

2
∑

i=1

[
ksi(zs − zui) + csi

( .
zs −

.
zui
)]

+ Lr
Iθ

4
∑

i=3

[
ksi(zui − zs) + csi

( .
zui −

.
zs
)]

+
Tf L f

Iθ

2
∑

i=1
(−1)i(ksi ϕ + csi

.
ϕ
)
+ Tr Lr

Iθ

4
∑

i=3
(−1)i+1(ksi ϕ + csi

.
ϕ
) ,

h7 =
Tf
Iϕ

2
∑

i=1
(−1)i[ksi(zui − zs) + csi

( .
zui −

.
zs
)]

+ Tr
Iϕ

4
∑

i=3
(−1)i[ksi(zui − zs) + csi

( .
zui −

.
zs
)]

+
L f Tf

Iϕ

2
∑

i=1
(−1)i

(
ksiθ + csi

.
θ
)
+ LrTr

Iϕ

4
∑

i=3
(−1)i+1

(
ksiθ + csi

.
θ
) .

This paper selects the state vector of the system as x1 = [zu1
.
zu1]

T , x2 = [zu2
.
zu2]

T ,

x3 = [zu3
.
zu3]

T , x4 = [zu4
.
zu4]

T , x5 = [zs
.
zs]

T , x6 = [θ
.
θ]

T
, x7 = [ϕ

.
ϕ]

T , and system

output as y1 =
..
zu1, y2 =

..
zu2, y3 =

..
zu3, y4 =

..
zu4, y5 =

..
zs, y6 =

..
θ, y7 =

..
ϕ. The control input

is ui. This paper mainly considers the control coupling and lists the remaining items as
uncertain items hi. The seven-DOF vehicle model (8)–(14) is abbreviated as follows:

.
xi = Aixi + Biui + ωihi i = 1, 2, · · · , 7 (15)

yi = Cixi + Diui + λihi i = 1, 2, · · · , 7 (16)

In the formula, Ai = [0, 1; ai1, ai2], Ci =
[
ai1 ai2

]
, λi = 1, B5 = B6 = B7 =

[
0 1

]T ,

ωi =
[
0 1

]T , D1 = −1/mu1, D2 = −1/mu2, D3 = −1/mu3, D4 = −1/mu4, D5 =

D6 = D7 = 1, B1 =
[
0 −1/mu1

]T , B2 =
[
0 −1/mu2

]T , B3 =
[
0 −1/mu3

]T , B4 =[
0 −1/mu4

]T .
It can be seen from Equations (15) and (16) that the 7-DOF vehicle model is decomposed

into seven subsystems. According to the multi-agent theory, the seven subsystems can be
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regarded as seven agents, i = 1, 2, · · · , 7. By designing the i-th agent control strategy, the
system can follow the ideal value of its output.

2.2. System Control Model Based on Graph Theory

In multi-agent system graph theory, it is mainly composed of node sets and edge
sets, represented by G = (V, κ) [27]. Use V = {v1, v2, · · · , vn} to represent the node set,
and define the node set as a finite non-empty set, where node set V contains n elements,
and i ∈ {1, 2, · · · , n} can be used to represent each node, representing n agents. Let
κ = {κ1, κ2, · · · κm} denote the edge set. The edge εk belonging to the edge set must have a
corresponding node pair (vi, vj) in the node set V, where vi represents the start point and
vj represents the end point. Al is the adjacency matrix, which represents the relationship
between the subsystems in the system, element aij is the relationship between the i-th agent
and the j-th agent, the correlation is 1, and the non-correlation is 0, Dr = diag(d1, d2, · · · , dn)
is the In-degree matrix, among di = ∑n

j=1,j 6=i aij, L is the Laplace matrix, L = Dr − Al .
According to the communication topology and hardware connections of the seven

subsystems (8)–(14), the topology of the active suspension control system based on graph
theory is constructed as shown in Figure 3.
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According to the basis of graph theory and matrix theory, the adjacency matrix of the
seven agents Al , In-degree matrix Dr, and Laplace matrix L is

