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Abstract: We propose and demonstrate a single-pixel imaging method based on deep learning
network enhanced singular value decomposition. The theoretical framework and the experimental
implementation are elaborated and compared with the conventional methods based on Hadamard
patterns or deep convolutional autoencoder network. Simulation and experimental results show that
the proposed approach is capable of reconstructing images with better quality especially under a low
sampling ratio down to 3.12%, or with fewer measurements or shorter acquisition time if the image
quality is given. We further demonstrate that it has better anti-noise performance by introducing
noises in the SPI systems, and we show that it has better generalizability by applying the systems
to targets outside the training dataset. We expect that the developed method will find potential
applications based on single-pixel imaging beyond the visible regime.

Keywords: deep learning network; single-pixel imaging; singular value decomposition

1. Introduction

Due to its function of adopting a single-pixel detector to collect the intensity of an object
illuminated by a sequence of masked patterns, single-pixel imaging (SPI) is attractive in diverse
applications such as ultrafast imaging [1,2], hyperspectral imaging [3,4], remote tracking [5,6],
and three-dimensional imaging [7,8] for its low cost, high signal-to-noise ratio, and broadband
operation [9–11]. The SPI techniques are especially important for wavelengths with expensive
multi-pixel detectors, including terahertz [12–15], infrared [16–19], and X-ray [20–23].

In order to realize real-time SPI with high efficiency, many algorithms have been
proposed or developed over the years. In 2008, Duarte et al. [24] proposed SPI based on a
compressed sensing (CS) algorithm and reconstructed a 256 × 256 image using 1300 ran-
dom patterns. However, under such a low sampling ratio, the reconstructed image suffers
from relatively low quality. To improve the image quality while reducing the required ac-
quisition time, several advanced methods based on Hadamard basis [25], Fourier basis [26],
discrete cosine basis [27], and wavelet basis [28] have been developed, which leverage
the completeness and orthogonality of basis patterns, as well as the sparse representation
of natural images in the transform domain. Zhang et al. further compared, numerically
and experimentally, the performances of Hadamard SPI (HSI) and Fourier SPI (FSI) [29],
and demonstrated a 20,000 Hz projection rate using a DMD and captured 256 × 256 pixel
dynamic scenes at a speed of 10 frames per second under the undersampling condition [30].
However, under the undersampling condition, these techniques truncate the spectrum by
discarding the high-frequency parts, resulting in undesirable artifacts such as ringing in
the reconstructed images [31].
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Recently, deep learning networks have shown great potential in recovering high-
quality images for SPI [32], especially when the sample ratio is exceptionally low. For
example, Lyu et al. [33] developed a deep learning-based approach for ghost imaging (GI)
and achieved significantly improved performance compared with the conventional CS
method when the sampling ratio SR is down to 5%. He et al. [34] modified the convolutional
neural network (CNN) so as to adapt it to GI, and achieved faster and more accurate image
reconstruction than conventional GI when SR = 5%. Higham et al. [35] proposed SPI
based on a deep convolutional autoencoder network (DCAN) and recovered real-time
128 × 128 pixel video at 30 frames per second with a single-pixel camera at a sampling
ratio of 2%. Rizvi et al. [31,36] developed a deep learning framework to enhance the
imaging quality of four-step FSI and a fast image reconstruction framework based on
DCAN for three-step FSI. They demonstrated that the proposed deep learning-based FSI
outperforms the conventional FSI in terms of image quality, especially when the sampling
ratio is down to 5–8%. Huang et al. [37] developed AuSamNet to optimize a sampling
mask and reconstruct high-quality natural color images when the sampling ratio is as
low as 7.5%. Zhu et al. [14] demonstrated an efficient terahertz SPI system incorporating
deep learning networks and reduced the number of Hadamard patterns to 10% of the
pixels while maintaining high image quality with acceptable signal-to-noise ratio (SNR).
Stantchev et al. [38] demonstrated rapid terahertz SPI with a spatial light modulator and a
convolutional neural network, and reduced SR to 10% while maintaining the image quality.
Jiang et al. [39] proposed a novel SPI scheme for high-speed moving targets combined with
a deep learning network and obtained reasonable reconstructions with a low sampling ratio
of only 6%. Yao et al. [40] proposed a single-pixel classification method with deep learning
for fast-moving objects and obtained feature information for classification with SR = 3.8%.
However, these data-driven networks suffer from problems such as generalizability and
interpretability, which may prohibit their practical applications [41–43].

