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Abstract: In the sixth generation (6G) era, intelligent machine network (IMN) applications, such as
intelligent transportation, require collaborative machines with communication, sensing, and computa-
tion (CSC) capabilities. This article proposes an integrated communication, sensing, and computation
(ICSAC) framework for 6G to achieve the reciprocity among CSC functions to enhance the reliability
and latency of communication, accuracy and timeliness of sensing information acquisition, and
privacy and security of computing to realize the IMN applications. Specifically, the sensing and
communication functions can merge into unified platforms using the same transmit signals, and the
acquired real-time sensing information can be exploited as prior information for intelligent algorithms
to enhance the performance of communication networks. This is called the computing-empowered
integrated sensing and communications (ISAC) reciprocity. Such reciprocity can further improve the
performance of distributed computation with the assistance of networked sensing capability, which
is named the sensing-empowered integrated communications and computation (ICAC) reciprocity.
The above ISAC and ICAC reciprocities can enhance each other iteratively and finally lead to the
ICSAC reciprocity. To achieve these reciprocities, we explore the potential enabling technologies for
the ICSAC framework. Finally, we present the evaluation results of crucial enabling technologies to
show the feasibility of the ICSAC framework.

Keywords: 6G; integrated communication; sensing and computation (ICSAC) framework; integrated
sensing and communications (ISAC); integrated communications and computation (ICAC)

1. Introduction

In the future sixth generation (6G) era, intelligent machine network (IMN) applica-
tions, such as intelligent vehicular networks, smart cities, and intelligent manufacturing,
require intelligent machines (IMs) to possess autonomous environmental perception and
collaboration abilities to perform complex tasks such as motion control [1]. To achieve intel-
ligent applications, both communication and sensing capabilities are essential. Moreover,
the cooperation among IMs will also enable multiple computation technologies, such as
collaborative computing [2]. Integrated sensing and communications (ISAC) technology
has already emerged as a promising technique and has been recognized as one of the six
key scenarios and technologies for 6G by IMT-2030 [3].
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Recently, there have been new trends in wireless networks [4]. For example, there
have been studies in exploiting the intelligent computing capability to achieve joint gains
between communication and sensing, thereby improving sensing accuracy and commu-
nication reliability [5]. Moreover, utilizing networking capabilities to achieve distributed
intelligent signal processing, such as federated learning (FL), has also been a promising
method to improve computing efficiency and the security of user privacy. These trends indi-
cate the potential for mutual gains among communication, sensing, and computation (CSC)
functions [6]. We refer to the signal processing techniques and networking protocols that
achieve joint gains among CSC as integrated communication, sensing, and computation
(ICSAC) technology.

To support future wireless communications, there are several challenges in achieving
6G IMN applications, which are elaborated as follows:

• The scenarios and tasks of 6G are diverse and highly dynamic, especially in IMN
scenarios, such as intelligent terrestrial and unmanned aerial vehicular networks,
intelligent flexible manufacturing, and smart cities, etc. The dynamic features include
highly dynamic channel state information (CSI) due to high mobility (related to
sensing information) and rapidly changing network performance requirements due to
time-varying task states or application demands [6].

• The 6G IMN applications require closed-loop control, which involves a complete appli-
cation control process, e.g., environmental sensing, sensing information transmission,
decision command dissemination, and environmental sensing feedback [6]. The entire
closed-loop control process requires high reliability and low latency for each step
while minimizing the task completion time.

According to the above main features, the 6G networks naturally require the compre-
hensive optimization and collaboration of CSC functions to achieve the IMN applications.
Nevertheless, for a long time, the sensing, communication, and computation functions
have developed individually, which leads to great challenges for 6G network development.
Moreover, in order to achieve the precise control involved in the above IMN applications,
the 6G applications demand extremely high requirements for communication reliability
(10−5 to 10−7), latency (sub-ms level), and sensing accuracy (sub-decimeter level) [3].

