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Abstract: Telemedicine has the potential to improve access and delivery of healthcare to diverse and
aging populations. Recent advances in technology allow for remote monitoring of physiological
measures such as heart rate, oxygen saturation, blood glucose, and blood pressure. However, the
ability to accurately detect falls and monitor physical activity remotely without invading privacy or
remembering to wear a costly device remains an ongoing concern. Our proposed system utilizes a
millimeter-wave (mmwave) radar sensor (IWR6843ISK-ODS) connected to an NVIDIA Jetson Nano
board for continuous monitoring of human activity. We developed a PointNet neural network for
real-time human activity monitoring that can provide activity data reports, tracking maps, and fall
alerts. Using radar helps to safeguard patients’ privacy by abstaining from recording camera images.
We evaluated our system for real-time operation and achieved an inference accuracy of 99.5% when
recognizing five types of activities: standing, walking, sitting, lying, and falling. Our system would
facilitate the ability to detect falls and monitor physical activity in home and institutional settings to
improve telemedicine by providing objective data for more timely and targeted interventions. This
work demonstrates the potential of artificial intelligence algorithms and mmwave sensors for HAR.

Keywords: continuous human activity monitoring; millimeter-wave radar sensor; PointNet; artificial
intelligence; telemedicine; fall alert

1. Introduction

Demands on the healthcare system associated with an aging population pose a sig-
nificant challenge to nations across the world. Addressing these issues will require the
ongoing adaptation of healthcare and social systems [1]. According to the United States
Department of Health and Human Services, those aged 65 and older comprised 17% of the
population in 2020, but this proportion is projected to rise to 22% by 2040 [2]. Further, the
projected increase in the population of those aged 85 and above is anticipated to increase
by twofold. Older adults are more prone to chronic and degenerative diseases such as
Alzheimer’s, respiratory diseases, diabetes, cardiovascular disease, osteoarthritis, stroke,
and other chronic ailments [3] which require frequent medical care, monitoring, and follow-
up. Further, many seniors choose to live independently and are often alone for extended
periods of time. For example, in 2021, over 27% (15.2 million) of older adults residing in the
community lived alone [2]. One major problem for older adults who choose to live alone is
their vulnerability to accidental falls, which are experienced by over a quarter of those aged
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65 and older annually, leading to three million emergency visits [4]. Recent studies confirm
that preventive measures through active monitoring could help curtail these incidents [5].

Clinicians who treat patients with chronic neurological conditions such as stroke,
Parkinson’s disease, and multiple sclerosis also encounter challenges in providing effective
care. This can be due to difficulty in monitoring and measuring changes in function
and activity levels over time and assessing patient compliance with treatment outside of
scheduled office visits [6]. Therefore, it would be beneficial if there were accurate and
effective ways to continuously monitor patient activity over extended periods of time
without infringing on patient privacy. For these reasons, telemedicine and continuous
human activity monitoring have become increasingly important components of today’s
healthcare system because they can allow clinicians to engage remotely using objective
data [7,8].

Telemedicine systems allow for the transmission of patient data from home to health-
care providers, enabling data analysis, diagnosis, and treatment planning [9,10]. Given
the scenario that many older people prefer to live independently in their homes, in-
corporating and improving telemedicine services has become crucial for many health-
care organizations [11], a sentiment supported by the 37% of the population that utilized
telemedicine services in 2021 [12]. Telemedicine monitoring facilitates the collection of
long-term data, provides analysis reports to healthcare professionals, and enables them to
discern both positive and negative trends and patterns in patient behavior. These data are
also essential for real-time patient safety monitoring, alerting caregivers and emergency
services during incidents such as a fall [13]. This capability is valuable for assessing patient
adherence and responses to medical and rehabilitation interventions [14]. Various tech-
nologies have been developed for human activity recognition (HAR) and fall detection [15].
However, non-contact mmwave-based radar technology has garnered considerable at-
tention in recent years due to its numerous advantages [16], such as its portability, low
cost, and ability to operate in different ambient and temperature conditions. Furthermore,
it provides more privacy compared to traditional cameras and is more convenient than
wearable devices [17,18].

The integration of mmwave-based radar systems in healthcare signifies notable
progress, specifically in improving the availability of high-quality medical care for pa-
tients in distant areas, thus narrowing the disparity between healthcare services in rural
and urban regions. This technological transition allows healthcare facilities to allocate
resources more efficiently to situations that are of higher importance, therefore reducing
the difficulties associated with repeated hospital visits for patients with chronic illnesses.
Moreover, these advancements enhance in-home nursing services for the elderly and dis-
abled communities, encouraging compliance with therapeutic treatments and improving
the distribution of healthcare resources. Crucially, these sophisticated monitoring systems
not only enhance the quality and effectiveness of treatment but also lead to significant cost
reductions. These advancements play a crucial role in helping healthcare systems effec-
tively address the changing requirements of an aging population, representing a significant
advancement in modern healthcare delivery.