In order to address these problems, Wang et al. [44] proposed a physics-informed deep
learning (PIDL) network and obtained better performance than other researchers using
SPI algorithms at a low sampling ratio of 6.25%. We [15] demonstrated high-efficiency
terahertz SPI system based on a PIDL network and reconstructed high-quality terahertz
images with a significantly reduced number of measurements, corresponding to an ultra-
low sampling ratio down to 1.56%, which is more efficient than the conventional HSI
and FSI. However, these PIDL networks rely on GI or differential GI (DGI). It has been
shown that the singular value decomposition (SVD) method can effectively enhance the
fidelity and improve the imaging efficiency and quality of GI or DGI [45–47]. Quite recently,
Cheng et al. [48] further combined the SVD-compressed GI with deep unfolding and
numerically investigated its anti-noise performance at low sampling rates. However, in
reports [45,46,48], the SVD algorithm was restricted to construct the encoding patterns, and
the deep learning network in [48] was purely driven by data and thus also suffered from
the above-mentioned problems such as generalizability and interoperability.

In this work, we propose a novel approach to realize efficient SPI based on deep
learning-enhanced SVD (DLSVD). The theoretical framework and the experimental imple-
mentation are introduced, and the differences compared with conventional approaches
are highlighted. We both numerically and experimentally demonstrate that the developed
DLSVD outperforms the HSI, DCAN, and PIDL approaches in terms of the reconstructed
image quality or the acquisition time. Remarkably, under the ultra-low sampling ratio
down to 3.25%, the DLSVD can reconstruct images with improved quality over the HSI and
the DCAN. The anti-noise performance and the generalization to objects of types outside
the training dataset are also studied.

2. Theoretical Framework

Before we elaborate the DLSVD to be developed in this work, let us retrospect the
classical HSI and DCAN schemes, which are adopted as references. For the HSI, one adopts
Hadamard patterns to modulate the spatial intensity of optical beam illuminating the object,
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collects the transmitted signals with a single-pixel detector, and then reconstructs the image
using the inverse Hadamard transform [29]. The Hadamard spectra comprise a series
of Hadamard basis patterns in the spatial domain, Pu0,v0

H , which correspond to different
Hadamard coefficients and which can be generated by

Pu0,v0
H (x, y) =

1
2

[
1 +H−1{δ(u − u0, v − v0)}

]
. (1)

Here, H−1{·} is the inverse Hadamard transform, δ(u, v) is the delta function, and (u0, v0)
and (u, v) are Hadamard frequency points. For each measurement, the dot product of the
object and the Hadamard basis pattern projected on it is recorded by a single-pixel detector

CH(u0, v0) =
N−1

∑
x=0

N−1

∑
y=0

Pu0,v0
H (x, y)O(x, y) , (2)

where CH(u0, v0) is the coefficient of the Hadamard frequency point (u0, v0), O(x, y) is the
object of N × N pixels, and (x, y) represents the coordinate of the spatial domain.

By projecting a series of Hadamard basis patterns (of number M) onto the object, the
cumulative signal can be expressed as [29]

DM×1 = PM×N2ON2×1 . (3)

The sampling ratio is defined as SR ≡ M/N2. For the full sampling, M = N × N. We can
use the reshape function to transform the one-dimensional vector D to the two-dimensional
frequency coefficient CH(u, v). The object’s image can be reconstructed by performing the
inverse Hadamard transform R = H−1{CH(u, v)}.