Therefore, to solve the above challenges of 6G networks, and meet the aforementioned
trends in the ICSAC technology study, the ICSAC framework is proposed in this article to
achieve joint gains in communication, sensing, and computation. We conduct an in-depth
analysis of CSC functions, elucidating the mechanism of mutual gains in CSC capabilities.
This enables the proposed ICSAC framework to be a guiding map for innovations in
wireless signal processing. The main innovations of this framework are summarized
as follows:

• By exploiting the rapidly evolving intelligent computing capabilities to excavate the
sensing information with high timeliness as prior information, the ICSAC framework
can enhance communication reliability and network routing performance, as well
as reduce latency. The enhanced communication networking capabilities further
improve the performance of distributed computing architectures. The improvement in
computing and communication networking capabilities, in turn, can further enhance
the performance of networked sensing.

• The joint gains of communication, sensing, and computation in the ICSAC frame-
work are beneficial for meeting the challenge of highly dynamic task requirements
of 6G IMN. In particular, ISAC enables simultaneous wireless communication and
environmental sensing. The ICSAC network can leverage the sensing information
with high timeliness to perform rapid intelligent network optimization using artificial
intelligence (AI) technologies such as deep learning (DL) and reinforcement learning
(RL). This enables the network to adapt to the rapid changes in the environment and
requirements of 6G network scenarios.
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• The joint gains of CSC in the ICSAC framework can be used in closed-loop control
applications. These applications require closed-loop optimization of the sensing infor-
mation acquisition and transmission, decision-making based on sensing information,
decision command dissemination, and environmental sensing feedback. The proper
design of CSC functions in the ICSAC framework can comprehensively improve sens-
ing accuracy, communication reliability and latency, and computation efficiency. This
enhances the network’s robustness, reduces data retransmission, and decreases the
latency in each stage of the closed-loop control application.

According to the above discussion, the ICSAC framework can achieve mutual benefits
in CSC functions, enhancing the efficiency and reliability of communication and network-
ing, and improving the accuracy of sensing and computation efficiency. Therefore, it is
promising to become one of the mainstream orientations in 6G areas, particularly suitable
for the application scenarios that require deep collaboration of communication, sensing,
and computation to achieve autonomous control of intelligent machines, such as intelligent
vehicular networks, unmanned aerial vehicle networks, intelligent manufacturing, etc.

The remaining parts of this article are arranged as follows. Section 2 introduces the
ICSAC framework and its mechanism of achieving joint communication, sensing, and com-
putation gains. Section 3 elaborates on the key enabling technologies and challenges of the
ICSAC framework. Section 4 presents the evaluation performance of several key technolo-
gies to show the feasibility of the ICSAC framework. Section 5 concludes the entire article
and provides an outlook on possible future work.

2. ICSAC Framework

To achieve mutual enhancement among CSC functions and satisfy the requirements
of 6G networks for high-reliability and low-latency communication, and high-accuracy
sensing, we propose an ICSAC framework, as shown in Figure 1.
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Figure 1. ICSAC framework comprising communication, sensing, and computation functions,
where the sensing function perceives the environmental information to provide prior knowledge for
communication optimization and application decision-making; the computation function processes
the sensing information to generate instructions for controlling actuators; and the communication
function links different functions, transmitting data to processors and instructions to actuators.
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The CSC functions are analog to human sensing organs, neural systems, and the brain,
respectively. The sensing function perceives the environmental information to provide
prior knowledge for decision-making. Then, the computation function processes environ-
mental information and generates instruction signals based on application intents to control
actuators to interact with the environment. To build the connection between the sensing
and computation functions, the communication function transmits the environmental
information to computation processors and instructions to the actuators.

Due to the complex intracell and intercell interference in wireless networks, it is neces-
sary to optimize wireless resource allocation and use anti-noise signal processing methods
to improve the quality of sensing information acquisition (such as sensing resolution and
accuracy) as well as the reliability and capacity of communication. The intelligent comput-
ing power enabled by AI technologies, such as DL and RL, will significantly enhance the
performance of sensing processing and improve the communication optimization with the
assistance of the sensing prior information [7], which is called the computing-empowered
ISAC reciprocity. In addition, based on reliable communication links and sensing infor-
mation, nodes can form networks for distributed computation and cooperative sensing,
which is called the sensing-empowered integrated communication and computation (ICAC)
reciprocity. The above ISAC and ICAC reciprocities can enhance each other iteratively,
leading to the combined ICSAC reciprocity.