While mmwave-based radar technology offers significant advantages for HAR and
fall detection, the complexity of the data it generates presents a formidable challenge [19].
Typically, radar signals are composed of high-dimensional point cloud data that is inher-
ently information-rich, requiring advanced processing techniques to extract meaningful
insights. Charles et al. [20] recently proposed PointNet, a deep learning architecture that
enables the direct classification of point cloud data from mmwave-based radar signals.
Their model preserves spatial information by processing point clouds in their original form.
The combination of mmwave radar and PointNet can help HAR applications by improving
their performance in terms of precision, responsiveness, and versatility across a wide range
of scenarios [21]. Accordingly, we utilized the PointNet algorithm to process mmwave
radar’s point cloud data for our proposed HAR application to overcome the aforementioned
technical limitations. The primary contributions of our work are described below:
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• HAR System: We present an approach for HAR using the TI mmwave radar sen-
sor in conjunction with PointNet neural networks implemented on the NVIDIA
Jetson Nano Graphical Processing Unit (GPU) system. This system offers a non-
intrusive and privacy-preserving method for monitoring human activities without
using camera imagery. Furthermore, it directly uses point cloud data without addi-
tional pre-processing.

• Real-Time Classification of Common Activities: Our system achieves real-time
monitoring and classification of five common activities, including standing, walking,
sitting, lying, and falling, with an accuracy of 99.5%.

• Comprehensive Activity Analysis: We provide a novel comprehensive analysis
of activities over time and spatial positions, offering valuable insights into human
behavior. Our solution includes the ability to generate detailed reports that depict
the temporal distribution of each activity and spatial features through tracking maps,
ensuring a detailed understanding of human movement patterns.

• Fall Detection and Alert Mechanism: Our system includes an alert mechanism that
leverages the Twilio Application Programming Interface (API) protocol. This feature
allows for prompt notification in the event of a fall, enabling rapid intervention and
potentially saving lives.

The ensuing portions of this study are structured as follows: Section 2 of this paper
is dedicated to a comprehensive review of prior research on the various methodologies
employed for conducting HAR. In Section 3, a detailed description of the system architec-
ture of the mmwave-based HAR is presented. A description of the data preparation and
collection, along with the evaluation of the methodology’s effectiveness, can be found in
Section 4. In Section 5, the study’s findings and analyses are presented. The limitations and
future directions of the study are discussed in Section 6, and the conclusions are outlined
in Section 7.

2. Human Activity Recognition Approaches and Related Work

Human activity involves a series of actions carried out by one or more individuals
to perform an action or task, such as sitting, lying, walking, standing, and falling [22].
The field of HAR has made remarkable advancements over the past decade. The primary
objective of HAR is to discern a user’s behavior, enabling computing systems to accurately
classify and measure human activity [23].

Today, smart homes are being constructed with HAR to aid the health of the elderly,
disabled, and children by continuously monitoring their daily behavior [24]. HAR may
be useful for observing daily routines, evaluating health conditions, and assisting elderly
or disabled individuals. HAR plays a role in automatic health tracking, enhancements in
diagnostic methods and care, and enables remote monitoring in home and institutional
settings, thereby improving safety and well-being [25].

Existing literature in this area often categorizes research based on the features of the
devices used, distinguishing between wearable and non-wearable devices, as depicted in
Figure 1. Wearable devices encompass smartphones, smartwatches, and smart gloves [26],
all capable of tracking human movements. In contrast, non-wearable devices comprise
various tools like visual-based systems, intelligent flooring, and radar systems. An illus-
trative summary of these methodologies is presented in this section, offering a snapshot
of the investigations undertaken and a brief overview of diverse applications utilizing
these techniques.

Wearable technology has become increasingly useful in capturing detailed data on
an individual’s movements and activity patterns through the utilization of sensors placed
on the body [15]. This technology includes various devices such as Global Positioning
System (GPS) devices, smartwatches, smartphones, smart shirts, and smart gloves. Its
application has made notable contributions to the domains of HAR and human–computer
interfaces (HCIs) [26]. Nevertheless, it is important to acknowledge that every type of
device presents its own set of advantages and disadvantages. For instance, GPS-based
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systems face obstacles when it comes to accurately identifying specific human poses,
and experience signal loss in indoor environments [27]. Smartwatches and smartphones
can provide real-time tracking to monitor physical activity and location. They feature
monitoring applications that possess the ability to identify health fluctuations and possibly
life-threatening occurrences [28,29]. However, smartwatches have disadvantages such as
limited battery life, and users must remember to wear them continuously [30]. Further,
smartphones encounter issues with sensor inaccuracy when they are kept in pockets or
purses [31] and they encounter difficulties in monitoring functions that require direct
contact with the body. Other wearable devices, such as the Hexoskin smart shirt [32] and
smart textile gloves developed by Itex [33], present alternative options for HAR. However,
the persistent need to wear these devices imposes limitations on their utilization in a variety
of situations such as when individuals need to take a shower or during sleep [34]. As
mentioned before, especially when monitoring older adults, failure to constantly wear
monitoring devices can lead to missing unexpected events such as falls [35].

