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Abstract: The finite element numerical simulation results of deep pit deformation are greatly in-
fluenced by soil layer parameters, which are crucial in determining the accuracy of deformation
prediction results. This study employs the orthogonal experimental design to determine the combi-
nations of various soil layer parameters in deep pits. Displacement values at specific measurement
points were calculated using PLAXIS 3D under these varying parameter combinations to generate
training samples. The nonlinear mapping ability of the Back Propagation (BP) neural network and
Particle Swarm Optimization (PSO) were used for sample global optimization. Combining these
with actual onsite measurements, we inversely calculate soil layer parameter values to update the
input parameters for PLAXIS 3D. This allows us to conduct dynamic deformation prediction studies
throughout the entire excavation process of deep pits. The results indicate that the use of the PSO-BP
neural network for inverting soil layer parameters effectively enhances the convergence speed of the
BP neural network model and avoids the issue of easily falling into local optimal solutions. The use of
PLAXIS 3D to simulate the excavation process of the pit accurately reflects the dynamic changes in the
displacement of the retaining structure, and the numerical simulation results show good agreement
with the measured values. By updating the model parameters in real-time and calculating the pile
displacement under different working conditions, the absolute errors between the measured and
simulated values of pile top vertical displacement and pile body maximum horizontal displacement
can be effectively reduced. This suggests that inverting soil layer parameters using measured values
from working conditions is a feasible method for dynamically predicting the excavation process of
the pit. The research results have some reference value for the selection of soil layer parameters in
similar areas.

Keywords: deep pit; neural networks; Particle Swarm Optimization; soil layer parameter inversion;
numerical simulation

1. Introduction

Numerical simulation was first applied to model one-dimensional unstable radial
and linear flow [1,2]. With the enhancement of computing capabilities, Clough et al. [3]
first applied finite element software to pit engineering, proposing the parameterized
finite element method and concluding that optimizing support structure parameters can
effectively reduce the horizontal displacement of retaining structures. Numerical simulation
effectively models the interaction between soil and support structures during the excavation
of pits [4–8] and offers excellent three-dimensional (3D) visualization effects. Neural
networks in pit deformation monitoring, with field monitoring data as the learning object,
are relatively simple to model, and the prediction results are more refined on the time
scale [9–13]. Currently, most scholars studying deformation predictions of deep pits
caused by excavation solely use either numerical simulation or machine learning methods.
Single analysis methods have certain limitations in addressing the complex geological
environments and engineering characteristics of deep pit projects.
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The method of parametric inverse analysis is widely used in engineering and slope
engineering under complex geological conditions [14–17]. Zhang et al. used different
theoretical methods to analyze the distribution law of soil pressure on the side of the
diaphragm wall and verified the applicability of the theoretical methods, which was in
good agreement with the measured values [18,19], which provides a certain theoretical basis
for this paper to use finite element numerical simulation to carry out parameter sensitivity
analysis. Zhang et al. [20] employed a design method for resisting the overturning of rigid
retaining walls in unsaturated soil excavations and verified the applicability of the adopted
approach. Ramakrishna Annapareddy et al. [21] developed a novel method reliant on
suction stress for calculating horizontal and vertical seismic acceleration profiles within
backfilled soil, and they validated the feasibility of this method.

In recent years, to provide crucial technical support for the design and construction
safety of pits, scholars have combined finite element numerical simulation with neural
networks. By inverting soil layer parameters through neural network models, they have
optimized input parameters for finite element software, achieving significant research out-
comes [22–30]. Ling et al. [22] proposed an intelligent displacement back-analysis method
based on improved PSO and BP neural networks. By integrating measured displacement
data from surrounding rocks at the construction site, they successfully inverted the me-
chanical parameters of the tunnel surrounding rocks, demonstrating the feasibility of this
method. Kwang et al. [24] used actual displacement monitoring data and combined finite
element and neural network methods to invert geotechnical parameters, obtaining optimal
parameters and confirming the reliability of this method. Li et al. [25] utilized the Mind
Evolutionary Computation (MEC) algorithm to optimize initial weights and thresholds
of BP neural networks, combined with finite element numerical simulation, proposed a
soil layer parameter inversion analysis method based on horizontal displacement of pits
and verified the stability and accuracy of the results. Wang et al. [26], based on actual data
from a subway tunnel, used a BP neural network to invert the physical and mechanical
parameters of the soil. The calculated results were input into the MIDAS GTS NX software
for forward numerical simulation, predicting deformations in subway tunnel structures
due to excavation. Zou et al. [27] used the finite difference numerical simulation software
to conduct numerical simulation calculations for a deep pit of a station, built a training set
based on the numerical simulation results, used the BP neural network to invert the forma-
tion parameters of the deep pit of the station, and applied the inversion parameters to the
construction to verify the rationality of the method. Ma et al. [28] designed 64 representative
soil parameter combinations through orthogonal experiments, obtained the displacement
value of each parameter combination through finite element numerical calculation, used
the actual monitoring data to invert the soil parameter of dynamic deformation of the pit,
obtained the deformation data of the next excavation stage, and verified the accuracy and
feasibility of this method. Zhao et al. [29] used PLAXIS finite element software to simulate
and analyze the deformation characteristics of deep pit excavation and, combined with
the Sparrow Search Algorithm BP(SSA-BP) neural network, proposed the parameter back
analysis method of the HSS model in the Dalian area. The results showed that, under
the premise of reasonable parameter selection. The finite element analysis results of the
Hardening soil-Small (HSS) model considering the characteristics of Soil small strain were
highly consistent with the actual deformation laws of the pit, which proved the rationality
of the parameter reverse analysis.