Then, we introduce the main techniques of CSC functions and elaborate on the reci-
procity among the CSC functions of the ICSAC framework.

2.1. Main Techniques of Communication, Sensing, and Computation

Sensing: We consider the sensing function of machines as ubiquitous spectrum sensing.
For example, camera sensors capture physical images from visible-light spectrum informa-
tion. Moreover, radar sensing can acquire physical information, such as angles, distances,
and speeds, based on radio spectrum sensing. Furthermore, GPS can acquire location
information. The above sensing information can be collected to form a sensing information
repository that provides crucial prior environment knowledge for decision-making and
network optimization.

Communication: Wireless communication has various regimes, among which mobile
cellular communication networks and WiFi are the most dominant and both adopt the multi-
input multi-output orthogonal frequency division multiplex (MIMO-OFDM) transceiver
architecture. Wireless communication provides networking capabilities for multiple nodes
to collaboratively form distributed systems.

Computation: The computation function is generally diverse. Centralized and dis-
tributed computation architectures coexist in a network system. The distributed computing
architectures enable local decision-making and edge network optimization. Addition-
ally, AI techniques can provide intelligent processing tools for decision-making, network
optimization, and signal processing [8] empowered by prior sensing information.

2.2. ICSAC Framework

We use a typical application scenario of intelligent ground-air integrated vehicular
networks (GAI-VeNet) to illustrate the reciprocities of communication, sensing, and com-
putation in the ICSAC framework, as shown in Figure 2. Note that the vehicles refer
to both the unmanned aerial vehicles (UAVs) and unmanned terrestrial vehicles (UTVs).
Without the loss of generality, we refer to the vehicles as machine users (MUEs). The ICSAC
framework contains two worlds, i.e., the physical world containing all the entities and
environment of the networks, and the digital world which is the digital twin of the physical
world. The physical world is composed of three levels, i.e., the radio access terminal (RAT)
level, edge cloud level, and core cloud level.
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Figure 2. An illustration of the ICSAC framework.

The RAT level contains all the MUEs and access points (APs) in the physical world.
Wireless users and APs can utilize ISAC techniques to achieve communication and sensing
simultaneously. The wireless sensors also perceive the network environment. The neigh-
bored MUEs or APs can form distributed intelligent computing networks to preprocess
the sensing information efficiently. APs can collect the sensing information of MUEs and
sensors, upload it to the edge cloud servers, or propagate the action instructions from
higher levels to the RAT level.

The edge and core cloud levels are composed of the edge and core cloud server
networks, respectively. The edge cloud level controls the operation of local wireless
networks and the decision-making for concrete applications such as trajectory planning for
the local MUEs. Moreover, the edge cloud level can excavate the sensing data collected from
the RAT level and form local sensing information repositories providing prior information
for network control and decision-making. The core cloud level converges all the sensing
information repositories of edge servers to construct a global one that provides prior
information for global network control and application decision-making. Moreover, the core
cloud level uses AI techniques to form the digital twin of the physical world based on
the global sensing information repository and provides the interaction interface to human
users (HUEs) for human-machine interaction over the digital metaverse.

2.3. Reciprocity among the Communication, Sensing, and Computation Capabilities

We proceed to elaborate on the reciprocity among the communication, sensing, and com-
putation achieved by the above ICSAC framework.

2.3.1. Computing-Empowered ISAC Reciprocity

The convergence of radio communication and sensing in terms of spectrum, transceivers,
and digital signal processing lays the foundation for the hardware implementation of ISAC.
ISAC achieves single-base active sensing by processing the autocorrelation between com-
munication signal echoes and transmitted signals or achieves bi-static sensing by processing
the received communication signals [9].