Figure 1. Classification of human activity recognition approaches.

Non-wearable approaches for HAR utilize ambient sensors like camera-based devices,
smart floors, and radar systems. Vision-based systems have shown promise in classify-
ing human poses and detecting falls, leveraging advanced computer vision algorithms
and high-quality optical sensors [36]. However, challenges like data storage needs, pro-
cessing complexity, ambient light sensitivity, and privacy concerns hinder their general
acceptance [37]. Intelligent floor systems such as carpets and floor tiles provide alternative
means for monitoring human movement and posture [38]. A study on a carpet system
displayed its ability to use surface force information for 3D human pose analysis but
revealed limitations in detecting certain body positions and differentiating similar move-
ments [39]. Recently, radar-based HAR has gained interest due to its ease of deployment in
diverse environments, insensitivity to ambient lighting conditions, and maintaining user
privacy [18,40].

Mmwave is a subset of radar technology [41], that is relatively low cost, has a compact
form factor, and has high-resolution detection capabilities [42]. Further, it can penetrate thin
layers of some materials such as fabrics, allowing seamless indoor placement in complex
living environments [43]. Commercially available mmwave devices have the capability
to create detailed 3D point cloud models of objects. The collected data can be effectively
analyzed using edge Artificial Intelligence (AI) algorithms to accurately recreate human
movements for HAR applications [44].

The mmwave radar generates point clouds by emitting electromagnetic waves and
capturing their reflections as they interact with the object or person. These point clouds
represent the spatial distribution of objects and movements, which are then processed
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to decipher human activities. However, the fluctuating count of cloud points in each
frame from mmwave radar introduces challenges in crafting precise activity classifiers, as
these typically require fixed input dimensions and order [35]. To address this, researchers
commonly standardize the data into forms like micro-Doppler signatures [45,46], image
sequences [47–49], or 3D voxel grids [19,50] before employing machine learning. This
standardization often results in the loss of spatial features [51] and can cause data bloat
and related challenges [20].

The proposed approach uses the PointNet network to overcome constraints faced by
directly processing raw point cloud data, thereby retaining fine-grained spatial relationships
essential for object tracking [52]. As shown in Table 1, our proposed system achieved novel
high accuracy compared with prior studies and extracted accurate tracking maps using
spatial features. PointNet’s architecture, leveraging shared Multi-Layer Perceptron (MLP),
is computationally efficient and lightweight, making it well-suited for real-time HAR
applications [20].

Table 1. Overview on the mmwave radar with machine learning for detecting simple HAR studies.

Ref. Preprocessing Methods Sensor Type Model Activity Detection Overall
Accuracy

[45] Micro-Doppler Signatures TI AWR1642 CNN 1 Walking, swinging hands, sitting, and shifting. 95.19%

[46] Micro-Doppler Signatures TI AWR1642 CNN Standing, walking, falling, swing, seizure, restless. 98.7%

[53] Micro-Doppler Signatures TI IWR6843 DNN 2 Standing, running, jumping jacks, jumping, jogging,
squats.

95%

[54] Micro-Doppler Signatures TI IWR6843ISK CNN Stand, sit, move toward, away, pick up something from
ground, left, right, and stay still.

91%

[55] Micro-Doppler TI xWR14xx RNN 3 Stand up, sit down, walk, fall, get in, lie down, NA 4

Signatures TI xWR68xx roll in, sit in, and get out of bed.

[56] Dual-Micro Motion Signa-
tures

TI AWR1642 CNN Standing, sitting, walking, running, jumping, punch-
ing, bending, and climbing.

98%

[57] Reflection Two LSTM 5 Falling, walking, pickup, stand up, boxing, sitting, 80%
Heatmap TI IWR1642 and Jogging.

[58] Doppler Maps TI AWR1642 PCA 6 Fast walking, slow walking (with swinging hands, or
without swinging hands), and limping.

96.1%

[59] Spatial-Temporal
Heatmaps

TI AWR1642 CNN 14 Common in-home full-body workout. 97%

[47] Heatmap Images TI IWR1443 CNN Standing, walking, and sitting. 71%

[48] Doppler Images TI AWR1642 SVM 7 Stand up, pick up, drink while standing, walk, sit
down.

95%

[49] Doppler Images TI AWR1642 SVM Shoulder press, lateral raise, dumbbell, squat, boxing,
right and left triceps.

NA

[19] Voxelization TI IWR1443 T-D 8 CNN Walking, jumping, jumping jacks, squats and boxing. 90.47%
B-D 9 LSTM

[50] Voxelization TI IWR1443 CNN Sitting posture with various directions. 99%

[21] Raw Points Cloud TI IWR1843 PointNet Walking, rotating, waving, stooping, and falling. 95.40%

This Work Raw Points Cloud TI IWR6843 PointNet Standing, walking, sitting, lying, falling. 99.5%

1 CNN : Convolutional Neural Network. 2 DNN: Deep Neural Network. 3 RNN: Recurrent Neural Network.
4 NA: Not Available. 5 LSTM: Long Short-Term Memory. 6 PCA: principal Component Analysis. 7 SVM: Support
Vector Machine. 8 T-D: Time-distributed. 9 B-D: Bi-directional.