The DCAN approach, as illustrated in Figure 1a, adopts autoencoders (multilayer
neural networks) to encode the object, and fully connected and convolutional layers to
decode objects [35]. The encoding layer simulates the signal acquisition process of SPI.
When encoding object O with patterns P of number M, signal S is also collected by a
single-pixel detector. The encoding process with the i-th pattern can be represented as

(Pi)N×N⊙ON×N = Si , (4)

where ⊙ denotes that the two matrices are bitwise multiplied by the elements and then
added together. For M measurements, the encoding process can be represented by the
matrix as

PO = S , (5)

where P is a matrix of M × N2, of which each row corresponds to a pattern of N × N, O is
a matrix of N2 × 1, and S is a matrix of M × 1.

The patterns P and the decoding network parameters θ are initialized randomly and
then can be optimized using stochastic gradient descent to minimize the standard cost func-
tion that measures the Euclidean distance between the predicted and the desired outputs,

{P, θ} = min
P∈P,θ∈Θ,

∥Rk − Ok∥2 . (6)

The DLSVD approach developed in this work is illustrated in Figure 1b. Similar to
the PIDL, the proposed method also consists of an encoding layer, a decoding layer, and
an enhancing layer. The encoding process can also be expressed as Equation (5), which
is the same as that of the DCAN. Distinct from the literature on SPI involving the SVD,
where the SVD method was used to construct the encoding patterns [45,46,48], here, the
SVD algorithm is used for decoding instead. This is also distinct from the PIDL, of which
the decoding makes use of the conventional DGI algorithm.

For full sampling with M = N2, the matrix P is a square matrix and can have an
inverse, thus the target O can be reconstructed directly via
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O = P−1S . (7)

For undersampling condition with M < N2, however, matrix P is not a square matrix
but a singular matrix. For such a singular matrix, one can perform SVD to calculate its
pseudo-inverse,

P = UΣVT . (8)

Here, U is an M × M orthogonal matrix whose column vectors are the eigenvectors of
PPT , i.e., UUT = I. VT is an orthogonal matrix of N2 × N2 whose column vectors are
the eigenvectors of PT P, i.e., VVT = I. Σ is a diagonal matrix of M × N2 with elements
on the diagonal being the singular values in descending order. In order to calculate the
pseudo-inverse, we further truncate the singular values to the first K ones, where K ≤ M,
and then obtain

O′ = VtΣ−1
t UT

t S , (9)

where Ut is a M × K matrix with orthogonal column vectors, Σt is a K × K diagonal matrix,
and VT

t is a K × L matrix with orthogonal row vectors. O′ is further reshaped into the size
of the input image, N × N.

Figure 1. (a) Schematic of the DCAN adapted from [35], which includes the encoding and decoding
layers. (b) Diagram of the developed DLSVD framework, which consists of the encoding, decoding,
and enhancing layers.

We emphasize that for the developed DLSVD approach, the decoding layer adopts the
SVD method, which is a noniterative and purely mathematical algorithm, to reconstruct
the image. Therefore, compared with the DCAN, which adopts data-driven convolutional
neural networks for image reconstruction, the developed DLSVD approach does not suffer
from the interpretability problem, as demonstrated both numerically and experimentally
in this work.

In order to reduce the noises in O
′
, we add an enhancing layer composed of a convo-

lutional neural network. Note that there is no restriction on the choice of neural network
structure, although better results may be obtained by appropriately adapting the network
structure. For instance, we utilize a U-net-like architecture, comprising five down-sampling
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layers and five up-sampling layers, designed to handle images of varying sizes [49,50]. The
reconstructed image R after the enhancing layer can be then expressed as

R = Uθ(O
′
) , (10)

where θ represents the set of parameters used in the U-net.
Similar to the DCAN, the encoding patterns P and the parameters of the U-net enhanc-

ing layer, θ, should also be trained starting with random initialization and optimized with
Equation (6). Note that for the DCAN, θ are the parameters of the decoding layer, whereas
for the developed DLSVD, θ are the parameters of the enhancing layer.