The communication networking capability can be utilized to realize networked sensing
for ISAC nodes or sensors, which can efficiently solve insufficient sensing problems, such
as obstruction in the single-node sensing scenario. Due to the diversity of the resources
of sensing information, the obtained sensing information exhibits significant multi-modal
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characteristics. Specifically, the angles, locations, velocities of MUEs and environmental
scatterers, CSI estimation, images, etc., are aggregated via the communication network
at both the edge and core cloud levels, forming local and global sensing information
repositories, respectively. CSIs, user locations, velocities, and other related information are
useful for communication network optimization and application decision-making.

2.3.2. Sensing-Empowered ICAC Reciprocity

By exploiting communication networking capabilities, multiple nodes can collaborate
to train distributed neural networks or other distributed computing architectures. Dis-
tributed learning enhances the efficiency and scalability of the training process, which is
especially useful when dealing with massive datasets that would be impractical to transfer
and process centrally. Since each network node is trained using its local data and only
transmits model parameters without exposing the private data, distributed computing
architectures can protect user data privacy and security.

There can be parallel multi-tasking requirements in the local computing network, such
as the simultaneous transmission of sensing data and the relay of user communication data.
In such cases, distributed intelligent computing can intelligently assign priorities of different
tasks to each computing node based on the CSI estimation and the locations of information
source and destination contained in the sensing information repository, thereby enhancing
the efficiency of parallel task completion. Moreover, by using the semantic characteristics
hidden within CSIs, transmitted signals, and sensing results, the intentions of machine
applications can be disseminated more efficiently among MUEs, omitting the process of
extracting human-type semantics based on sensing data for application control.

2.3.3. ICSAC Reciprocity

Intelligent computing technologies such as neural networks can be exploited to en-
hance the anti-noise performance of communication and sensing, improving CSI estimation
accuracy, communication reliability, and sensing accuracy. By utilizing the enhanced MUEs’
location and CSI information as prior information, intelligent computing methods such as
DL and RL can be used to improve the performance of network resource allocation, routing,
beamforming, etc. The improvement in communication performance will further provide
better reliability, capacity, and timeliness for networked sensing and distributed intelli-
gent computation, thus achieving iterative ICSAC gain, which is beneficial for closed-loop
applications that require low latency and high reliability.

By exploiting AI techniques to digest and enhance the multi-source sensing data,
a high-quality digital twin can be achieved based on the global sensing information reposi-
tory, which lays the foundation for realizing a highly immersive metaverse for HUEs.

3. Key Enabling Technologies and Main Challenges

This section explores the key technologies and the corresponding main challenges for
realizing the aforementioned reciprocity of the ICSAC framework, including the computing-
empowered ISAC, sensing-empowered ICAC, and ICSAC techniques, which are outlined
in Figure 3. The computing-empowered ISAC techniques offer sensing information and
enhanced network links for realizing sensing-empowered ICAC and ICSAC techniques,
while the sensing-empowered ICAC techniques provide computing architectures and
perceptive intelligence for achieving the ICSAC techniques.
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Figure 3. The illustration of the potential enabling technologies for the ICSAC framework.

3.1. Computing-Empowered ISAC Techniques

This subsection presents the crucial techniques for achieving computing-empowered
ISAC reciprocity in Section 2.2. We first introduce the basic ISAC sensing scheme and then
elaborate on the adaptive filter (AF)-enhanced CSI enhancer for ISAC, downlink uplink
cooperative (DUC) ISAC, and computing-empowered networked sensing.