3. System Overview

This section elucidates the primary components of our proposed system for continuous
HAR using a mmwave radar sensor. The system encompasses a mmwave radar sensor
for monitoring and an NVIDIA Jetson Nano GPU board to accurately discern five distinct
activities: standing, walking, sitting, lying, and falling, utilizing the PointNet deep learning
algorithms. Additionally, our proposed system uses an alert feature for care providers,



Sensors 2024, 24, 268 6 of 23

designed to notify them of fall events via Hypertext Transfer Protocol (HTTP) requests via
Twilio, which sends SMS notifications and initiates alert calls.

3.1. Millimeter-Wave Radar Sensor (IWR6843ISK-ODS)

Texas Instruments’ radar sensors employ frequency-modulated continuous wave
(FMCW) to determine the range, velocity, and angle of objects through frequency-modulated
signals [41]. The shorter wavelength of mmwave radars, falling within the millimeter range,
enhances accuracy and enables 3D visualization using point clouds, accurately identify-
ing human postures [13]. We use the Texas Instruments (TI) 60 GHz IWR6843ISK-ODS
mmwave radar for real-time point cloud generation in 3D Cartesian coordinates, along
with velocity information, to track individuals within its field of view (FoV) [60].

The IWR6843ISK-ODS mmwave sensor features a short-range antenna with a broad
FoV, interfacing with the MMWAVEICBOOST carrier card. Its evaluation module houses a
transceiver paired with an antenna, facilitating point cloud data access via USB, as depicted
in Figure 2. The key metrics of IWR6843ISK-ODS are listed in Table 2 [61]. The sensor,
with four receivers and three transmitters, can detect individuals up to 18 m away. The
maximum detectable range for a human is determined using the link budget formula.
This formula relies on factors like detection SNR, radar cross-section, radar device RF
performance, antenna gains, and chirp parameters, which are calculated by:

rmax,d = 4

√
σPTx GTx GRx λ2TcNcNTx NRx

(4π)3KTeLηSNR
(1)

where λ is the wavelength, K is Boltzmann’s constant,Te Ambient temperature, L is total
system loss. The IWR6843ISK-ODS sensor has built-in detection and tracking algorithms
to ascertain individual locations, monitor movements, and track all moving objects in the
scene, even if they are seated or lying down.

The detection process commences with a synthesizer emitting a chirp, which is trans-
mitted by the transmit antenna Tx (2) and then reflected off objects back chirp reflected at
the receive antenna Rx (3), as illustrated in Figure 3.

Tx=sin[w1t+Φ1]
(2)

Rx=sin[w2t+Φ2] (3)

The IF signal, as depicted in Equation (1), is a sinusoidal waveform whose instanta-
neous frequency and phase are determined by the disparities in the instantaneous frequency
and phase of the input sinusoidal signals. These signals are combined to create an interme-
diate frequency (IF) signal (4), which is subsequently digitized for further analysis.

IF = Tx + Rx = sin[(w1 − w2)t + (Φ1 − Φ2)] (4)

This creates measurement vectors or point clouds that show the physical properties
of the scene [41,61]. Obtaining raw 3D radar data is the first step in processing radar
signals. Each antenna then goes through range processing using 1D windowing and 1D
Fast Fourier Transform (FFT). Following this, a static clutter removal procedure is employed
to filter out stationary objects, isolating signals emanating from moving objects. Techniques
such as capon beamforming are utilized to formulate a range-azimuth heatmap, with
object identification being executed through a constant false alarm rate approach. Further
refinement is accomplished through elevation and Doppler estimations, which ascertain
the angular positions and radial velocities of detected objects [61].
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Figure 2. Texas Instruments IWR6843ISK-ODS mmwave sensor with MMWAVEICBOOST.

Table 2. Parameters of the mmwave Radar Sensor IWR6843ISK-ODS.

Parameter Physical Description

Type FMCW
Frequency Band 60–64 GHz

Start Frequency (fo) 60.75 GHz
Idle Time (Tidle) 30 µs
bandwidth (B) 1780.41 MHz

Number of Transmitters (Tx) 3
Number of Receivers (Rx) 4

Total virtual antennas (NTx , NRx ) 12
Transmit power (PTx ) −10 dBm

Noise figure of the receiver (η) 16 dB
Combined Tx/Rx antenna gain (GTx , GRx ) 16 dB

Azimuth (FoV) 120◦

Elevation (FoV) 120◦

Chirp time (Tc) 32.5 µs
Inter-Chirp time (Tr) 267.30 µs

Number of chirps per frame (Nc) 96
Maximum beat frequency (fb) 2.66 MHz

Center Frequency (fc) 63.01 GHz
Required detection (SNR) 12 dB

Maximum unambiguous range (rmax,u) 1 7.28 m
Maximum detection range based on SNR (rmax,d) 18.27 m

Maximum unambiguous velocity (vmax) 2 4.45 m/s
Range resolution (δr) 3 0.0842 m

Velocity resolution (δv) 4 0.0928 m/s
1 rmax,u = c fb

2K , 2 vmax = c
4Tr fc

, 3 δr = c
2B , 4 δv = c

Nc Tr fc
.
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Figure 3. Mmwave signal processing chain elements.