3. Simulation Results

We first perform simulations to compare the performance of the developed DLSVD,
the conventional HSI and the DCAN schemes, and the PIDL recently developed by Wang
et al. [44]. Figure 2a shows the first three typical encoding patterns P among the M
ones that are used in these SPI methods. For the HSI method, M measurements involve
the first M encoding patterns within the well-established and well-ordered pattern pool,
corresponding to the Hadamard spectra in the spatial domain [12]. In other words, for
M = 2048, the first 1024 patterns are exactly the same as those used for M = 1024, and the
first 512 patterns are the same as those used for M = 512.

M =

( b )

P I D L D L S V DD C A NH a d a m a r d
2 0 4 81 0 2 45 1 2

( a )
5 1 2 1 0 2 4 2 0 4 85 1 2 1 0 2 4 2 0 4 85 1 2 1 0 2 4 2 0 4 8

M = 5 1 2 M = 1 0 2 4 M = 2 0 4 8
11 01 −1 1 −1 −1 −1

3 r d

2 n d

1 s t

R

O '

Figure 2. (a) First three typical encoding patterns for the four SPI methods with different measure-
ments of M = 512, 1024, and 2048. (b) Reconstructed images by the developed DLSVD with M = 512,
1024, and 2048.

For the DCAN, the PIDL, and the DLSVD, however, the encoding patterns are first initial-
ized randomly and then optimized through training, which should be performed independently
for a specific measurement M. As a result, the encoding patterns of these approaches are
different for different measurement times. We randomly select 45,000 images from the freely
available ImageNet database [51] as the training set to optimize the encoding patterns and the
parameters θ used in the DCAN, the PIDL and the DLSVD, and another disjoint 5000 images as
the test set to test the trained network. All images are first uniformly resized to a resolution of
128× 128 pixels and converted into gray-scale images, serving as the input for the networks. The
learning rate is set to be 0.0002, and the number of epochs and the batch size are configured to
140 and 32, respectively. The training is carried out on an advanced gaming computer, boasting
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an Intel i9-12900k CPU (Intel, Santa Clara, CA, USA), 64 GB of RAM, and an NVIDIA RTX 3090
GPU (NVIDIA, Santa Clara, CA, USA).

Figure 2a further compares the first three typical trained encoding patterns of the
DCAN, the PIDL, and the DLSVD with different measurements. We find that for the
DCAN and the PIDL with different M, the trained encoding patterns all show random
distributions of binary values of “1” and “−1”. As M increases, the patterns have higher
resolution, whereas for the DLSVD with different M, the first/second/third trained pattern
composed of ternary values of “1”, “0”, and “−1” shows pronounced similarities to its
counterpart. This may correspond to the descending singular values, which are in the order
of importance.

For different M, the trained encoding patterns of the DCAN, the PIDL, or the DLSVD
are different since these patterns are first initialized randomly and then optimized through
independently trained networks given the specific measurement number. Here, the net-
works for these approaches are defined and optimized following the details in the previous
section. In other words, the optimized encoding patterns and the trained networks vary
with M. This is distinct from the HSI, of which the first M patterns are taken from the
well-defined pattern pool that is independent of M, as defined in Equation (1).

Figure 2b shows the reconstructed images O′ from the decoding layer using the SVD
method and the reconstructed images R after the enhancing layer using the U-net structure.
It is clear that the SVD decoding method is efficacious and that noises can be significantly
removed by the U-net enhancing layer. In other words, the SVD-based SPI method can
be greatly enhanced by the DL network. Visualization 1 shows the evolution of the first
encoding patterns and the reconstructed images O′ and R after the decoding and enhancing
layers, respectively, for M = 1024.