Analysis of current research, both domestically and internationally, reveals that the
accuracy of numerical simulations is greatly influenced by the input parameters of the soil
layers, and the three-dimensional visualization effects of neural network predictions are
suboptimal. At present, most scholars only invert specific soil layer parameters. However,
during the excavation of deep pits, the spatial shape, excavation area, and depth of the
pit are constantly changing. Therefore, it becomes particularly important to develop
multifaceted coupled numerical simulation techniques that closely align with the practical
realities of engineering projects.
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This study is based on a deep pit project and conducts a sensitivity analysis of soil layer
parameters. Using orthogonal testing, different parameter combinations are derived. These
combinations are then utilized in PLAXIS 3D to compute displacement values at various
sensor points, thus generating training samples. By leveraging the powerful nonlinear
mapping capabilities of neural networks and the global optimization features of PSO and
integrating actual onsite measurement values, the study successfully inverts the parameters
of multiple soil layers. The inverted parameters are subsequently used as input parameters
in PLAXIS 3D, enabling dynamic prediction throughout the entire excavation process of
the pit.

2. Fundamental Principles
2.1. Displacement Calculation in PLAXIS 3D

PLAXIS 3D V20 Update 1 is a three-dimensional geological modeling and numerical
analysis software based on the finite element method. In displacement calculations, the
model is discretized into a finite number of elements, and a system of linear equations
is solved to determine the displacement and stress state of each element. Based on the
solutions obtained, the deformations of the soil and the retaining structures during the
excavation process can be computed.

2.2. Neural Networks
2.2.1. BP Neural Networks

The BP neural network is a multi-layer feedforward neural network trained using the
error backpropagation algorithm. It primarily consists of an input layer, hidden layers,
and an output layer. The process of backpropagation in a BP neural network involves
continuously adjusting the weights and thresholds based on the error values. The basic
structure of the BP neural network is illustrated in Figure 1.
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Figure 1. Basic structure of BP neural network.

In Figure 1, the BP neural network’s input values are denoted as X1, X2, . . . , Xn, and
the output values as Y1, Y2, . . . , Yn, the weights of the BP neural network are represented by
wij and wjk, while n represents the number of nodes in the input layer and m the number
of nodes in the output layer. The specific training steps of the BP neural network are
as follows:

Step 1: Network Initialization; assume the initial thresholds of the network are a and b;
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Step 2: Hidden Layer Output Calculation; the formula is as follows:

Hj = f (
n

∑
i=1

wijxi − aj), j = 1, 2, . . . , l (1)

In the formula: wij and a respectively represent the weights and thresholds between
the input layer and the hidden layer of the BP neural network, l represents the number of
nodes in the hidden layer, and f is the activation function of the hidden layer.

Step 3: Output Layer Calculation: the formula for calculating the neural network’s
predictive output is as follows:

Hk =
l

∑
j=1

Hjwjk − bk, k = 1, 2, . . . , m (2)

In the formula, wjk and b represent the connection weights and thresholds of the neural
network, respectively.

Step 4: Error Calculation: the error e is calculated based on the predicted output H
and the desired output Y of the neural network. The calculation formula is as follows:

ek = Yk − Hk, k = 1, 2, . . . , m (3)

Step 5: Updating the Weights of the Input and Hidden Layers. Update the network
connection weights wij and wjk using the predicted error e from the BP neural network.
The calculation formula is as follows:

wij = wij + ηHj(1 − Hj)x(i)
m

∑
k=1

wjkek, i = 1, 2, . . . , m, j = 1, 2, . . . , m (4)

In the formula: η is the learning rate.
Step 6: Judge whether the algorithm is finished or not; otherwise, return to Step 2 until

the end.

