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Abstract: For high-precision positioning applications, various GNSS errors need to be mitigated,
including the tropospheric error, which remains a significant error source as it can reach up to a
few meters. Although some commercial GNSS correction data providers, such as the Quasi-Zenith
Satellite System (QZSS) Centimeter Level Augmentation Service (CLAS), have developed real-time
precise regional troposphere products, the service is available only in limited regional areas. The
International GNSS Service (IGS) has provided precise troposphere correction data in TRO format
post-mission, but its long latency of 1 to 2 weeks makes it unable to support real-time applications. In
this work, a real-time troposphere prediction method based on the IGS post-processing products was
developed using machine learning techniques to eliminate the long latency problem. The test results
from tropospheric predictions over a year using the proposed method indicate that the new method
can achieve a prediction accuracy (RMSE) of 2 cm, making it suitable for real-time applications.
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1. Introduction

For high-precision positioning applications, various GNSS errors need to be mitigated,
including the tropospheric error, which can reach up to a few meters. The troposphere is
a layer of the Earth’s atmosphere close to the Earth’s surface. Therefore, the tropospheric
delay is a local effect. This layer contains atomic and molecular constituents capable of
delaying and bending radio signals. As the bending effect is negligible compared to the
delay effect, only the delay effect is considered in this research [1]. The tropospheric delays
can be divided, based on physical parameters, into two components: the zenith hydrostatic
delays (ZHDs) and the zenith wet delays (ZWDs). The zenith total delays (ZTDs) can
be obtained by combining the two components [2]. With accurately known local surface
atmospheric pressure, the ZHD can be calculated precisely and subsequently applied as a
correction to remove its effect on positioning. Yao et al. proposed a local fusion method
from the PPP model as well as a few empirical models with a real-time local troposphere
fitting model to improve the accuracy and reliability of local Hong Kong tropospheric
prediction [3]. Compared to the ZHD, the ZWD is more difficult to model and determine
with high accuracy due to local water vapor variations [4]. In order to separate ZWD from
ZTDs, a so-called UNB3m model was proposed by Leandro et al. to model the ZHD as well
as ZWD based on a few predefined lookup tables. The model evolved from the original
UNB3 model by accounting for possible negative humidity [5]. Better accuracy than the
original Saastamoinen model was shown in Leandro et al. [5,6]. In this study, we employ
the UNB3m model to characterize the ZHD and subtract it from the ZTD to estimate the wet
delays. The International GNSS Service (IGS) has developed zenith troposphere products
in the SINEX_TRO exchange format (TRO), with data storage dating back to 1997 [7]. The
Center for Orbit Determination in Europe (CODE) has provided products since 2017, with
an original sampling interval of 2 h, which was changed later to 1 h starting from 8 January
2023. The latency of the IGS products, however, is 1 to 2 weeks, which makes them unable
to support real-time applications.
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In the realm of real-time troposphere applications, several regional correction services
utilize troposphere components generated using data from densely distributed regional
Continuously Operating Reference Stations (CORSs). Examples of such regional services
include the QZSS CLAS. However, these services cover only limited local areas due to
the availability constraints of dense networks. Other studies have attempted to utilize
IGS ultra-rapid products with the Precise Point Positioning (PPP) technique to derive
ZTDs for near real-time applications [8,9]. Additionally, efforts have been made using
CORSs in China to model tropospheric wet delays and utilize the resulting products
to enhance PPP convergence [10]. While real-time estimation of the troposphere has
achieved adequate accuracy in water vapor estimation, this approach relies heavily on
a solid connection between processing centers and remote stations to provide real-time
GNSS observation data, making its reliability contingent on infrastructure dependability.
However, observation outages are not uncommon among IGS stations, and the possible
long re-convergence caused by outages when employing the PPP technique presents further
obstacles to applications [11].