Figure 3 shows the three typical ground truth (denoted as “GT”) images that are
randomly taken from the test set within the ImageNet dataset and the reconstructed images
by the HSI, the DCAN, the PIDL, and the developed DLSVD with different measurements of
M = 512, 1024, and 2048. Here, the traffic image subset of the ImageNet dataset is adopted
for illustrating the comparison, although other target objects can also be applicable, as
shown later in the experiments and on the generalizability. Simulation results show that the
reconstructed images become clearer for all three methods as the number of measurements
increases. For the traffic image of MotorVehicleOnly, the reconstructed images by the PIDL
and DLSVD methods with M = 512 clearly show the outline of the bumper and lights of
the car, whereas those by the HSI and the DCAN methods require 1024 measurements to
manifest the outline, and 2048 measurements to show the bumper and lights relatively
clearly. Remarkably, in the reconstructed images of the PIDL and DLSVD methods with
M ≥ 1024, one can find clear details of the bumper and lights. Similarly, for the other two
traffic images of HonkingNeeded and StopAndGiveWay, the PIDL and the DLSVD methods
with 512 measurements can reconstruct clear outlines, whereas the reconstructed images
by the HSI are muddled, and those by the DCAN suffer from relatively high background
noises. The reconstructed images by the PIDL and DLSVD methods are clean and clear
when the measurement number increases to 1024. In contrast, for the HSI and the DCAN,
this number should be at least 2048. Given the same number of measurements, in general,
the DLSVD outperforms the PIDL, followed by the HSI and the DCAN.

To quantitatively assess the quality of the reconstructed images, we adopt two metrics,
PSNR and SSIM [52], which can be calculated with

PSNR = 10 · log10
2552

MSE
(11)

and

SSIM =
2(uOuR + c1)(2σOR + c2)

(u2
O + u2

R + c1)(σ
2
O + σ2

R + c1)
, (12)



Sensors 2024, 24, 2963 7 of 14

respectively. Here, MSE is the mean square error defined as

MSE ≡ 1
N2

N−1

∑
x=0

N−1

∑
y=0

[O(x, y)− R(x, y)]2 , (13)

where uO/R and σ2
O/R represent the average value and the variance of the input image O or

the reconstructed image R, respectively, σOR denotes the covariance of the input image O
and the reconstructed image R, and c1 and c2 are constants used to maintain stability.

10
G T P I D LP I D LD L S V DP I D LD C A NH S I M = 2 0 4 8M = 1 0 2 4M = 5 1 2 D L S V DD C A NH S I D L S V DD C A NH S I

Figure 3. Three typical ground truth (GT) images taken from the ImageNet dataset, and reconstructed
images by the four SPI methods with different measurements of M = 512, 1024, and 2048.

In order to compare the anti-noise performance of the four SPI methods, we further
add Gaussian white noises with variance of δ to the signal. The noise level is evaluated
by the signal-to-noise ratio (SNR), which can be expressed as SNR = 10 · log10[(S − S)2/δ]
with the S signal perturbed by the Gaussian noises. Note that Poisson noise, which is also
known as photon noise or shot noise and which is prominent in low-light conditions or
when using imaging sensors with low light sensitivity, is neglected in this work since it is
much weaker than the Gaussian white noises.

Figure 4 compares the SSIM and the PSNR of the images reconstructed by the four
SPI methods with different numbers of measurements as functions of the noise level. Since
the calculations were performed by averaging the reconstructed images of the test set of
5000 images, the standard deviations are denoted by the error bars. Results show that for
each SPI approach, both the SSIM and the PSNR increase with the number of measurements
regardless of the noise level. For noise levels of SNR ≤ 20 dB, the SSIM and the PSNR of
all the four SPI methods are almost undisturbed. Given the number of measurements and
under the same noise level, the DLSVD has slightly higher SSIM and PSNR than the PIDL,
and larger SSIM and PSNR than the HSI and the DCAN methods. In other words, the
developed DLSVD has the best anti-noise performance over the other three SPI methods.
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Figure 4. (a) Extracted SSIMs and (b) PSNRs of the reconstructed images by the four SPI methods
with different numbers of measurements as functions of the ambient noise. Error bars indicate
standard deviations of the test set.