Transitioning to the tracking phase, the focus shifts toward identifying and tracking
clusters within the point cloud. The tracking layer leverages the point cloud data to pinpoint
and track these clusters, culminating in a target list. Each point encapsulates values such as
range, azimuth angle, and radial velocity. Through this layer, targets are identified and a
list is compiled, encapsulating attributes like track ID, position, velocity, and size, which
prove instrumental in subsequent tasks like visualization and object categorization [62].
Exploiting the radars’ expansive bandwidth and 8 cm range resolution, multiple target
points are derived from the reflections off the human body, with point clouds in each
frame representing these targets. The mmwave radar sensor’s point clouds each contain
3D coordinates and velocity, among other characteristics. The term “frame” denotes the
data set captured by the radar at each instance. Data points within each frame correspond
to target movement, rendering them pivotal for precise target location and suitable for
classification and recognition actions in high-level processing.

3.2. NVIDIA Jetson Nano GPU

The NVIDIA Jetson Nano is a compact integrated system-on-module (SoM) and de-
velopment package adept at executing multiple neural networks simultaneously. This
single-board computer (SBC) balances the computational capability essential for modern AI
applications with its small size, low cost, and low energy consumption while operating un-
der a power requirement of less than 5 W. It facilitates the deployment of AI frameworks for
tasks like image categorization, object detection, segmentation, and audio processing [63].
The characteristics of the NVIDIA Jetson Nano system are summarized in Table 3 [64].

Additionally, NVIDIA offers the TensorRT toolkit to enhance the effectiveness of deep
learning layers on Jetson devices. TensorRT is a high-quality deep learning inference
software development kit (SDK) that melds an inference optimizer with runtime for low
latency and robust throughput. Compatible with training frameworks like TensorFlow and
PyTorch, it efficiently executes pre-trained networks on NVIDIA’s hardware. Compared
to standard GPU-based inference, TensorRT notably enhances performance and reduces
power consumption [65,66].

Table 3. The NVIDIA Jetson Nano System-on-Module’s characteristics.

Parameter Physical Description

GPU 128 cores NVIDIA Maxwell architecture

CPU ARM Cortex-A57 multiprocessor core (Quad-core)
unit

RAM 64-bit LPDDR4
Memory Capacity 4 GB

Max Memory Bus Frequency 1600 MHz
Peak Bandwidth 25.6 GB/s

Storage 16 GB, eMMC 5.1
Power 5 Watt

Mechanical 69.6 mm × 45 mm, 260-pin edge connector
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3.3. PointNet Neural Network

In our methodology, the PointNet architecture processes raw point cloud data to
classify the points into one of five categories: standing, walking, sitting, lying, or falling.
The architecture shown in Figure 4 begins with an input layer for a set of cloud points
p = (p1, p2, . . . , pn), where n represents the total number point count, with each point being
characterized by its Cartesian coordinates. pi = (x, y, z) in a 3D Euclidean space, designed
to accommodate point clouds with a shape representing the number of points and three
coordinates. Following the input layer, the model proceeds with an input transformation
network (T-net), which operates on the raw point cloud data. A significant aspect of Point-
Net is the incorporation of T-net, which aims to spatially align the point cloud data, helping
in learning rotation and translation-invariant features. In the architecture of the PointNet
model, following the initial T-net, there are three 1D convolutional layers (Conv1D), each
comprising 32 filters. Following each convolution operation, the convolution output under-
goes 1D batch normalization (BN1D) for normalization purposes. Subsequently, a Rectified
Linear Unit (ReLU) activation function is employed to introduce nonlinearity, aiding the
model in learning from the data. This is achieved by applying ReLU(yi) = max(0, yi). The
model then goes through another T-net to align the feature representations. It also aligns
the feature space with a transformation matrix, using a regularization term to ensure near
orthogonality and stable optimization.

Treg =
∥∥∥I − KKT

∥∥∥2

F
(5)

where I is the identity matrix, K is the feature alignment matrix predicted by the T-net, and
F denotes the Frobenius norm. This alignment is crucial as it improves the model’s ability
to generalize across varied spatial orientations of data. Then another Conv1D with 32 filters,
one with 64 filters, and a final one with a whopping 512 filters for deeper feature extraction.
After convolutional layers, a global max pooling layer condenses the feature maps into a
single global feature vector. Following the pooling layer, the global feature vector is passed
through a series of fully connected layers known as the MLP. The MLP comprises three
layers. The first two layers have 256 and 128 units, respectively. 1D batch normalization
and ReLU activation follow each of these layers, ensuring a normalized and non-linear
transformation of the data. Additionally, dropout layers with a rate of 0.3 are interspersed
between these fully connected layers for regularization to reduce the risk of overfitting
during training. The third dense layer is designed to reshape the features for subsequent
operations. The MLP serves to further process the extracted features, making them suitable
for the final classification stage. The network ends with a fully connected layer that has
a set number of class units and a SoftMax activation function that sorts the input point
cloud into one of five classes. The entire process enables PointNet to derive human posture
classifications from 3D data and utilize these to create spatial feature tracking maps. The
finalized model is then stored to be used on the Nvidia Jetson Nano for real-time execution.