3.1.1. Review of Basic ISAC Sensing Scheme

As both 6G and WiFi will adopt the MIMO-OFDM-based regimes in the future,
we focus on the MIMO-OFDM-based ISAC sensing scheme. The most prevalent ISAC
sensing scheme is the fast Fourier transform (FFT)-based sensing scheme that applies
two-dimensional FFT (2D-FFT) to obtain the sensing spectrum for estimating range and
Doppler [10]. This method has the lowest complexity, but its on-grid detection nature
restricts its sensing accuracy by the range and Doppler resolutions defined by the num-
ber of subcarriers and OFDM symbols, respectively. Moreover, zero-padding FFT could
alleviate this problem but introduce a large complexity increase. The subspace-based
ISAC sensing scheme based on the super-resolution sensing method, such as multiple
signal classification (MUSIC), can improve the sensing accuracy but with relatively high
complexity when jointly estimating 2D range and Doppler [11]. The maximum likelihood
estimation (MLE)-based ISAC sensing method was also proposed to estimate the range and
velocity of scattering targets [12]. However, this method has to search the sensing results
from an extremely large range of parameters, and the complexity increases exponentially
with the increase in the number of sensing parameters. Moreover, the compressive sensing
(CS)-based ISAC sensing method was also researched for achieving off-grid sensing estima-
tion [13]. However, the sensing performance and complexity of this method will degrade
rapidly with the increase in the number of sensing parameters.

Until now, the research on ISAC techniques for mobile networks mainly focuses
on the achievement of sensing signal processing via individual downlink and uplink
communication signals. Nevertheless, the communication performance improvement and
cooperation of downlink and uplink communication processes have not been efficiently
researched yet. Therefore, we further proposed the following key potential techniques
for computing-empowered ISAC techniques to improve communication performance and
exploit the networking features of communication networks.
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3.1.2. AF-Enhanced ISAC

AF, such as the Kalman filter, Bayesian filter, and deep learning-based filter, can be
used to enhance the CSI estimation for improving communication reliability by exploiting
the angle-of-arrival (AoA), range, and Doppler estimation as the prior information, as well
as suppressing the timing offset (TO) in the CSI to improve sensing accuracy by exploiting
the Doppler estimation with carrier frequency offset (CFO) as the prior information [14].
This method can improve both communication and sensing performance significantly with
the feature of linearity and is thus promising to be implemented in the ICSAC framework
for 6G.

3.1.3. DUC ISAC

In mobile communication networks, the uplink (UL) and downlink (DL) channels
between AP and MUE have time-division duplex (TDD) reciprocity. Within adjacent
uplink and downlink time slots, the channel environment between the AP and UE remains
unchanged. The active sensing conducted by AP in the downlink time slots and the bi-static
sensing in the uplink time slots are independent sensing processes of the same physical
environment. Therefore, we can improve the sensing performance via data fusion methods
and enhance communication performance by exploiting the sensing information obtained
in uplink and downlink ISAC as prior information [15].

3.1.4. Computing-Empowered Networked ISAC

By exploiting networked collaboration capabilities, multiple distributed sensors (in-
cluding MUEs and APs that use ISAC) can cooperatively sense the same physical area,
effectively reducing blind spots caused by obstruction and random deep fading in the
single-sensor scenario [16]. Using distributed computing such as FL, collaborative MUEs
can conduct distributed training, where they only need to exchange model parameters to
share semantic information, thereby improving the efficiency of the sensing network and
ensuring the security of data.

Challenges to the Computing-empowered ISAC techniques: 6G networks may
encounter extremely dynamic scenarios characterized by rapidly changing environments.
Therefore, all the above techniques necessitate the acquisition of sensing information with
exceptional timeliness. Moreover, effective interference management and synchronization
for networked sensing are also great challenges.

3.2. Sensing-Empowered ICAC Technique

This subsection presents the critical technique for realizing the ICAC reciprocity
in Section 2.2, including the sensing-enhanced communication-efficient FL enhanced by
semantic communications, which can achieve perceptive intelligence.