4. Experimental Demonstrations

Encouraged by the simulation results, we build an experimental setup as illustrated
in Figure 5 to perform experimental validations. White light beam from a 3 W LED is
directed onto a Digital Micromirror Device (DMD) using Total Internal Reflection (TIR)
prisms. The patterns on the DMD at a projection rate of 100 Hz are projected onto the
target through a projection lens for achieving high signal-to-noise-rate images [30]. Here,
we adopt the above three printed traffic images shown in Figure 3 as the target. The
reflected light from the target is captured by a single-pixel avalanche photodiode (Thorlabs
APD410A2/M, Thorlabs, Newton, NJ, USA). Data are collected with the data acquisition
board of National Instruments (USB6361). The DMD consists of 1024 × 768 micro-mirrors,
each of which has a pitch size of 13.68 µm and acts as a binary reflector projecting two states:
“0” and “1”, corresponding to black and white, respectively. The encoding patterns used in
experiments for the four SPI methods are the same as those used in simulations, as shown
in Figure 2a. In order to realize the encoding pattern element “−1” shown in Figure 2a,
we employ a differential measurement method, which splits the original encoding mask
with “−1” elements into two masks containing only “0” and “1” elements. Therefore, for
each measurement, these masks are sampled individually, and the signals collected by the
single-pixel detector are subtracted from each other for further processing.

Figure 6 presents the reconstructed images by the three SPI methods with different
numbers of measurements. Comparing Figures 3 and 6, we find that in general, the
experimental results agree well with the simulations: for all the four SPI methods, the
reconstructed image quality improves as M increases; given the number of measurements,
the developed DLSVD slightly outperforms the PIDL, which is followed by the HSI and
the DCAN. Strikingly, high-quality reconstructed images can be obtained by the PIDL and
the developed DLSVD even when M = 512, corresponding to an ultra-low sampling ratio
of SR = 3.12%.
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Figure 5. Schematic of the experimental setup.

To quantitatively evaluate the quality of the experimentally reconstructed images, we
calculate the PSNR and the SSIM by choosing the reconstructed images by the HSI at the
full sampling rate of SR = 100%, or equivalently M = 128 × 128, as the ground truth. The
results summarized in Table 1 show that the larger the number of measurements, the higher
the PSNR and the SSIM all for the four SPI methods. For most cases, the proposed DLSVD
method has the highest PSNR and SSIM compared with the other three SPI methods. For
a few cases, the PSNR and the SSIM of the images reconstructed by the PIDL are slightly
better than those recobstructed by the DLSVD.

Specifically, for M = 512, the PSNR of the DLSVD is slightly larger than that of the
PIDL for two images, but it is ∼1–2 dB larger than those of the HSI and the DCAN for all
the three images; the SSIM of the DLSVD is slightly larger than that of the PIDL for the
image of MotorVehicleOnly, but is much larger than those of the DCAN and the HSI for all
the three images. As the number of measurements increases to 1024 or 2048, the differences
between the PSNRs of the DLSVD and those of the other three methods further increase
to ∼2–3 dB or ∼3–4 dB. On the SSIM, the DLSVD outperforms the PIDL for two images
when M = 1024 and for all three images when M = 2048. All these quantitative metrics are
consistent with the intuition from the reconstructed images by experiments (in Figure 6) as
well as by simulations (in Figure 3). To offer a more comprehensive evaluation of DLSVD,
we include cross-dimensional comparisons using different measurement settings. When
M = 1024, DLSVD achieves a mean PSNR of 24.33 dB and an SSIM of 0.7351. In contrast,
when M = 2048, HSI yields 22.16 dB and 0.7080, DCAN scores 22.21 dB and 0.69982, and
PIDL achieves 23.56 dB and 0.7575. Notably, DLSVD outperforms HSI and DCAN, slightly
surpassing PIDL in performance. In other words, we experimentally verify that, given the
number of measurements, the proposed DLSVD system can reconstruct images of better
quality than the HSI, the DCAN, and the PIDL methods.