2.2.2. Particle Swarm Optimization (PSO)

The PSO is primarily inspired by observations of bird predation behavior. The princi-
ple of the algorithm is as follows:

Suppose there are m particles in D-dimensional space, with the position of the particle
i(i = 1, 2, . . . , m) given by Xi(Xi1, Xi2, . . . , XiD) and velocity by Vi(Vi1, Vi2, . . . , ViD). The
fitness value is calculated by inserting Xi into the objective function to assess the quality of
the particle’s position. The optimal position during a single particle’s flight is denoted as
Pi(Pi1, Pi2, . . . , PiD), comparing the flight experiences of all particles in the population, and
the best group position is determined as Pg(Pg1, Pg2, . . . , PgD), g = 1, 2, . . . , m. Each particle
updates its velocity and position according to Formulas (5) and (6). The schematic diagram
of particle position updates is shown in Figure 2.

Vk+1
i = ωVk

i + c1r1(Pk
i − Xk

i ) + c2r2(Pk
g − Xk

i ) (5)

Xk+1
i = Xk

i + Vk+1
i (6)

In the formula, ω is the inertia weight factor, c1, c2 is the learning factor, r is a random
number in the interval [0,1], and k is the number of iterations.

Formula (5) indicates that the velocity update for particle i is primarily determined by
three factors: the velocity of particle i at the previous moment, labeled as Vk

i ; the distance
between the current position of particle i and its optimal position, denoted as Pk

i − Xk
i ; and

the distance between the current position of particle i and the overall best position, marked
as Pk

g − Xk
i .
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2.2.3. PSO-BP Neural Networks

PSO is a straightforward and easy-to-implement method for parameter tuning, primar-
ily focused on searching for the optimal initial weights and thresholds. To address issues
such as significant errors and the tendency of traditional BP neural networks to converge
to local minima, PSO is employed to optimize BP neural networks. The implementation
process of the algorithm is illustrated in Figure 3.
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2.3. Inversion of Soil Layer Parameters

Utilizing the powerful nonlinear mapping capabilities of neural networks along with
the global optimization features of PSO enables accurate and rapid determination of soil
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layer parameter values. The steps of the parameter inversion method adopted in this study
are as follows:

Step 1: Sample Collection
Through orthogonal experimentation, different parameter value combinations are

obtained. PLAXIS 3D is used to calculate displacement values at sensor points under these
different parameter combinations, generating displacement data for each parameter group,
which serve as training samples for the neural network.

Step 2: Construction of Nonlinear Function Relationships
Machine learning algorithms are written by using MATLAB V9.10 software. To

accelerate the convergence of the neural network, input data are normalized, and output
data are reverse normalized. The number of nodes in the hidden layer is determined, and a
transfer function suitable for each set of parameters and their corresponding displacement
values is defined.

Step 3: Sample Output and Testing
Displacement values measured at specific sensor points under a certain working

condition are used as input samples. The output parameter combinations, which are the
inverted soil layer parameters, are then used to update the input parameters in PLAXIS 3D
and perform calculations to predict deformations for the next working condition.

3. Engineering Overview
3.1. Excavation Profile

The pit is irregular, with a total area of approximately 8000 m2. The excavation depth of
the pit ranges from 10.95 m to 11.90 m, with a maximum length of 103.5 m and a maximum
width of 80 m. Ground elevations around the site are set at −0.300 m (relative elevation).
The top elevation of the basement floor slab in the second basement is −9.95 m., with a
thickness of 0.8 m and a cushion layer thickness of 0.1 m. The bottom elevation of the
basement floor cushion layer is −10.85 m. The thickness of the bearing platform at the edge
of the pit is 1.2 m and 1.8 m, respectively, with the bottom elevation of the platform cushion
layer ranging from −11.25 m to −11.85 m. The bottom elevation of the cushion layer of the
partial edge sump floor is −12.20 m. The excavation depth of the elevator pits in the water
collecting wells and other pits within the pit ranges from 0.85 m to 3.45 m. Based on the
severity of the impact on the surrounding environment and underground structures due to
the excavation depth, support structure damage, soil instability, or excessive deformation,
the safety level of this pit is classified as Grade I.

3.2. Geological Conditions

The maximum depth of exploration is 90.75 m below the natural ground surface of
the site, and the soils at the shallow depth, except for the soil fill, consist of the Quaternary
Holocene to Middle to Late Pleistocene alluvial to lacustrine clastic sediments. The survey
report shows that the soil layer around the pit from the top down is 1-1 plain fill, 1-2 plain
fill, 3 clay, 4-1 silty clay, 4-2silt with silt-sand. The physical and mechanical parameters of
each soil layer are listed in Table 1, and a typical geological profile is shown in Figure 4.