Neural network models are well suited for highly complex non-linear problems and
have been utilized across various applications for decades [12]. The widely used types of
neural networks include the feedforward neural network (FFNN) and recurrent neural
network (RNN). The FFNN possesses a simple structure, with information flowing unidirec-
tionally only (forward) within the network, while the RNN has a bi-directional information
flow [12–14]. In an effort to overcome the gradient vanishing problem in the traditional
RNNs, the long-short term memory (LSTM) method was introduced [15]. GNSS atmo-
spheric correction prediction is a suitable application for adopting the machine learning
approach. By applying the machine learning method to conduct real-time troposphere pre-
diction, the latency associated with post-processed troposphere products can be eliminated.
Numerous studies have already been carried out to apply neural network approaches
to prediction of the effect of the ionosphere, which is another important component in
the atmospheric delay affecting GNSS positioning accuracy [14,16–23]. There are research
results that consistently demonstrate high prediction accuracy on regional or global VTEC.
In terms of applying machine learning to troposphere prediction, some researchers have
been using machine learning methods in ZWD prediction. Among those studies, Lu et al.
developed a tropospheric delay network (TropNet) to estimate the troposphere over the
continental USA [2]. The wet delays used in the research are provided by the Geostationary
Operational Environmental Satellite-R series and the global forecast system (GFS). The GFS
products are updated every 6 h and continuously predicted forward. An average improve-
ment of 11.9% was demonstrated. However, the prediction process requires the most recent
6 h of data for the next 6 h of prediction, making it complicated for field applications. Li
et al. employed LSTM on GNSS-derived ZTDs to enhance the Global Pressure-Temperature
(GPT3) model for Antarctica [24]. Zhang et al. investigated wide-area precise tropospheric
corrections (WAPTCs) together with those derived from GNSS as well as numerical weather
prediction (NWP) across mainland China, and validation shows sufficient accuracy [25]. Li
et al. applied a back-propagation neural network (BPNN) with meteorological parameters
in mainland China. The training data were based on radiosonde data at 182 sites over
7 years [26]. Bi et al. compared BPNNs and proposed a 1D convolutional neural network
(1D-CNN) and concluded that the CNN slightly exceeds that of the BPNN with an RMSE of
2.69 cm in China [27]. Meanwhile, Shi et al. introduced an efficient deep learning approach
for estimating troposphere delays for CORSs across China [28]. However, both studies
encountered limitations due to availability issues of historical data from the CORSs.

Due to the limitations in the existing approaches, a machine-learning-based approach
is proposed in this paper which simplifies the implementation of a machine learning algo-
rithm in tropospheric prediction and can lead to existing post-processed IGS troposphere
products to support real-time application. The proposed approach offers a practical and ac-
cessible solution to troposphere prediction without the need for continuous long-term data
and hard-to-access parameters. Instead, it requires readily available variables including
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time, local temperature, and relative humidity for the prediction, all of which are widely
available from various sources. By utilizing such commonly available information, this
approach simplifies the prediction process and enhances its feasibility for applications.
This paper has examined two tropospheric delay prediction approaches, one based on the
LSTM deep learning method and the other on the FFNN, aiming to enhance the accuracy of
long-term local tropospheric delay prediction. By utilizing six years of data spanning from
2017 to 2022 for model training and the entire year of 2023 data for testing, the objective
is to leverage extensive historical data to train models and subsequently forecast future
ZWD. The proposed model has been applied to predict local tropospheric wet delays over
a location in Alberta, Canada. The training data were downloaded from the IGS website,
and the weather data were retrieved from the Environment Canada website. Evaluation of
the prediction performance includes a comparison with the troposphere products obtained
from the Center for Orbit Determination in Europe (CODE) over the last 7 years. This
comparison also involves assessing the accuracy of the predictions and the estimation from
the PPP method.

The paper is structured as follows: Firstly, the methodology of the FFNN and LSTM
machine learning methods, along with associated evaluation techniques, is discussed. Sub-
sequently, test cases and results are presented, followed by an analysis of the performance
of troposphere prediction using the proposed approach. Finally, conclusions are drawn,
and future work is outlined.

2. Methodology

The slant troposphere delays can be retrieved as a byproduct of GNSS positioning.
By reversing the mapping function and employing weighted averaging techniques, the
station vertical troposphere delays can be generated. GPS-derived precipitable water vapor
(PWV) was utilized for predicting precipitation events [29]. PPP technique was employed
to derive PWV from zenith wet delay (ZWD). Another case study conducted in Turkey
used the Artificial Neural Network (ANN) method to predict troposphere wet delay on
selected dates representing summer, winter, and spring [30].