10
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Figure 6. Ground truth (GT) images taken from the reconstructed ones by the HSI method with full
sampling ratio (M = N2) and experimentally reconstructed images by the four SPI methods with
different measurements (M = 512, 1024, 2048).
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Table 1. Extracted PSNR and SSIM of the reconstructed images by the four SPI methods with different
numbers of measurements. The largest values are highlighted in bold.

Measurement Method
MotorVehicleOnly HonkingNeeded StopAndGiveWay

PSNR SSIM PSNR SSIM PSNR SSIM

512

HSI 20.1253 0.53283 20.6722 0.57780 19.7786 0.61145
DCAN 21.0788 0.58489 19.5797 0.64094 21.3627 0.71429
PIDL 22.0191 0.61181 24.2339 0.69649 21.8639 0.74317

DLSVD 22.9014 0.61631 24.1765 0.68647 22.1056 0.73374

1024

HSI 20.3322 0.59922 21.4309 0.67247 21.3050 0.70870
DCAN 22.0833 0.60743 20.5035 0.66592 21.1787 0.72877
PIDL 20.5111 0.64055 24.1897 0.71953 23.9761 0.80488

DLSVD 23.2049 0.67249 26.0226 0.72825 23.7735 0.80481

2048

HSI 20.9976 0.65599 22.2591 0.71135 23.2266 0.75675
DCAN 21.0548 0.64711 24.0583 0.68543 21.5286 0.76694
PIDL 21.8962 0.69455 24.7208 0.74637 24.0713 0.83182

DLSVD 25.2250 0.72340 26.4219 0.76075 25.8388 0.84479
Bold number denotes the best performance value among methods.

The improvement in the quality of the reconstructed images is equivalent to the reduc-
tion in acquisition time, which equals the sum of the sampling time and the reconstruction
time. In our experiments, all the four SPI methods share the same sampling time per
pattern, which is 0.001 s. The reconstruction time is 0.02 s for the HSI, 0.004 s for the DCAN,
0.009 s for the PIDL, and 0.006 s for the DLSVD. Compared with the HSI or the DCAN, the
latter of which has the shortest reconstruction time, the DLSVD can reduce the acquisition
time by 50% due to half measurements required to achieve the same reconstructed image
quality. Compared with the PIDL, which has comparable reconstructed image quality un-
der the same M, or equivalently using the same sampling time, the DLSVD can reduce the
reconstruction time by 1/3. Therefore, given the reconstructed image quality, the DLSVD is
more efficient since it requires fewer measurements than the HSI and the DCAN, or has
faster reconstruction time than the PIDL.

5. Extension to Other Objects

Although till now we have considered objects only from the ImageNet dataset, the
concept and the conclusions are general, and the optimized patterns and the trained
networks can be applied to other objects outside the ImageNet dataset. As an illustration,
we printed four other types of objects, which are letters, cartoon patterns, and numbers.
In these SPI experiments, the patterns, the networks, and the setups are the same as those
used in the above experiments.

Figure 7 plots the reconstructed images by the four SPI methods. It is clear that the
PIDL or the DLSVD outperforms the HSI and the DCAN methods regardless of the number
of measurements. Particularly for an ultra-small number of measurements (M = 512)
which corresponds to an ultra-low sampling ratio of SR = 3.12%, the images reconstructed
by both the PIDL and the DLSVD have sharp edges and large SNR, whereas those by the
DCAN are slightly blurred and those by the HSI suffer from relatively smaller SNR.