3.2.1. Review of the Typical ICAC Technique

We focus on reviewing the most typical ICAC technique, i.e., FL, to illustrate the
challenges in the development of the ICAC techniques. FL provides a new way to protect
user privacy and reduce communication costs. The core idea of FL is to keep data at the
local servers and only share model parameters or updates among users [17]. Due to its
lightweight deployment scheme, FL has become the mainstream solution and product
choice in many privacy computing application scenarios. FL techniques can achieve
multiple federated agencies to build a unified machine learning model among the safe and
efficient multi-source data systems [18]. However, with the explosive increase in privacy
computing platforms, the number of FL devices put into practical application gradually
increases, the main bottleneck for the current FL technique is the huge communication
overhead in optimizing and deploying the FL framework [19].
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3.2.2. Sensing-Enhanced Communication-Efficient FL

Multiple collaborative intelligent MUEs can form a network for computing, where
the network nodes collaborate to train neural networks by sharing model parameters
without exposing private data [2]. The key issue is efficiently training neural network
models while fully exploiting the communication performance and computational power
among nodes. In the ICSAC architecture, networked sensing provides sensing information
repositories. Exploiting the prior information on the positions of MUEs and CSI estimation,
distributed MUEs can quickly select cooperative nodes with better communication quality
for collaborative training, reducing control overhead and application latency. Moreover,
with the sensing results, FL can be used for resource allocation predictions for solving
wireless communication problems.

On the other hand, neural networks, auto-encoders/decoders, and other related
techniques can extract the compressed model information as semantic features, and the goal
is to maximize the semantic information while minimizing the data size [2]. In machine-type
applications, motion control is a prominent requirement. Suppose the position, velocity,
and posture information of the information source and sink MUEs can be integrated into the
semantic extraction process. In that case, there is the potential to generate higher-efficiency
semantic information for FL optimization and machine motion control.

Challenges to the Sensing-empowered ICAC Techniques: The accuracy, coverage,
and timeliness of sensing information significantly impact the above sensing-empowered
ICAC techniques. Ensuring timely and comprehensive updates of sensing information is
a challenging issue to address. Moreover, the efficient exploitation of the communication
network performance for distributed computing is also a great challenge in the highly
dynamic environment.

3.3. ICSAC Techniques

Finally, we present the crucial techniques for achieving the ICSAC reciprocity men-
tioned in Section 2.3. As discussed above, the computing-empowered ISAC and sensing-
empowered ICAC techniques can cooperatively obtain the local and global sensing infor-
mation, construct communication and computing networks, and enhance their efficiency
by exploiting the sensing information as the prior information. Based on the sensing infor-
mation repository and the communication and computing infrastructures, the digital twin
and metaverse can be enabled [20,21].

3.3.1. Digital Twin

Based on the computing-empowered ISAC and sensing-empowered ICAC techniques
mentioned in Sections 3.1 and 3.2, MUEs and APs can cooperate to obtain sensing data with
high timeliness using networked sensing and preprocess the distributed sensing data with
distributed computing, which can be aggregated and updated hierarchically at the edge
cloud and core cloud levels, forming a global sensing information repository that contains
information for constructing virtual models of physical entities. Therefore, based on the
sensing information repository, we can utilize AI techniques embedded in the distributed
or central ICAC computing infrastructures to build a digital virtual world corresponding
to the physical world, enabling the realization of digital twin technology [22].

3.3.2. Metaverse

The high-fidelity digital world formed by digital twins can provide interfaces for
intelligent interaction with humans. After semantic compilation, human instruction can
interact with the digital twin world. Humans can collaborate or communicate in the
digital world or conduct remote tasks via AI agents in the digital world. AI agents can
generate network control signals based on human-machine interaction instructions to
remotely operate the IMs through the ICSAC network infrastructure, enabling them to
change the environment in the physical world. Moreover, based on the huge sensing
information repository aggregated at the core cloud, the core cloud can use a generative
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adversarial network (GAN) or large pre-training model (LPTN) to generate synthetic media
information for HUEs to enhance the experience of 6G immersive multimedia applications,
such as holographic interactions [23].

3.3.3. Embodied Intelligence

Embodied intelligence refers to intelligent entities that have physical carriers and sup-
port physical interactions [24]. They are capable of multi-modal perception and interaction
with the environment similar to humans, and possess autonomous planning, decision-
making, and action abilities. The sensing information repositories provided by edge cloud
and core cloud offer massive data for the training and evolution of embodied intelligent
entities. The communication networking capabilities provide multi-agent collaboration
and distributed computing capabilities, enabling the collaborative evolution of multiple
embodied intelligent agents.