Figure 4. PointNet Model Architecture.
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3.4. Twilio API Programmable Protocol Messages

Text messages are an efficient means of delivering timely alerts, particularly within
the healthcare sector, in the case of critical events like falls. Therefore, we use the Twilio
Application Service to make a fall alert SMS system. Twilio is a web service API that
offers programmable communication capabilities for the transmission and receiving of text
messages, phone calls, and several other modes of communication. The HTTP protocol is
used to transmit administrator notifications to Twilio REST APIs, which allow developers
to send SMSs and calls, as shown in Figure 5. Twilio SIM cards, administered via APIs
and the Twilio Console, provide tailored solutions for IoT applications [67]. Therefore, it
enables effective communication, rapid event response, and improved alerting systems.
This feature is crucial in facilitating patient communication and notifying care providers
about fall incidents.

Figure 5. Falling Alert System Architecture.

As illustrated in Figure 5, upon the detection of a fall, the system swiftly initiates
an HTTP request to the Twilio cloud platform. Upon receipt of this request, the server
evaluates the information and leverages the Twilio REST API to instruct Twilio to dispatch
a predetermined SMS bearing the critical fall alert message. Simultaneously, a voice call is
initiated by the platform, alerting the designated emergency contact through an automated
voice message about the detected fall. This contact could be a healthcare practitioner or a
close relative. The entire process commences with fall detection on our Jetson Nano model,
then moves to the Twilio cloud platform, where it interfaces with the Twilio service, and
culminates in notifying the selected emergency contact through both an SMS and voice
call alert.

4. Experiment Setup and Data Collection
4.1. Experimental Setup

The experimental setup aimed to acquire data on human activities within a simulated
home environment. A mmwave radar sensor, specifically the IWR6843ISK-ODS model,
was positioned on tripods at a height of 2 m, as shown in Figure 6. The radar was tilted by
15 degrees in the depth-elevation plane to enhance coverage over a designated 12-square-
meter area. This area was designed to mimic a living room setting, with furniture like
chairs, floor mats, beds, and walking space. The primary target for detection was the
human subject, as depicted in Figure 6.
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Figure 6. The experimental setup.

4.2. Data Collection

Our study received permission from the University of Dayton Institutional Review
Board (IRB) for data collection involving a cohort of 89 healthy adults in accordance
with ethical guidelines. The data collection encompassed 57 male participants, while 32
were female. Taking into account a broad spectrum of height and weight variations is
necessary to generate training data that can represent a diverse population, which leads
to better generalization and reduces biases. A summary of the participant’s demographic
characteristics can be found in Table 4. Further, incorporating a diversified set of weight
and height parameters during the training phase is crucial to ensuring that the model
encompasses an ample quantity of varied and representative data points. This allows the
model to effectively generalize its classification capabilities when applied to the test data.

Table 4. The demographic details of the participants.

Parameter Mean ± SD (Range)

Age 24 ± 7.42 (21–53)
Height (cm) 169 ± 5.32 (158–186)
weight (kg) 76 ± 11.53 (55–115)

BMI 1 (kg/cm2) 25.44 ± 4.36 (19.56–40.55)
Gender (M/F) 2 57/32

1 BMI: Body Mass Index. 2 M: Male, F: Female.

Our study centered on the recognition of five distinct bodily positions: standing,
walking, sitting, lying, and falling, which constitute the five output categories, as depicted
in Figure 7. The process of radar signal handling, detailed in Section 3, commences with the
emission of chirp signals by the radar’s transmitters. Subsequently, the receiver captures
these signals following their interaction with the participants, leading to the extraction of
data pertaining to trackable objects. Also, our dataset is carefully labeled to differentiate five
activities, reducing overlap and enhancing clarity. This dataset comprises key attributes,
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including track ID, position, velocity, and physical dimensions. Throughout the study
protocol, each participant engaged in a sequence of activities. These activities encompassed
standing before the sensor for a duration of 30 s, engaging in random walking movements
within the sensor’s coverage area for an additional 30 s, assuming a seated posture on a
chair for 30 s, lying on a bed for 30 s with intermittent rolling to both sides, and ultimately
transitioning from a standing position to an abrupt fall, remaining in the fallen position
for an additional 30 s. The mmwave radar sensor effectively captured the participants’
movements and generated point cloud data. This collected data file for each participant’s
activity contains numerous data frames, which significantly increases the dataset’s size.
Data collection was conducted across various positions within the room to ensure diversity
and enhance data quality. Five samples, each spanning a duration of 30 s, were acquired
from each participant during this process.