We further extracted the PSNRs and the SSIMs of these reconstructed images, and
the results are shown in Table 2. We found that for all the four SPI systems, the quality
of reconstructed images improves with M, that the PIDL or the DLSVD have the largest
PSNRs and SSIMs compared with the HSI and the DCAN for different M, and that the
DCAN is slightly better than the HSI. These results are consistent with those obtained with
targets chosen from the ImageNet dataset (Figure 6). The exception is that the PIDL is
slightly better than the DLSVD for M = 512 or 1024, whereas the DLSVD outperforms the
PIDL for M = 2048.
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Figure 7. Similar to Figure 6 but with different images.

Therefore, our experiment results showed that both the PIDL and the developed
DLSVD SPI systems have better generalizability than the conventional HSI and DCAN
systems. This is because the DL networks in both the PIDL and the DLSVD are used in the
enhancing layer rather than in the decoding layer. In contrast, the DCAN takes advantage
of the DL networks for decoding.

Finally, we illustrated the generalizability of the developed DLSVD with the trained
patterns and networks by reconstructing complex target objects such as Cameraman. Simu-
lation results in Figure 8 show that the developed DLSVD outperforms the other three SPI
methods in terms of the image quality evaluated by the SSIM and the PNSR regardless of
the number of measurements. This further validates that the developed DLSVD has the
best performance in generalizability.

Table 2. Two indicators of experimentally reconstructed images by the four SPI methods.

Measurement Method
Letters Cartoon Numbers

PSNR SSIM PSNR SSIM PSNR SSIM

512

HSI 17.5826 0.56131 16.9197 0.59388 16.0013 0.47396
DCAN 19.7788 0.64395 17.5172 0.64073 18.1696 0.63210
PIDL 22.8670 0.81414 21.2027 0.73906 22.8670 0.81414

DLSVD 21.2067 0.78155 19.8713 0.75833 19.5516 0.74773

1024

HSI 18.3033 0.67054 17.5807 0.62975 17.8698 0.63145
DCAN 18.8146 0.66670 19.6356 0.68764 19.5911 0.67321
PIDL 21.5432 0.80972 21.3974 0.78457 23.8122 0.82897

DLSVD 21.9517 0.80432 21.0732 0.76606 23.0244 0.82127

2048

HSI 20.1011 0.71247 17.8595 0.68960 18.4002 0.69709
DCAN 15.1268 0.65279 18.9868 0.70492 19.6354 0.70037
PIDL 24.6053 0.83956 23.5365 0.80241 24.6324 0.83752

DLSVD 26.1652 0.84154 24.1226 0.85901 25.1278 0.86156
Bold number denotes the best performance value among methods.
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Figure 8. Ground truth (GT) images taken from the reconstructed ones by the HSI method with
full sampling ratio (M = N2), and numerically reconstructed images by the four SPI methods with
different measurements of M = 512, 1024, 2048. The values of SSIM and PSNR are extracted for each
reconstructed image.

6. Conclusions

In conclusion, we proposed and demonstrated an efficient single-pixel imaging method
based on DLSVD. We elaborated the theoretical framework and experimental implemen-
tation of the developed DLSVD system by comparison with the HSI, DCAN, and PIDL
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methods, highlighting their similarities and differences. Thanks to the encoding patterns
that are optimized by the trained network, both the simulation and experimental results
showed that, compared with the other three SPI methods, the developed DLSVD is more
efficient in terms of the number of measurements or the acquisition time required for clear
image reconstruction, and it is more robust to noises. Strikingly, even when the sampling
ratio is down to 3.12%, which corresponds to 512 measurements for 128 × 128 pixel images,
the experimentally extracted PSNRs are larger than 22 and the SSIMs are greater than 0.61
for three typical targets from the ImageNet dataset. We also demonstrated that the DLSVD
outperforms the conventional HSI and DCAN systems in terms of anti-noise performance
by introducing noises in the systems and of the generalizability by directly applying the SPI
systems to targets outside the ImageNet dataset. Therefore, we expect this work to advance
the development of SPI techniques in a variety of applications, ranging from remote sensing
to microscopy beyond the visible regime.
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