Table 1. Basic Parameters of Pit Soil Layers.

Soil Layer Thickness (m) Weight Density
(KN/m3) Friction Angle (◦) Cohesion (KPa) Compression

Modulus (MPa)

1-1 plain fill 2.4 18.3 10.0 12.0 5.34
1-2 plain fill 2.2 18.4 8.0 15.0 6.38
3 clay 1.6 19.5 14.3 52.7 7.43
4-1 silty clay 2.1 18.7 14.3 27.6 5.94
4-2 silt with silt-sand 4.1 18.6 24.5 8.0 10.20
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3.3. Hydrogeological Conditions

The surface water system in the area is well-developed, with a dense network of
rivers and lakes. The fluctuations in river and lake water levels generally correspond to
the inter-annual and intra-annual variations in precipitation, albeit with some lag. The
groundwater level remains consistently higher than the surface water level, exhibiting the
characteristic of unidirectional discharge into rivers and lakes. Shallow confined aquifers
exist in the silt and fine sand layers, and their dynamics are influenced by factors such as
atmospheric precipitation, topography, and surface water bodies, exhibiting characteristics
of precipitation-induced fluctuations. Pre-excavation precipitation measures are under-
taken, and the groundwater types relevant to this project mainly include phreatic water
and micro-confined water. Refer to the typical geological section in Figure 4 for details.

3.4. Surrounding Environment and Protection Scheme

To the east of the pit lies an approximately 8.0 m wide municipal road, while at the
northeast corner stands a 15-story existing building; the nearest distance from the proposed
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pit is 5.0 m. The southern and western sides of the site are bordered by municipal roads,
and to the north, there are municipal roads and a market building.

The protection system for this pit involves the use of a bored pile/biting pile combined
with two layers of reinforced concrete internal support. The piles are treated with shotcrete
protection, supplemented by fully enclosed Cutter Soil Mixing cement-soil mixed curtain
walls for waterproofing. The bored piles are constructed flush with the inner side of the
excavation, with a clear spacing of 0.2 m between piles and a 0.2 m clear spacing between
the cement-soil mixed curtain wall and the bored piles. The support system utilizes bracing,
counter-bracing, and edge trusses, along with steel columns supplemented by bored piles
as the vertical support structure for the horizontal support system. Drainage in the pit
using pipe wells to evacuate dry precipitation and open ditch catchment wells to pump
water. The bored piles and biting piles are constructed using underwater C30 concrete,
while the crown beams, wale, support beams, and biting file guide walls are constructed
with C30 concrete and the sprayed concrete surface layer with C20. Reinforcement bars are
of HPB300 and HRB400 grades, and the cement is P.O42.5 ordinary Portland cement.

3.5. Pit Monitoring Design

Monitoring focuses on the pit support structure, the bottom and surrounding soil
of the pit, surrounding buildings, relevant pipelines and facilities, municipal structures,
groundwater conditions, and important surrounding roads. Monitoring continues until the
completion of the pit, with a frequency of once per day. This study primarily calculates the
vertical displacements of pile tops (PD01–PD23) and the deep horizontal displacements
of piles (CX01–CX12) to assess whether the accuracy of numerical simulation predictions
improves after parameter inversion. Vertical displacement monitoring employs the leveling
method using an electronic level; deep horizontal displacement monitoring of the support
structure utilizes inclinometers, with the bottom of the inclinometer casing serving as the
reference point for monitoring the deformation of the support structure. The layout of the
pit plan and monitoring points is illustrated in Figure 5.
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4. Numerical Simulation Results and Sensitivity Analysis of Parameters
4.1. Finite Element Model

The dimensions of the finite element model were determined according to speci-
fications and reference to similar engineering experiences, considering the influence of
hydrogeological conditions and in conjunction with engineering background materials.
The model dimensions were set at 340 m × 280 m × 100 m. The establishment of the model
incorporated the actual excavation process of the pit and the constitutive relationship of
the soil adopted the small strain HSS model. Plate elements in PLAXIS 3D can withstand
vertical loads and possess the ability to resist bending and elastic deformation. Therefore,
plate elements were used to simulate the support of the row pile. The thickness of the plate
element was calculated to be 0.7 m using the formula for stiffness equivalent conversion
Equation (7). Interface elements were used to simulate the waterproof curtain and the
interaction between the soil and the structure. The boundary of the pit was assumed to be
impermeable. Internal support using steel support equivalent reinforced concrete internal
support and embedded beam elements were used to simulate the vertical support structure
of the horizontal support system.

1
12

(D + t)h3 =
1

12
πD4 (7)

In the Equation, t represents the pile spacing, D represents the pile diameter, and h
represents the equivalent thickness.