Al =



0 1 1 1 1 1 1
1 0 1 1 1 1 1
1 1 0 1 1 1 1
1 1 1 0 1 1 1
1 1 1 1 0 1 1
1 1 1 1 1 0 1
1 1 1 1 1 1 0


, Dr =



6 0 0 0 0 0 0
0 6 0 0 0 0 0
0 0 6 0 0 0 0
0 0 0 6 0 0 0
0 0 0 0 6 0 0
0 0 0 0 0 6 0
0 0 0 0 0 0 6


, L =



6 −1 −1 −1 −1 −1 −1
−1 6 −1 −1 −1 −1 −1
−1 −1 6 −1 −1 −1 −1
−1 −1 −1 6 −1 −1 −1
−1 −1 −1 −1 6 −1 −1
−1 −1 −1 −1 −1 6 −1
−1 −1 −1 −1 −1 −1 6


.

3. Distributed Model Predictive Control of Active Suspension for the i-th Agent

The goal of system control is to make the vertical displacement, pitch angle, and roll
angle of the vehicle as small as possible, while at the same time reducing the acceleration of
vibration in all directions. As a result, this paper presents a fast distributed model predictive
control method for active suspension for engineering applications based on multi-agent theory
and the concept of fast partial differential equation solving using neural networks.
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3.1. The i-th Agent Prediction Model

The purpose of the control in this paper is to make the i-th agent output (16) quickly
follow its ideal value under the condition of satisfying the state and control constraints.

The ideal values that define the output of the system are as follows:

y∗i = ρixi (17)

In the formula, ρi =
[
−ki1 −ki2

]
, i = 1, 2, · · · , 7, according to the linear control

theory, the necessary and sufficient condition for the stability of the second-order system
is that each coefficient kin(i = 1, 2, · · · , 7; n = 1, 2) of each system must be greater than
zero. Selecting a large damping coefficient for the second-order system can significantly
attenuate zu1, zu2, zu3, zu4, zs, θ, ϕ, but the selection of the coefficient must consider other
indicators, such as the dynamic deflection of the suspension, the dynamic travel of the
wheel, and so on. The simulation experiment [28] is used to determine ki1 = 0.25, ki2 = 2.

Let the output deviation eyi = yi− y∗i , γi = ρi− Ai, according to Equations (16) and (17),
we can obtain

eyi = γixi + Diui + λihi (18)

Definition P is the prediction time domain, m is the control time domain, and P ≥ m
is defined. It is assumed that the control quantity outside the control time domain is
unchanged, that is, ∆ui(k + n) = 0, n = m, m + 1, · · · , P− 1. The indeterminate term does
not change after time, which is ∆hi(k + n) = 0, n = 1, 2, · · · , P− 1.

Using the forward Euler method to discretize the state Equation (15) and output bias
Equation (18) of the i-th agent, we can obtain

xi(k + 1) = (I + TAi)xi(k) + TBiui(k) + Tωihi(k) (19)

eyi(k) = γixi(k) + Diui(k) + λihi(k) (20)

In the formula, T is the control period.
Write the discretized state Equation (19) and output deviation Equation (20) in the

form of an incremental model:

∆xi(k + 1) = Ai∆xi(k) + Bi∆ui(k) + ωi∆hi(k) (21)

eyi(k + 1) = eyi(k) + γi Ai∆xi(k) + γiBi∆ui(k) + γiωi∆hi(k) + Di∆ui(k + 1) (22)

In the formula, Ai = I + TAi, Bi = TBi, ωi = Tωi, ∆xi(k) = xi(k) − xi(k− 1),
∆ui(k) = ui(k)− ui(k− 1), ∆hi(k) = hi(k)− hi(k− 1).