In December 2020, IGS finalized version 2 of the TRO file format in an effort to
standardize the exchange format for tropospheric products, which can be traced back to
1997 [7]. The troposphere delay values in the TRO file are usually tropospheric zenith total
delays (ZTDs) as well as total delay gradients. The zenith troposphere delays the relation
between the ZTD and the hydrostatic component (ZHD) as well as the wet part (ZWD):

ZTD = ZWD + ZHD (1)

The effort to model the ZHD has involved the realization of various models, such as
the Saastamoinen model and the UNB3m model [5,6,31].

ZHD =
[(0.0022779 ± 0.0024)]P0

fx(ϕ, H)
(2)

fs(ϕ, H) = 1 − 0.00266cos(2ϕ)− 0.00028H (3)

Equations (2) and (3) describe the Saastamoinen model. P0 is the surface pressure
in mbar, and fs(ϕ, H) is the function of geodetic latitude and height. In practice, local
pressure at the receiver level is usually unavailable, and a default sea level pressure is
applied instead. Therefore, the Saastamoinen ZHD remains constant at a particular location.
To account for seasonal variations in zenith troposphere as well as the wet component,
the UNB3m model was proposed, incorporating look-up tables for parameter variations
across different latitudes. This model was developed by the University of New Brunswick,
Canada [5,31].

In this study, we started with a focus on a single IGS station located near Priddis,
Alberta, Canada, with data ranging from 29 January 2017, to 16 December 2023. After ana-
lyzing the single station, we subsequently extended the same approach to the additional 11
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stations across Canada. Figure 1 depicts the Sasstamoinen model and UNB3m model lines
representing only the hydrostatic troposphere component along with the post-processing
products over the past 7 years. The Saastamoinen model remains constant throughout
the entire period, while the UNB3m model demonstrates a similar pattern to the post-
processing products but with a lower magnitude. Notably, the dry part exhibits a larger
magnitude during summer months and lower during winters, which is consistent with the
observation from the total troposphere from IGS. Hence, the UNB3m hydrostatic part is
employed to calculate the wet component of the troposphere.
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Figure 1. Troposphere comparison between hydrostatic UNB3m, Sasstamoinen, and IGS-COD
troposphere products for total zenith troposphere.

The converged weights and biases represent the best-fit model for the training inputs
and outputs. Subsequently, this model can be utilized to predict unknown outputs based on
a new set of inputs. In this study, both a fully connected FFNN and LSTM were employed
to predict ZWD. The input list included seasonal and diurnal parameters, which were
represented by the quadrature components of the day of the year (DoY) and the hour of the
day (HoD). It is commonly known that LSTM is suitable for time sequence prediction, which
requires continuous sequences in the training and following validation and prediction
periods. However, in our specific application, such continuous data availability poses a
challenge, particularly with meteorological data sources of Environment Canada. Therefore,
the time inputs are given to both the FFNN and LSTM models. The time components can
be described as follows [32]:

HoDC = cos
(

2π× t
24

)
, HoDS = sin

(
2π× t

24

)
(4)

DoYC = cos
(

2π× d
365.25

)
, DoYS = sin

(
2π× d
365.25

)
(5)

where t represents the hour of the day, and d denotes the day of the year.
The neural networks also make use of temperature and relative humidity as additional

inputs. Consequently, the input data dimension is 6 by epochs, while the output data
dimension is 1 by epochs.

The recurrent neural network (RNN) has the advantage of retaining temporal infor-
mation through its internal loops, which pass the temporal information between different
time frames. A chain-like neural network can be depicted by “unrolling” an RNN cell for
easy understanding. The LSTM network is a special kind of RNN with characteristics of
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learning long-term dependency [33]. Figure 2 illustrates the structure of a single LSTM cell.
A LSTM cell primarily consists of three gates: the input gate it, the forget gate ft, and the
output gate ot. With the help of the forget gate, an LSTM cell has the ability to retain or
forget information to some extent.
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Figure 2. LSTM cell architecture.