In the HSS constitutive model, the soil stiffness parameters, including the reference
stiffness modulus Ere f

50 , modulus of unloading and reloading Ere f
ur , and reference tangent

modulus Ere f
oed, are derived from laboratory soil compression modulus tests. The relationship

among these parameters [31] is referenced from Equation (8):

Ere f
50 ≈ Ere f

ur ; Ere f
oed = 3 ∼ 5Ere f

50 (8)

The model constructed using PLAXIS 3D finite element software is depicted in Figure 6,
while the support structure is illustrated in Figure 7. A total of 169,360 elements and
257,191 nodes were generated. The model’s computational boundary conditions are based
on the excavation of the pit. It is assumed that dewatering is completed during excavation
without considering the influence of groundwater.
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The simulation of staged construction steps is based on actual construction procedures,
outlined as follows:

Condition 1: Completion of dewatering processes, installation of drainage and row
of piles;

Condition 2: Excavation to support the crown beam bottom elevation −1.8 m, with
the addition of the first support system;

Condition 3: Sequential excavation of soil layers to the bottom elevation of −6.7 m
of the second support system, followed by the installation of wale and the second tier
of support;

Condition 4: Layered excavation of soil down to the slab bottom at an elevation
of −11.25 m.

4.2. Numerical Simulation Results

To validate the feasibility of selected support structures and the accuracy of numerical
simulation results, initial input parameters were employed to calculate representative
displacement values at monitoring points PD21 (vertical displacement of pile top) and
CX07 (horizontal displacement along the pile shaft).

(1) Vertical displacement of pile top
Figure 8 reveals that during the excavation and supporting phases, the vertical dis-

placement at PD21 fluctuates, mirroring the trend observed in field monitoring data, albeit
with larger amplitude fluctuations. The continued increase in displacement at the pile top
during the later stages of construction is attributed to the excavation process exposing the
pit bottom, causing a slight upward shift of the surrounding piles due to heaving at the pit
base. In later construction phases, the field-measured values exceed the simulation results
of the pile top displacement. This discrepancy arises because finite element software cannot
precisely mimic the excavation process stage by stage, and the simulated phases are often
completed earlier than the actual excavation, leading to differences between measured and
simulated outcomes.
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Pit excavation to the bottom of the pit, under different working conditions CX07
horizontal displacement of pile simulated values and measured values as shown in Figure 9.
When the foundation pit is excavated to the bottom elevation, the simulated and measured
values of the horizontal displacement of pile CX07 are presented in Figure 9. A horizontal
displacement is taken every 0.5 m from the top of pile CX07 to the bottom of the pile;
Figure 9 shows the monitoring value at the end of construction. Field measurements
indicate that internal bracing effectively mitigates horizontal displacement along the pile
shaft, affirming the adequacy of the support and bracing design. During the excavation to a
shallow depth in condition two, the horizontal displacement decreases progressively from
the pile top to the bottom. In conditions three and four, the horizontal displacement of the
pile increases first and then decreases from top to bottom; as the excavation depth increases,
the position of maximum horizontal displacement moves downward. The maximum
measured horizontal displacement was 17.51 mm, compared to the simulated maximum
of 16.29 mm. Both measured and simulated displacements remained within the warning
thresholds, suggesting that the numerical model accurately reflects changes in horizontal
displacement along the pile shaft.

Sensors 2024, 24, 2959 12 of 19 
 

 

 
Figure 8. Vertical Displacement at PD21. 

 
Figure 9. Horizontal displacement along the pile shaft. 

Overall, although there are uncontrollable discrepancies between the numerical re-
sults and field measurements, the trends are generally consistent. This demonstrates that 
the use of PLAXIS 3D for simulating deep excavation and deformation effectively captures 
the dynamic changes in the displacement of support structures, and numerical simulation 
can reliably predict pit deformations and accurately reflect the stability and safety of the 
excavation. 

4.3. Impact of Parameters on Simulation Outcomes 
The use of the HSS model for numerical simulation indicates that it is challenging to 

ascertain soil stiffness parameters 50
refE  , ref

urE  , and ref
oedE  , often leading to empirical 

Figure 9. Horizontal displacement along the pile shaft.



Sensors 2024, 24, 2959 12 of 18

Overall, although there are uncontrollable discrepancies between the numerical results
and field measurements, the trends are generally consistent. This demonstrates that the
use of PLAXIS 3D for simulating deep excavation and deformation effectively captures
the dynamic changes in the displacement of support structures, and numerical simulation
can reliably predict pit deformations and accurately reflect the stability and safety of
the excavation.