According to the incremental model of the system (21), we can obtain

∆xi(k + 2) = Ai∆xi(k + 1) + Bi∆ui(k + 1) + ωi∆hi(k + 1)

= A2
i ∆xi(k) + AiBi∆ui(k) + Aiωi∆hi(k) + Bi∆ui(k + 1)

∆xi(k + P) = AP
i ∆xi(k) + AP−1

i Bi∆ui(k) + AP−1
i ωi∆hi(k) + AP−2

i Bi∆ui(k + 1)

+ · · ·+ AP−m
i Bi∆ui(k + m− 1)

(23)

among them, i = 1, 2, · · · , 7 is the state prediction at time k to time k + 1.
Similarly, according to Formula (22), we can obtain
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eyi(k + 2) = eyi(k) +
(

γi A
2
i + γi Ai

)
∆xi(k) +

(
γi AiBi + γiBi

)
∆ui(k)

+
(
γi Aiωi + γiωi

)
∆hi(k) +

(
γiBi + Di

)
∆ui(k + 1) + Di∆ui(k + 2)

eyi(k + P) = eyi(k) +
P
∑

n=1
γi A

n
i ∆xi(k) +

P
∑

n=1
γi A

n−1
i Bi∆ui(k) +

P
∑

n=1
γi A

n−1
i ωi∆hi(k)

+

(
P−1
∑

n=1

(
γi A

n−1
i Bi

)
+ Di

)
∆ui(k + 1)

+ · · ·+
(

P−m+1
∑

n=1

(
γi A

n−1
i Bi

)
+ Di

)
∆ui(k + m− 1)

(24)

Define the P step prediction state vector, the output bias vector, and the m step input
vector as follows:

XP,i(k) =
[
∆xi(k + 1) ∆xi(k + 2) · · · ∆xi(k + P)

]T (25)

EP,yi(k) =
[
eyi(k + 1) eyi(k + 2) · · · eyi(k + P)

]T (26)

Ui(k) =
[
∆ui(k) ∆ui(k + 1) · · · ∆ui(k + m− 1)

]T (27)

From Equations (23)–(27), the equations for predicting the next P steps of the system
can be obtained:

XP,i(k) = φi∆xi(k) + νi∆hi(k) + ιiUi(k) (28)

EP,yi(k) = ξieyi(k) + αi∆xi(k) + εi∆hi(k) + βiUi(k) (29)

In the formula, φi =


Ai

A2
i

...
AP

i

, ιi =



Bi 0 0 · · · 0
AiBi Bi 0 · · · 0

...
...

...
. . .

...
Am−1

i Bi Am−2
i Bi Am−3

i Bi · · · Bi
...

...
...

. . .
...

AP−1
i Bi AP−2

i Bi AP−3
i Bi · · · AP−m

i Bi


,

εi =



γiωi
2
∑

n=1
γi A

n−1
i ωi

...
P
∑

n=1
γi A

n−1
i ωi


, αi =



γi Ai
2
∑

n=1
γi A

n
i

...
P
∑

n=1
γi A

n
i


, νi =


ωi

Aiωi
...

AP−1
i ωi

, ξi =


I
I
...
I

,

βi =



γiBi Di 0 · · · 0
2
∑

n=1
γi A

n−1
i Bi γiBi Di · · · 0

...
...

...
. . .

...
m
∑

n=1
γi A

n−1
i Bi

m−1
∑

n=1

(
γi A

n−1
i Bi

)
+ Di · · · · · · γiBi + Di

...
...

...
. . .

...
P
∑

n=1
γi A

n−1
i Bi

P−1
∑

n=1

(
γi A

n−1
i Bi

)
+ Di · · · · · ·

P−m+1
∑

n=1

(
γi A

n−1
i Bi

)
+ Di


.

3.2. Fast Rolling Optimization Based on RBF Neural Network
3.2.1. Optimization Indicators

In order to improve the ride comfort and handling stability of the vehicle and reduce
the loss of control energy, a multi-objective optimization function Ji is defined.
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Firstly, in order to improve the ride comfort and handling stability of the whole
vehicle, the predicted output value of the system is made close to the ideal value under the
constraints of the system state and control input.

According to the dimensionality reduction control model of active suspension based on
graph theory, this paper considers the hardware connection and communication topology
among seven agents, as well as the influence of other agents on their own agents, and the output

following the deviation of the i-th agent is defined as ψi(k) =
7
∑

j=1,i 6=j
aij
(
Em,yi(k)− Em,yj(k)

)
.