Based on the data flow in the architecture, the mathematical model of LSTM can be
summarized as [33]:

ft = σ(Wf[ht−1, xt] + bf) (6)

it = σ(Wi[ht−1, xt] + bi) (7)

ĉt = tanh(Wc[ht−1, xt] + bc) (8)

ct = fo
t ct−1 + iot ĉf (9)

ot = σ(Wo[ht−1, xt] + bo) (10)

ht = oo
t tanh(ct) (11)

Determining the optimal number of hidden neurons in the FFNN hidden layer and
the number of LSTM cells in LSTM layers is a trial-and-error process. Too few units may
lead to underfitting, while too many units, on the contrary, can cause overfitting [14]. In
order to find optimal numbers of neurons or cells for this troposphere research, various sets
of numbers were experimented with to determine the most balanced configuration. The
whole dataset covers the years from 2017 to 2023, with the year 2023 reserved for testing
purposes. Therefore, data from 2017 to 2022 were utilized to achieve this setting verification.
Just like regular training and validation, the 80% rule was applied, randomly dividing
the dataset into two groups: one training dataset and one validation dataset. A total of
8 settings of 2, 4, 6, 8, 10, 20, 40, and 100 neurons or cells were tested. Figure 3 shows the
statistical RMSE of all 8 settings and two options of having a single layer or double layers.
Based on the plots, a 10-neuron single hidden layer FFNN and double LSTM layers with
10 cells each were selected for further analysis in this paper. It is important to note that due
to the random shuffling of the training dataset, the numbers in the plots may vary slightly
each time the test is re-run, but the overall trend remains consistent.
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Figure 4 shows the architecture of the FFNN model being implemented in this study.
As depicted, the model takes 6 inputs: Sin(DoY) (DoYS), Cos(DoY) (DoYC), Sin(HoD)
(HoDS), Cos(HoD) (HoDC), temperature, and relative humidity. There is only one item
as output: ZWD. One hidden layer resides in the middle with fully connected channels
from inputs to output. During the training process, the model utilizes known inputs and
outputs to adjust internal weights and biases. Finally, those trained weights and biases
enable the model to make predictions. One of the main benefits of using neural networks is
their ability to find the relationship between inputs and outputs without explicitly knowing
the physical equations.
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Both FFNN and LSTM were chosen for troposphere prediction in this study. The
FFNN model comprises one hidden layer with 10 neurons, while the LSTM model consists
of two LSTM layers with 10 LSTM cells each. Figures 4 and 5 depict the proposed neural
networks for FFNN and LSTM, respectively.
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Figure 4 displays the layers involved in the FFNN model utilized in this study. On
the left side are all 6 inputs, while the single output is on the right. Temperature and
relative humidity are included to account for local variations, as they affect the actual wet
tropospheric delays. All information is transmitted to the output through a 10-neuron
hidden layer.

The Levenberg–Marquardt backpropagation algorithm is employed for training parame-
ters. Data division is based on random selection, and MSE is utilized for evaluation purposes.

The LSTM configuration shares the same set of input parameters and output parame-
ters as the FFNN. The input layer transmits information to the first LSTM layer, followed
by the second LSTM layer. After the two LSTM layers, a fully connected hidden layer is
utilized to connect the dimensions of the output of the LSTM layer with the final output
layer. All the LSTM training parameters are listed in Table 1.

Table 1. Parameters of the LSTM model.