4.3. Impact of Parameters on Simulation Outcomes

The use of the HSS model for numerical simulation indicates that it is challenging to
ascertain soil stiffness parameters Ere f

50 , Ere f
ur , and Ere f

oed, often leading to empirical estimates
within a reference range, which introduces deviations between simulation results and
actual field conditions. The effective Friction angle (φ′) and effective cohesion (c′) directly
influence the shear strength and stability of the soil, impacting the output of numerical
simulations of excavation and support. During the dynamic construction process of a deep
pit, the soil within the pit undergoes vertical unloading, leading to dynamic changes in
stress states and continuous variations in soil parameter values, affecting the overall stability
of the excavation. By evaluating the maximum horizontal displacement at monitoring point
CX01, the influence of soil parameters Ere f

50 , Ere f
ur , Ere f

oed, φ′, and c′ on the numerical simulation
results is determined by the method of controlling variables. By changing the values of
the original soil parameters to 0.7 and 1.3 times the original, and other parameter values
remain unchanged, the numerical simulation calculation results are shown in Table 2.

Table 2. Impact of Soil Parameters on Numerical Simulation Outcomes.

Changing Factors / φ’ (◦) c’ (Kpa) Eref
50 (MPa) Eref

ur (Mpa) Eref
oed (Mpa)

Multiple of change 1.0 0.7 1.3 0.7 1.3 0.7 1.3 0.7 1.3 0.7 1.3
Maximum value (mm) 18.56 19.34 18.15 18.62 18.34 18.04 19.18 18.28 18.69 18.44 18.74

Rate of change (%) / 4.20 2.21 0.32 1.19 2.81 3.34 1.51 0.70 0.65 0.97

Table 2 indicates that the impact of soil parameters on the results of numerical simula-
tions varies in the order of φ′>Ere f

50 >Ere f
oed ≈ c′>Ere f

ur , with parameters Ere f
oed and c′ having a

similar effect. Since parameter c′ can be determined through in-lab geotechnical testing,
this study focuses on the inversion of soil parameters φ′, Ere f

50 , and Ere f
oed, which significantly

affect the outcomes.
Parameter inversion was performed for soil layers spanning from the top to the

bottom of the pit, encompassing five distinct layers. However, due to the negligible
displacement changes observed during the excavation of the first layer, this study only
conducts parameter inversion for the second through fifth layers. This approach allows
the input parameters in PLAXIS 3D to more closely align with the actual soil parameters
encountered during the construction process, enhancing the accuracy and relevance of the
numerical model.

5. Dynamic Prediction Analysis of Deep Pit
5.1. Sample Collection

Parameters to be inverted are classified as in Table 3, and the prefixed numbers
indicate the i-th soil layer. The setup involves 12 parameters—take three levels for each
factor. Utilizing an orthogonal array of twelve factors at three levels (Table L27(312)),
27 datasets were constructed to serve as input parameters for PLAXIS 3D. The horizontal
displacement of the CX07 pile shaft at intervals of 0.5 m was selected as the output for
PLAXIS 3D. Each dataset produced a corresponding set of output values, creating a total of
27 datasets that were employed as training samples for the PSO-BP neural network.
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Table 3. Soil Layer Parameter Level Classification.

2Eref
50 2Eref

ur 2φ’ 3Eref
50 3Eref

ur 3φ’ 4Eref
50 4Eref

ur 4φ’ 5Eref
50 5Eref

ur 5φ’

Unit MPa MPa ◦ MPa MPa ◦ MPa MPa ◦ MPa MPa ◦

Level 1 5.38 16.14 4.80 6.43 19.29 8.58 4.94 14.82 8.58 9.20 27.60 14.70
Level 2 6.38 25.52 8.00 7.43 19.72 14.3 5.94 23.76 14.30 10.20 40.80 24.50
Level 3 7.38 36.90 11.20 8.43 42.15 20.02 6.94 34.70 20.02 11.20 56.00 34.30

5.2. Results of PSO-BP Parameter Inversion

The PSO-BP was developed using the MATLAB toolbox. The architecture of the neural
network was configured with 40 nodes in the input layer, 12 nodes in the output layer, and
an optimal number of 10 nodes in the hidden layer. Leveraging the global optimization
capabilities of the PSO algorithm optimized weights and thresholds were assigned to the
network, enhancing the accuracy and efficiency of the model. The convergence speed of
the PSO-BP iterations is illustrated in Figure 10.
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Figure 10 shows that the PSO-BP achieves the best fitness value in the 14th generation.
The results of the program indicate that the PSO can enhance the convergence speed and
optimization performance of the BP neural network, thus improving its tendency to become
stuck in local optima.