Define Ji1 as follows:

Ji1(k) = ‖ψi(k)‖2
Qi

= ψT
i (k)Qiψi(k) (30)

In the formula, Em,yi(k) is the systematic deviation vector of the m step prediction, aij
is the element of the adjacency matrix Al , Qi is the weight matrix, which represents the
degree of tracking error suppression.

Secondly, in order to ensure the system stability of the proposed control method, a
terminal error is introduced and Ji2 is defined as follows:

Ji2(k) =
∥∥eyi(k + m)

∥∥2
Fi

(31)

In the formula, Fi is the weight matrix, which represents the degree of terminal error
suppression.

Finally, in order to ensure that the control actions in the entire control process are
within the allowable range to reduce energy loss, and considering the energy saving of the
vehicle system, Ji3 is defined as follows:

Ji3(k) = ‖∆Ui(k + P)‖2
Ri

(32)

In the formula, Ri is the weight matrix, which represents the inhibition degree of the
control quantity.

Therefore, the optimization metric of the i-th agent is in the form

minJi(k) = min(Ji1(k) + Ji2(k) + Ji3(k)) (33)

3.2.2. Constraints

Firstly, to satisfy the dynamic constraints of the system

xi(k + 1) = Aixi(k) + Biui(k) + ωihi(k)
eyi(k) = γixi(k) + Diui(k) + λihi(k)

(34)

Secondly, the state constraints of the system need to be satisfied:

xi,min ≤ xi ≤ xi,max (35)

Finally, it is necessary to ensure that the output of the seven agent controllers is within
the allowable range, and the control constraints can be obtained according to Formula (7)
as follows:

ui,min ≤ ui ≤ ui,max

msu5 − u1 − u2 − u3 − u4 = 0

Iθu6 + L f u1 + L f u2 − Lru3 − Lru4 = 0

Iϕu7 + Tf u1 − Tf u2 + Tru3 − Tru4 = 0

(36)
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3.2.3. Quadratic Programming Solution

According to the constraint Equations (34)–(36) and the performance index Equation (33),
the optimization indicators in this paper are organized into the following standard quadratic
programming problems:

JQP,i(k) = Γi + 2MT
i QiβiUi + UT

i

(
βT

i Qiβi + Ri

)
Ui − 2

7

∑
j=1;i 6=j

aijUT
j βT

i QiβiUi (37)

In the formula,

Qi = diag
(
Q · · · Q F

)
,

Mi(k) = ξiEyi(k) + αi∆xi(k) + εi∆hi(k)−
7

∑
j=1;i 6=j

aij
(
ξ jEyj(k) + αj∆xj(k) + ε j∆hj(k)

)
,

Γi(k) = MT
i (k)Qi Mi(k)− 2MT

i (k)Qi

7

∑
j=1;i 6=j

aijβiUj(k) +
7

∑
j=1;i 6=j

aijUT
j (k)βT

i Qi

7

∑
j=1;i 6=j

aijβiUj(k).

Since Mi(k), Γi(k) in formula (37) has no relationship with Ui(k), it does not affect the
optimization of performance indicators and can be ignored.

In the process of a rolling optimization solution, the model prediction output in an analyti-
cal expression can be used with quadratic programming to solve the optimal control sequence:

∂JQP,i

∂ui
= 2MT

i Qiβi + 2
(

βT
i Qiβi + Ri

)
Ui − 2

7

∑
j=1;i 6=j

aijUjβ
T
i Qiβi (38)

U∗i =
(

βT
i Qiβi + Ri

)−1
(

7

∑
j=1;i 6=j

aijUjβ
T
i −MT

i

)
Qiβi (39)

For the i-th agent, in the process of converting the standard quadratic programming
problem, the control quantity Uj of other j-th agents is replaced by the control input
sequence Uj(k

∣∣k− 1) predicted at the previous moment.
So far, the parameterized MPC problem described in Equation (33) has been trans-

formed into a standard quadratic programming problem, which can be directly solved by
using the quadratic programming algorithm.