    

(a)

    

(b)

   

(c)

    

(d)

    

(e)

Figure 7. Samples of who participates in the collecting data phase. (a ) Standing. (b) Walking. (c) Sitting.
(d) Lying. (e) Falling.

4.3. Data Analysis

To evaluate the efficacy of our PointNet model and its architecture, a comprehensive
array of evaluation metrics was used. These encompassed fundamental measures such
as the Receiver Operating Curve (ROC), F1-score, precision, recall, and the utilization of
confusion matrixes.

The data were split into training (80%) and validation (20%) sets to adjust hyperpa-
rameters, prevent overfitting, and evaluate the model’s performance on unseen data. The
model was trained with the training dataset, allowing its performance to be evaluated and
compared to the validation dataset, which was not used during training.

4.4. Receiver Operating Characteristic (ROC) Curve

The assessment of the model included ROC curve analysis, which is commonly utilized
as a diagnostic instrument for evaluating the performance of classification models. This is
achieved by evaluating the trade-off between the true positive rate and the false positive
rate across different discriminatory thresholds. The present study involved the application
of ROC analysis to assess the accuracy of the radar in identifying the five predetermined
physical activities.

The findings depicted in Figure 8 highlight the performance of the proposed model
across the activity categories. The ROC curves for these classes not only demonstrate
prominent peaks but also validate the model’s performance in accurately distinguishing
various activities, including scenarios involving fall detection. The ROC curves for all five
classes exhibit similar and parallel trajectories, indicating a stable and equally proficient
true recognition rate across various positions. The mean ROC curve suggests that the
efficacy of the HAR utilizing mmwave radar for the classification of five distinct activities
is 99.5%, highlighting the effectiveness of the proposed system in accurately discriminating
between various tasks.
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Figure 8. The ROC Curve of the PointNet model.

4.5. Confusion Matrixes

The confusion matrix is a useful tool for assessing the effectiveness of classification
models. The abscissa represents the true labels, whereas the ordinate represents the pre-
dicted labels. Enhanced model performance is shown by a higher concentration of predicted
values along the diagonal of the confusion matrix. In Figure 9, the confusion matrix visu-
ally portrays the classification performance. Notably, all activity classes are classified with
excellent accuracy. While ‘Lying’ and ‘Falling’ have certain similarities in terms of their
proximity to the ground and body posture, the key distinguishing feature between them is
the height at which the human target is positioned above the ground surface, which differs
greatly between the two. Radar’s ability to generate a three-dimensional representation
allows it to overcome these hurdles, resulting in highly effective classification performance.

Figure 9. The Confusion Matrix of the PointNet model.
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4.6. F1-Score, Precision, Recall

An evaluation of the classification performance is conducted by calculating metrics
such as “F1-score”, “Precision”, and “ Recall”. These measures consider the quantities of
true positives (TPs), true negatives (TNs), false positives (FPs), and false negatives (FNs).
Mathematically, the metrics are defined in the following manner:

The F1-score is a metric that calculates a weighted average of precision and recall.

F1-score = 2 × Recall × Precision
Recall + Precision

(6)

The precision metric is formally defined as the ratio produced by dividing the count
of true positive instances by the sum of the count of true positive instances and the count
of false positive instances.

Precision =
TPs

TPs + FPs
(7)

The mathematical expression for the recall formula involves dividing the number of
true positives by the sum of true positives and false negatives.

Recall =
TPs

FNs + TPs
(8)

A summary of the Evaluation metric results can be found in Table 5.

Table 5. The Evaluation metric of the PointNet model.

Standing Walking Sitting Lying Falling

F1-score 1.00 1.00 1.00 0.9767 0.9756
Precision 1.00 1.00 1.00 1.00 0.9524

Recall 1.00 1.00 1.00 0.9545 1.00

5. Results and Discussions

This section presents the results of our proposed system for continuous monitoring of
human activities. We conducted two separate experiments, one for a short period (5 min)
and another for a longer duration (30 min), which provided comprehensive data analysis
reports regarding activity distribution over time and space. We also tested the fall detection
and alert mechanism, which is connected via the Twilio REST API protocol, for notifying
supervisory personnel in the event of a fall.

5.1. Real-Time Detection of Human Activity

During real-time monitoring of the five different activities (standing, walking, sitting,
lying, and falling), we assigned each activity a specific color: red for standing, yellow for
walking, green for sitting, pink for lying, and blue for falling, which gives an easy way to
discern between each. This is shown in the following Figures 10–14, where each human
target appears in the field of view by the mmwave sensor and is given a specific trackID,
and then the cloud points are recolored according to the current activity and the prediction
message that is displayed on the Rviz screen of the Jetson Nano in the “Activity_State”
parameter with position, velocity, and acceleration values of x, y, and z dimensions. These
values are continuously updated to provide a comprehensive description of the target’s
spatial location in a Cartesian coordinate system. Real images have been added to the
figures for illustrative purposes.
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Figure 10. Real-time detection of a person in a standing position.