To achieve dynamic prediction throughout the excavation process of the pit, the field-
measured data of pile CX07 after the completion of excavation under condition 2 is used
as the input sample for the PSO-BP neural network. The output is the soil parameter
values under condition 2, which are then used as input parameters for PLAXIS 3D to
predict the displacements under condition 3. After the actual excavation is completed,
the measured data are used as an input sample in the same manner to inversely calculate
the soil parameter values under condition 3. These updated parameters are then used
to predict the displacements under condition 4 in PLAXIS 3D. The inversely calculated
parameter values are shown in Table 4.
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Table 4. Parameter values inverted under different conditions.

2Eref
50 2Eref

ur 2φ’ 3Eref
50 3Eref

ur 3φ’ 4Eref
50 4Eref

ur 4φ’ 5Eref
50 5Eref

ur 5φ’

Unit MPa MPa ◦ MPa MPa ◦ MPa MPa ◦ MPa MPa ◦

Starting value 6.38 25.52 8.00 7.43 19.72 14.3 5.94 23.76 14.30 10.20 40.80 24.50
Condition 2 6.42 26.06 7.80 7.86 24.19 11.44 6.28 28.17 12.88 11.55 46.12 22.14
Condition 3 6.55 28.46 7.15 7.97 28.38 13.58 6.54 26.43 14.19 13.74 51.51 20.75

5.3. Dynamic Prediction Results Analysis

To minimize errors in the computational results of PLAXIS 3D, parameters inverted
from measured data during condition 2 were used as inputs. This enabled the calculation of
deformations in the support structure for condition 3, with a comparative analysis against
typical in-pit pile measurements. Following the excavation completion, comparisons
between measured and simulated vertical displacements at the pile top for condition 3 are
illustrated in Figure 11, and comparisons of maximum horizontal displacements along the
pile body are presented in Table 5.

Sensors 2024, 24, 2959 15 of 19 
 

 

of deformations in the support structure for condition 3, with a comparative analysis 
against typical in-pit pile measurements. Following the excavation completion, compari-
sons between measured and simulated vertical displacements at the pile top for condition 
3 are illustrated in Figure 11, and comparisons of maximum horizontal displacements 
along the pile body are presented in Table 5. 

 
Figure 11. Vertical displacement at the top of pile PD07 during condition 3. 

Table 5. Comparison of maximum horizontal displacement of pile body. 

Monitoring 
Point 

Measured Displacement/mm 
Numerical Simulation Results 

Predicted Value after Parameter  
Update 

Calculation Result 
(mm) 

Absolute Error 
(mm) 

Calculation Result 
(mm) 

Absolute Error 
(mm) 

CX01 12.02 10.68 1.34 11.84 0.18 
CX03 13.38 11.99 1.39 13.07 0.31 
CX07 13.57 12.24 1.33 13.38 0.19 
CX11 13.74 12.16 1.58 13.49 0.25 

Figure 11 shows that during condition 3, the maximum vertical displacement at the 
pile top across five measurement points was 2.1 mm, with a minimum of 1.2 mm. The 
absolute errors between the initial numerical simulation results and the actual measure-
ments were greater than those between the updated parameters’ predictions and the ac-
tual measurements, with an average absolute error of 0.4 mm using initial parameters and 
0.19 mm after parameter updating. 

Table 5 indicates that after the inversion of soil parameters using PSO-BP based on 
measured displacements from condition 2, the simulation results for maximum horizontal 
displacement along of body align closely with actual measurements. Comparing both pre-
diction results and field measurements, the average absolute error for horizontal displace-
ments calculated using initial parameters was 1.41 mm, which was reduced to 0.93 mm 
after updating the parameters. 

Upon entering the measured displacement values from condition 3 into the trained 
neural network model, the output soil parameters were used to simulate excavation and 
support processes for condition 4 in PLAXIS 3D. Comparisons of measured and simulated 

Figure 11. Vertical displacement at the top of pile PD07 during condition 3.

Table 5. Comparison of maximum horizontal displacement of pile body.

Monitoring Point Measured
Displacement/mm

Numerical Simulation Results Predicted Value after
Parameter Update

Calculation Result
(mm)

Absolute Error
(mm)

Calculation Result
(mm)

Absolute Error
(mm)

CX01 12.02 10.68 1.34 11.84 0.18
CX03 13.38 11.99 1.39 13.07 0.31
CX07 13.57 12.24 1.33 13.38 0.19
CX11 13.74 12.16 1.58 13.49 0.25

Figure 11 shows that during condition 3, the maximum vertical displacement at the
pile top across five measurement points was 2.1 mm, with a minimum of 1.2 mm. The
absolute errors between the initial numerical simulation results and the actual measure-
ments were greater than those between the updated parameters’ predictions and the actual
measurements, with an average absolute error of 0.4 mm using initial parameters and
0.19 mm after parameter updating.
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Table 5 indicates that after the inversion of soil parameters using PSO-BP based on
measured displacements from condition 2, the simulation results for maximum horizontal
displacement along of body align closely with actual measurements. Comparing both
prediction results and field measurements, the average absolute error for horizontal dis-
placements calculated using initial parameters was 1.41 mm, which was reduced to 0.93 mm
after updating the parameters.