3.2.4. Partial Differential Equation Solution Based on RBF Neural Network

The QP solution process involves the inverse operation of the solution matrix, which
reduces the solution speed of MPC. It is difficult to realize engineering applications. The
RBF neural network has a simple structure and strong nonlinear fitting ability. It has
a global best approximation property. It can approximate any nonlinear function with
arbitrary precision [29]. Therefore, to properly weigh the computational efficiency and
dynamic performance index of the system, the rolling optimization of DMPC is optimized
using the RBF neural network in this study.

In this paper, the RBF neural network is used to solve the partial differential equation
shown in Equation (38). With ηi =

[
eyi(k + 1) · · · eyi(k + P) ∆xi(k)

]T as the input of
the network, the number of nodes from the input to the output of the network is m + 1, l, m,
respectively, and the output form of the system is

Û∗i = σ(ηnυn1 + µn1)υn2 + µn2 (40)

For this neural network, the model parameters can be expressed as

(υ∗n, µ∗n) = argmin
(υn ,µn)

Ji(ςn) (41)
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In the formula, ςn represents the set of network parameters {υn, µn}, and the optimiza-
tion of parameters adopts stochastic gradient descent. The iterative formula is as follows:

ς
(N+1)
n = ς

(N)
n − τ∇ςn Ji

(
ς
(N)
n

)
(42)

In the formula, τ is the Nth iteration step size, and the gradient ∇ςn J of the loss
function relative to the model parameters is usually calculated using backpropagation,
which is a special case of the reverse mode automatic differentiation technique.

Using the data samples obtained in the model prediction as the input of the network,
through the training of the neural network, the function that maps the input vector to the
output vector can be found, and the solution of the optimal weight approximation equation
can be found, so that Û∗i can be easily solved.

3.3. Feedback Mechanism

In the actual application process, the existence of external interference is inevitable,
which will cause certain errors in the prediction model and result in a deviation of the
predicted output value from the ideal value. Therefore, a feedback strategy will be added
to the control system to correct the prediction. The combination of the model, rolling
optimization, and feedback correction can make the prediction model closer to the actual
situation and improve the anti-interference ability of the prediction model.

Select the first element ∆û∗i (k) in the predicted time domain control sequence Û∗i (k) =[
∆û∗i (k) ∆û∗i (k + 1) · · · ∆û∗i (k + m− 1)

]T , let u∗i (k) = u∗i (k − 1) + ∆û∗i (k). Apply
u∗i (k) to the system as the input of the controller at the next moment, where i = 1, 2, · · · , 7.
Predict the output at the next moment according to the state quantity and perform error
compensation through feedback correction, such as rolling optimization, to improve the
control accuracy of the system.

4. Simulation Verification

Establishing a road disturbance input model is the basis for studying vehicle dynamic
response and its control [30]. In general, in order to ensure that the actual road surface is
consistent with the obtained time domain road surface, f0 = 0.0628Hz.The four wheels are
stimulated by the road surface, as shown in Figure 4. The excitation of the rear wheel and
the front wheel of the car is time-delayed.
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Figure 4. Pavement Incentives.

The vehicle 7-DOF model and the road excitation model were built in Matlab/Simulink,
and the simulation was combined with Carsim. Under the B-level road excitation input,
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the simulation model runs at a constant speed of 72 km/h for 10 s. The parameters of the
vehicle model selected in this paper are shown in Table 1.

Table 1. Parameters related to 7-DOF vehicles.

Parameter Value Unit

ms 1370 kg

mu 40 kg

Iϕ 606 kg ·m2

Iθ 4192 kg ·m2

cs1,2 2228 N/(m/s)

cs3,4 2210 N/(m/s)

ks1,2 153 kN/m

ks3,4 82 kN/m

ku 230 kN/m

L f 1.111 m

Lr 1.666 m

Tf 0.7525 m

Tr 0.7525 m

In order to verify the optimization effect and effectiveness of the RBF neural network
modeling method, this paper uses nonlinear objects for simulation experiments and com-
pares the accuracy of the RBF neural network combined with model predictive control and
conventional model prediction (taking u1 as an example). The simulation results are shown
in Figure 5.
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Figure 5. RBF neural network prediction result graph.