Parameters Value

Activation Function Relu
Max Epochs 1000

Number of LSTM Layers 2 or 1
1st LSTM Layer Hidden Units 10
2nd LSTM Layer Hidden Units 10

Number of Dense Layers 1
Learning Rate 0.005

Optimizer Adam
Dropout 0.2

Loss Function Mean Squared Error (MSE)

3. Experiments and Results
3.1. Test Datasets

To test the troposphere prediction under various conditions, an IGS station (PRDS)
located in Priddis, Alberta, Canada, approximately 25 km southwest of the University
of Calgary campus, was selected. As CODE started providing troposphere data in 2017,
the test data span from the year of 2017 to the end of 2023. The troposphere data from
CODE are in TRO format, with a sampling interval of 2 h before 8 January 2023, which
was changed to 1 h after that. For compatibility, the resolution of the 2023 data was diluted
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to 2 h. The TRO files are accessible on the FTP CODE site (ftp.aiub.unibe.ch) (accessed
on 16 December 2023). The first day with the PRDS station is 29 January 2017. There are
missing data for 10 days in 2018, 3 days in 2019, and 2 days in 2022 for this particular
station. Since the troposphere, especially the wet component of the troposphere, has a
strong correlation of weather parameters, including temperature and relative humidity,
these variables are included in the test datasets. The weather data for Priddis are from
Environment Canada website (https://climate.weather.gc.ca) (accessed on 16 December
2023). There is also an outage in the weather data from 1 to 4 September 2020. The entire
year of 2023 was used for testing the model, with data available until the data retrieval
date of 16 December 2023. The downloaded weather data come with monthly files. The
weather data contain temperature and relative humidity information but not pressure.
Therefore, only temperature and relative humidity were included in the research. These
parameters are also easy to obtain locally if needed for prediction purposes. The time tags
in the weather data are in Local Standard Time (LST), which is 7 h behind UTC based on
the Canadian Mountain time zone. When combining troposphere and weather data, the
weather time tags need to be converted back to UTC. Additionally, the troposphere data in
TRO files are total delays, and the wet part needs to be retrieved before feeding into neural
networks based on the equation below.

ZWD = ZTD − ZHD (12)

The ZHD is calculated using the UNB3m model. Figure 1 depicts the COD total delay
as well as hydrostatic delays from UNB3m and Sasstamoinen. The figure shows that there
are instances where negative wet troposphere delays occur. This could be from inaccuracies
in modeled hydrostatic delays.

In terms of data splitting for training and validation, we allocated 80% of the data
for training and the remaining 20% for validation. Additionally, the data from 2023 were
kept aside for testing purposes. It is important to highlight that the training and validation
datasets were randomly reshuffled before splitting to prevent any artificially imposed
ordering. The time and data details are provided in Table 2.

Table 2. Time and data details.

Training Data Validation Data Test Data

Time 1 January 2017 to
31 December 2022

1 January 2017 to
31 December 2022

1 January 2023 to
16 December 2023

Size 25,765 × 0.8 = 20,612 25,765 × 0.2 = 5153 4200

3.2. Accuracy of Tropospheric Prediction

In this study, we evaluated and compared two types of neural networks: the FFNN
and LSTM. Due to outages in observing both weather data and troposphere products from
CODE and unavailability of local surface pressure data, a dataset of approximately 6-year
data was utilized for training and validation, while the data from the entire year of 2023
were for testing. Our analysis included both hourly errors and daily errors. Additionally,
the maximum absolute error (MAXAE), the mean absolute error (MAE), and the root-mean-
square error (RMSE) were analyzed on both an hourly and daily basis. The absolute error
is given by:

|ϵ| =
∣∣∣ZWDpred − ZWDtro

∣∣∣ (13)

where ϵ is the error between the estimate and known zenith wet tropospheric delay values,
ZWDpred is the estimated ZWD, and ZWDtro is the reference ZWD from TRO files. The
MAXAE, MAE, and RMSE values can be calculated using the following equations:

MAXAE = max
i=i:n

(ϵi) (14)

ftp.aiub.unibe.ch
https://climate.weather.gc.ca
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MAE =
∑n

i=1|ϵi|
n

(15)

RMSE =

√
∑n

i=1(ϵi)
2

n
(16)

where the subscript i means each sample point, and n is the total number of samples
considered. Total statistics have 2-h intervals, and for daily, this number should be 12 items
per day.

For the FFNN, as mentioned in the previous section, a hidden layer with 10 neurons
was utilized for both training and prediction purposes. The FFNN training was configured
with a predefined target iteration of 1000, and the training was terminated at the 115th
iteration. The neural network settings are summarized in Table 3. In Figure 6, a comparison
between the neural network prediction and actual troposphere from CODE, spanning the
entire year of 2023. It is apparent that the predictions can closely follow the variations but
with slightly less magnitude. Overall, the differences between the predicted and actual
troposphere are generally small and within a few centimeters.