Upon entering the measured displacement values from condition 3 into the trained
neural network model, the output soil parameters were used to simulate excavation and
support processes for condition 4 in PLAXIS 3D. Comparisons of measured and simulated
vertical displacements at the pile top for condition 4 are depicted in Figure 12, and compar-
isons of maximum horizontal displacements along the pile body are shown in Table 6.
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Table 6. Comparison of maximum horizontal displacement of pile body.

Monitoring Point Measured
Displacement/mm

Numerical Simulation Results Predicted Value after
Parameter Update

Calculation Result
/mm

Absolute Error
/mm

Calculation
Result/mm

Absolute
Error/mm

CX01 18.56 17.54 1.02 17.63 0.93
CX03 17.64 16.01 1.63 17.05 0.59
CX07 17.51 16.29 1.22 16.94 0.57
CX11 21.96 20.58 1.38 21.71 0.25

Figure 12 illustrates that during condition 4, the maximum vertical displacement at
the pile top across five measurement points was 4.3 mm, with a minimum of 2.8 mm. Using
the initial numerical model, the maximum absolute error between field measurements and
simulation results was 0.48 mm, which decreased to 0.25 mm after parameter updating.
The average absolute error for vertical displacements at the pile top calculated using initial
parameters was 0.44 mm, which was reduced to 0.19 mm after updating the parameters,
demonstrating that the updated parameter values more closely reflect the actual conditions
of the project and updating the input parameters in PLAXIS 3D can decrease the absolute
error between predicted and measured values of pile top deformations.

Table 6 reveals that the absolute errors in model calculation results after parameter
updating were smaller than those of the initial model. During condition 4, the maximum
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absolute error for horizontal displacements along of pile body at four measurement points
ranged from 0.93 mm to 0.25 mm, with an average of 0.59 mm, all lower than the errors
between initial simulation results and actual measurements.

The comprehensive analysis indicates that numerical simulation results after parame-
ter updating closely match actual measurements, with absolute errors consistently lower
than those of the initial simulation results. This confirms the feasibility of dynamically
predicting the excavation process by inverting soil parameters based on field measurements
from preceding conditions. While the study assumed a uniform distribution of soil layers
in PLAXIS 3D modeling and selected parameters that significantly impacted the results,
a sensitivity analysis on different soil layer parameters was not conducted, marking a
limitation of this research. Nonetheless, this parameter inversion method has been ef-
fectively validated by an actual engineering project, significantly reducing the absolute
errors between numerical simulations and field measurements, offering insights for similar
projects and guiding soil parameter selection in the region.

6. Conclusions

Through the establishment of a numerical model using PLAXIS 3D and inversion
of soil parameters using the PSO-BP neural network to update input parameters of the
model, this study has successfully implemented dynamic predictions throughout the entire
process of deep excavation. The feasibility of the inverted parameters was verified with
actual project data, confirming the effectiveness of the model updates.

Specific conclusions are as follows:
(1) Utilizing the Particle Swarm Optimization to enhance the BP neural network for

soil layer parameter inversion significantly improves the convergence speed of the model
and prevents the common issue of the network becoming trapped in local optima;

(2) The actual changes in vertical displacements at the pile top and horizontal dis-
placements along the pile body during the excavation and support process are generally
consistent with those predicted by the simulation; the absolute errors between initial nu-
merical simulation results and measured values are greater than those between updated
predicted values and measured values;

(3) Dynamic prediction results are closer to actual measurements compared to initial
numerical simulations. The methodology of inverting soil layer parameters based on field
measurements from previous conditions is feasible and provides valuable insights for
selecting soil parameters in the region.

While this study has achieved dynamic prediction throughout the entire process of pit
excavation, there are still limitations, specifically manifesting in the following aspects:

(1) The numerical simulation adopted in this paper for the excavation and deformation
monitoring of pits did not take into account the dynamic loads around the pit perimeter, as
well as the influence of existing surrounding structures on the retaining system. Due to the
reduction of the groundwater level to the bottom elevation of the pit before construction,
the soil humidity and suction state above the groundwater level were not considered in the
numerical simulation;

(2) In the future, the authors will focus on investigating the influence of soil pa-
rameters on the displacement of the retaining structure of pits, as well as the impact of
multiple soil parameters from different soil layers in the excavation area on the results of
numerical simulations.
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