Figure 11. Real-time detection of a person in a walking position.

Figure 12. Real-time detection of a person in a sitting position.
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Figure 13. Real-time detection of a person in a lying position.

Figure 14. Real-time detection of a person in a falling position.

5.2. Short-Term Monitoring of Human Activity

In this experiment test, we monitored two human targets for a short period of time
(5 min), and then the system produced a separate folder for each target identified by
their trackID, which contained the time distribution of each activity with its percentage
in a table along with a colored pie chart for quick and easy visualization, as shown in
Figures 15 and 16. Additionally, we tested the ability of our PoinetNet algorithm to keep
the spatial feature for creating a 2D tracking map that clarifies the position with the
corresponding colors assigned for each activity that provides an overview of the monitored
room, as shown in Figures 17 and 18, where the axes in the lower center indicate the sensor
location in the room. These features can provide healthcare providers with a comprehensive
perspective of their patients’ activity levels over time as well as the specific locations of
each activity, including falls. This can help healthcare professionals assess whether a fall
may be attributable to surrounding environmental factors, as well as know the specific
activity that was being performed immediately preceding the fall so that future falls might
be prevented.



Sensors 2024, 24, 268 17 of 23

(a)

(b)
Figure 15. Activities monitoring report of track ID: 1. (a) Table of the time distribution of activities.
(b) Pie chart of the time distribution of activities.

(a)

(b)
Figure 16. Activities monitoring report of track ID: 2. (a) Table of the time distribution of activities.
(b) Pie chart of the time distribution of activities.
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Figure 17. Tracking map of trackID: 1.

Figure 18. Tracking map of trackID: 2.

5.3. Long-Term Monitoring of Human Activity

In this experiment, we monitored one human target for about 30 min, and after that,
the system produced a separate folder for the target as we did in the previous experiment
shown in Figures 19 and 20. Additionally, we tested the fall alert feature to see how
accurately a fall was detected by the system. If a fall was detected, the Twilio REST API was
immediately activated to send an SMS notification and make an alert call. The resulting
SMS notification is shown in Figure 21.

(a)

(b)
Figure 19. Activities monitoring report of track ID: 3. (a) Table of the time distribution of activities.
(b) Pie chart of the time distribution of activities.
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Figure 20. Tracking map of trackID: 3.

Figure 21. SMS Fall event Alert.

6. Limitations and Future Directions

Although our work demonstrates the accuracy and feasibility of mmwave radar
for classifying and recording human activity, there are limitations to our findings. One
limitation is that we used primarily younger healthy subjects to train the model. Therefore,
additional validation in older adults and persons with significant movement impairments
such as stroke and Parkinson’s disease who also use assistive devices is warranted. Another
limitation of this study was that our testing took place in a simulated living environment
with limited obstructions. Additional testing in home and institutional settings with a
variety of room layouts and obstructions would be beneficial. Additionally, while mmwave
radar can recognize and track more than one person in a room, work remains to improve
the ability to identify each individual in the room so that the tracking data can be attributed
to the correct individual.
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While mmwave radar shows promise as a low-cost and portable solution for HAR,
there are still barriers to its widespread implementation. First, suitable Health Insurance
Portability and Accountability Act (HIPAA) compliant software and apps will need to
be developed that are simple to use and will provide relevant data in a usable format
so that healthcare providers can make informed decisions. Integration with smart home
systems such as video cameras, voice-activated devices, lighting, etc. would also improve
the usefulness of the device but would require additional effort. Work still needs to be
performed to determine the optimal coverage area so that the radar can be installed in the
correct locations and the number of radar units needed for a home or facility can be easily
determined. Lastly, even though radar does not record video images, privacy issues should
still be considered carefully as radar systems continue to improve their ability to recognize
and record human activity.

7. Conclusions

We describe a mmwave radar-based system that can accurately and efficiently classify
and monitor five distinct activities: standing, walking, sitting, lying, and falling in real
time and over extended periods. The purpose of our work was to demonstrate its use as a
tool for telemedicine in home and institutional settings so that caregivers and healthcare
providers can engage in remote activity monitoring. The proposed system was developed
on an NVIDIA Jetson Nano platform that uses PointNet neural networks to manage the
cloud point data from the mmwave radar system. Our methodology does not depend on
intermediary representations, such as 3D voxels or pictures, and maintains spatial linkages
that are essential for object tracking. As a result, the proposed system demonstrates the
capacity to accurately identify and classify five distinct activities in real time, regardless of
whether they involve a single target or several targets, with 99.5% accuracy. Our proposed
system offers detailed analyses and reports of activities over time and space, providing
insights into human behavior. It can generate reports showing the time period of activities
and spatial tracking maps for a more comprehensive understanding of movement patterns.
Finally, it incorporates functionality for sending a fall alert message and a call to healthcare
providers following a fall so that an immediate response can occur.
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