Table 3. Parameters of the FFNN Model.

Parameters Value

Data Division Random
Training Algorithm Levenberg–Marquardt Backpropagation

Evaluation Mean Squared Error (MSE)
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In Figure 6, the actual difference between the troposphere from CODE and the machine
learning prediction is also displayed. In the location of the station, which is very close
to the campus of the University of Calgary, it is well known that the temperatures are
relatively stable in summer and have more dramatic variations in winter. It is not unusual
to have a 30 Celsius temperature change during a one-day timeframe. However, the
figure demonstrates that the prediction is not seasonally dependent, as there is no obvious
difference between summer and winter. This is relatively unexpected, considering that
the temperature changes more significantly in winter than in summer in Southern Alberta.
Figure 7 presents the statistical overview of the prediction throughout the entire year from
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a different perspective. The figure contains RMSE, MAE, and MAXAE for each month of
the year of 2023. It is evident that RMSE and MAE remain relatively stable throughout
the year, with a magnitude mostly below 2 cm. However, for MAXAE, higher maximum
absolute errors are observed during August.
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Figure 7. Monthly prediction Results (FFNN).

As for the LSTM model, there are no significant improvements compared to the FFNN
model. Figure 6 depicts the comparison between the LSTM prediction and the actual
troposphere from CODE.

The same figure displays the plot for the difference between the LSTM prediction and
the actual troposphere delays from CODE. Again, it demonstrates a relatively small differ-
ence compared to the corresponding plot from the FFNN model. Figure 8 provides detailed
statistical plots for RMSE, MAE, and MAXAE for individual months of the year 2023.

Table 4 presents the numerical results for the entire year of 2023 from both models. It
is observed that the FFNN performs slightly better in terms of RMSE, while LSTM is better
with absolute errors.

Table 4. Statistics of the two models.

Neural Network RMSE (m) MAXAE (m) MAE (m)

FFNN 0.018 0.075 0.014
LSTM 0.019 0.068 0.015

Based on the single station performance, we extended the analysis to an extended
selection across Canada. The stations cover the latitude from 45 degree to 64 degree north.
And the longitude covers from coast to coast in Canada. The extra 11 stations are all
available from IGS, which has recorded troposphere products since 2017.

The same method, which are 10 nodes for the FFNN and two LSTM layers with
10 neurons each, applies to all 11 extra stations, as shown in Figure 9. The results shown
in Figure 10, reveal that the FFNN and LSTM are performing similarly within a few
millimeters in RMSE. PRDS from Alberta and WILL from British Columbia demonstrate
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the lowest RMSE, which indicates the best performance. FRDN from New Brunswick,
HLFX of Nova Scotia, and SFJO of Newfoundland and Labrador exhibit poor performances
in terms of prediction. Notably, these stations are situated along the Atlantic coast of
Canada. One plausible explanation is the sparse distribution of CORSs in the region.
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4. Evaluation of Neural Network Models with Precise Point Positioning

In this section, the prediction performance of two neural network models will be assessed
by comparing the results to the precise point positioning (PPP) estimation. The observation
equations for pseudo-range and carrier phase are shown in the following equations.

Pj
k = ρj + dtr − dTj + mjT +

(
f2
1

f2
k

)
Ij
1 + bPk − Bj

Pk + ϵP (17)

Φj
k = ρj + dtr − dTj + mjT −

(
f2
1

f2
k

)
Ij
1 + λkNk + bΦk − Bj

Φk + ϵΦ (18)

where j represents the satellite index, k is frequency, P is the pseudo-range in meters, Φ is
the carrier phase in meters, ρ is the geometric range, dtr is the receiver clock in meters, dTj

is the satellite j clock, mjT is the slant troposphere delay, Ij
k is satellite j on frequency k slant

ionosphere delay, bPk is the receiver clock bias for the pseudo-range on frequency k, Bj
Pk is

the satellite j clock bias for the pseudo-range on frequency k, bΦk is the receiver clock bias
for the carrier phase on frequency k, Bj

Φk is the satellite j clock bias for the carrier phase on
frequency k, and ϵ is the measurement error.