When the vehicle drives on the road at a constant speed, the body will shake to different
degrees, which will affect the riding comfort and driving stability. According to the control
algorithm proposed in this paper, the actuating forces acting on the four suspension agents
are solved, as shown in Figure 6a. An uncontrolled suspension is introduced for comparison
to reflect the improvement effect of the control strategy proposed in this paper on the ride
comfort and handling stability of the vehicle. For ride comfort, the most intuitive evaluation
index is to minimize the level of acceleration vibration felt by people. The simulation results
are shown in Figure 6. When the four wheels are excited by the road surface, the vertical
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acceleration (Figure 6b), pitch angular acceleration (Figure 6c), and roll angular acceleration
(Figure 6d) of the vehicle body are all greatly reduced.
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Figure 6. Vehicles under normal driving conditions: (a) Suspension actuation force. (b) Vertical
acceleration. (c) Pitch angular acceleration. (d) Roll angular acceleration.

According to the simulation results in Figure 6, the vertical acceleration and pitch
acceleration have been significantly improved. Since the roll effect is not obvious when the
vehicle is driving at a constant speed on the B-level road, this paper chose to add steering at
5 s. According to the control algorithm proposed in this paper, the actuating forces acting on
the four suspension agents are solved, as shown in Figure 7a. The simulation results under
the steering condition are shown in Figure 7 Compared with the passive suspension, the
control algorithm proposed in this paper is significantly lower in the vertical acceleration
(Figure 7b), pitch angular acceleration (Figure 7c), and roll angular acceleration (Figure 7d).
Therefore, it can be seen that, on the basis of reducing the vertical motion of the body, the
algorithm also suppresses the pitching and rolling motions of the body and improves the
riding comfort and driving stability of the vehicle.

In this paper, the proposed control strategy is compared to the conventional model
predictive control to verify its effectiveness in improving the ride comfort and handling
stability of the vehicle. The simulation results are shown in Figure 8. It can be seen
intuitively from the figure that the vertical acceleration (Figure 8a) and the pitch angular
acceleration (Figure 8b) of the vehicle body are greatly reduced, and the roll angular
acceleration (Figure 8c) has also been improved. It can be seen that the control strategy has
achieved good effects on ride comfort and driving stability.
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Figure 7. Vehicles under turning conditions: (a) Suspension actuation force. (b) Vertical acceleration.
(c) Pitch angular acceleration. (d) Roll angular acceleration.
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Figure 8. Comparing Results with Conventional Model Predictive Control: (a)Vertical acceleration.
(b) Pitch angular acceleration. (c) Roll angular acceleration.
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5. Conclusions

This paper establishes a seven-degrees-of-freedom vehicle model and uses the active
suspension system as the research object. The performance index and computational ef-
fectiveness of the system are taken into consideration with the aim of reducing vertical
acceleration, pitch angular acceleration, and roll angular acceleration. A fast-distributed-
model-based predictive control strategy based on multi-agents is proposed, which compre-
hensively analyzes the suspension performance through multiple performance indicators.
The proposed method is compared with passive suspension and conventional model pre-
diction algorithms by using CarSim and Matlab/Simulink. The outcomes demonstrate that
the control strategy suggested in this research has little impact on the scheme’s optimality.
Additionally, the vertical acceleration, pitch angular acceleration, and roll angular acceler-
ation of the vehicle body are significantly reduced, particularly in the steering condition,
allowing for simultaneous consideration of the vehicle’s safety, comfort, and handling
stability. The calculation results show that, compared with passive suspension, the vertical
acceleration of the vehicle body, the pitch angle acceleration, and the roll angle acceleration
of the proposed method are reduced by 47%, 54.2%, and 15.5%, respectively. Compared
with conventional model prediction algorithms of active suspension, the vertical accelera-
tion of the vehicle body, the pitch angle acceleration, and the roll angle acceleration of the
proposed method are reduced by 32.6%, 33.7%, and 8.7%, respectively. This verifies the
effectiveness of the control algorithm that was designed.
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