The receiver clock biases for the pseudo-range and carrier phase can be absorbed by the
receiver clocks, satellite pseudo-range biases are applied, and satellite carrier-phase biases
are ignored. Consequently, the orbit error, clock error, receiver clock error, troposphere,
and ionosphere need to be estimated. Since the satellite carrier-phase biases are ignored,
the ambiguity integers cannot be restored, and only float solutions are processed.

mjT = mhZHD + mwZWD (19)

where mjT is the total slant troposphere delay, mh is the hydrostatic Niell mapping function,
mw is the wet Niell mapping function, ZHD is the hydrostatic zenith troposphere delay,
and ZWD is the wet zenith troposphere delay. Rewriting the observation equations, we can
obtain the following:

Pj
k = ρj + dtrk − dTj + mhZHD + mwZWD +

(
f2
1

f2
k

)
Ij
1 + ϵP (20)
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Φj
k = ρj + dtrk − dTj + mhZHD + mwZWD −

(
f2
1

f2
k

)
Ij
1 + λkNk + ϵΦ (21)

The slant troposphere delay can be separated into a hydrostatic part and a wet part
based on Equation (13). As the hydrostatic part of the zenith troposphere is known from
the UNB3m model, the estimated troposphere from the PPP engine is the zenith wet delay.

To carry out the validation test using PPP, data were logged using a Hemisphere
GNSS Phantom 40 board at Hemisphere GNSS’ Calgary office on 14 October 2023. The
Hemisphere GNSS P40 board has the capability to track the Hemisphere Atlas LBand
signal [34]. The Atlas correction was also logged with the receiver along with observations.
Figures 11 and 12 illustrate the performance of the FFNN and LSTM models against the
PPP estimation. The plots show that the PPP estimation exhibits more variations compared
to the neural network ZWD.
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As the PPP Atlas corrections do not include carrier-phase biases, the estimated carrier-
phase ambiguities do not converge to integers. Because float PPP requires a longer conver-
gence time, to ensure accurate statistics evaluation, the first 6 h of data were excluded from
the analysis, and they are not accounted for in the statistical data in the results. Table 5
below presents the RMSE, MAXAE, and MAE of the FFNN and LSTM performance. Both
the FFNN and LSTM models exhibit an RMSE of 1.6 cm and their MAEs are at 1.3 cm level,
while the maximum absolute error from LSTM is slightly better than that from the FFNN.

Table 5. Prediction compared to PPP results.

Neural Network RMSE (m) MAXAE (m) MAE (m)

FFNN 0.016 0.037 0.013
LSTM 0.016 0.036 0.013

5. Conclusions

In this work, we conducted a comparative analysis of a FFNN-based machine learning
model and employed an LSTM-based deep learning neural network for long-term tropo-
sphere prediction over a duration of one year. Various machine learning settings were
tested, and the results indicated that a single hidden layer FFNN model with 10 neurons,
as well as a two-LSTM-layer model with 10 hidden cells each, demonstrated the best
performance. Both the FFNN and LSTM models achieved RMSE of less than 2 cm for the
entire year of 2023. Using real-receiver observation and Hemisphere GNSS Atlas correction,
the generated ZWD on 14 October 2023, exhibited an RMSE of approximately 1.6 cm when
compared to both FFNN and LSTM predictions. The research suggests that both machine
learning methods can serve as simpler alternatives to IGS troposphere products. Unlike
other studies that employ machine learning models with more complex inputs and outputs,
our proposed models utilize local time and temperature and relative humidity, which
are parameters readily available from various sources. Therefore, this method can lead
to accuracy of postprocessing troposphere products with slight degradation in real-time
applications. Future work will include training with additional aiding information, such
as the local air pressure, to further enhance the prediction accuracy. Furthermore, it is
essential to examine the predictive accuracy over a dense network and explore potential
applications of PPP-RTK.
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