Challenges to the ICSAC Techniques: The interaction between the digital world and
the physical world requires high timeliness and data reliability to ensure the realism of the
digital world and guarantee user experience. Additionally, it is necessary to significantly
enhance the security and privacy of network access to ensure the security of human-
machine interaction in the real world [25].

Finally, the features, enabling technologies, and challenges for achieving the aforemen-
tioned ISAC, ICAC, and ICSAC reciprocity are summarized in Figure 4.

Reciprocity Features
Enabling 

Technologies

ISAC

 Using unified spectrum, transceivers, and signals 
to achieve simultaneous wireless communication 
and sensing

 Networking capability provides diverse sensing 
information to form sensing information 
repositories for offering prior information

 CSIs, locations, velocities, images, etc. are useful 
to communication network optimization and 
application decision-making

 Basic ISAC sensing

 Adaptive filter-
enhanced ISAC

 Downlink and uplink 
cooperative ISAC

 Computing-
empowered 
networked sensing

Challenges

 Require obtaining sensing 
information of high timeliness

 Interference management and 
synchronization in highly dynamic 
environment

ICAC

 Networking capability enables collaboration among 
neighboring nodes for distributed computing

 Semantic features are hidden within CSIs, 
transmitted signals, sensing results, etc.

 Communication-
efficient FL 

 Semantic comm.

(sensing-enhanced)

 Ensuring comprehensive updates 
and alignment of sensing information

 Ensuring the efficient usage of the 
communication network performance 
in the highly dynamic environment.

ICSAC

 Iterative joint sensing-communication-computation 
gain: 

1) Intelligent computing exploits the sensing 
information to enhance the communication network 
performance

2) Enhanced communication performance provides 
reliable links for distributed computing and 
networked sensing.

 Digital Twin

 Metaverse

 Large AI model

 Require real-time sensing 
information and communication 
reliability to guarantee user 
experience.

 Ensure the security and privacy of 
network access in the hyper-
heterogeneous scenarios.

Figure 4. The key enabling technologies and challenges corresponding to the reciprocity of the
ICSAC framework.

4. Evaluation Results

In this section, we present the evaluation results of several typical enabling technolo-
gies mentioned above to demonstrate the feasibility of the ICSAC framework.

Figure 5 presents the mutual communication and sensing performance enhancement
using the computing-empowered ISAC techniques in Section 3.1. Figure 5a presents the
bit error rate (BER) performance of demodulation using the AF-based CSI enhancer men-
tioned in Section 3.1, which is one of the typical computing-empowered ISAC techniques.
The least-square (LS) and minimum mean square error (MMSE) methods are adopted as the
comparison methods to show the improvement of the proposed computing-empowered
ISAC techniques. The AF-based CSI enhancer exploits the AoA sensing results as prior
information to improve the CSI estimation accuracy. Figure 5b further presents the AoA
estimation performance enhancement using the combined CSI estimation and the demod-
ulated data signals enhanced by the AF-based CSI enhancer. The simulation settings for
the results of Figure 5 are as follows. The OFDM signal is adopted. The subcarrier interval
is ∆ f = 480 kHz, the number of used subcarriers is 256, the number of OFDM packets is
Ms = 64, the frequency of the carrier is 28 GHz, the array size of the receiver (base station)
is 8 × 8, and the array size of the transmitter (user equipment) is 1 × 1.
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(a) The BERs of demodulation using the AF-

based CSI enhancer.

(b) The RMSEs of UE's AoA estimation.

Figure 5. The mutual communication and sensing performance enhancement. (a) The BER perfor-
mance is enhanced by the AF-based CSI enhancer. (b) The AoA sensing performance is improved by
using the combined UL CSI estimation and received data signals that are enhanced by the AF-based
CSI enhancer.
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Figure 5a shows that the AF-based enhancer requires about 3.5 dB lower signal-to-
noise ratio (SNR) than the LS method, but 0.2 dB higher SNR than the MMSE method
to achieve the given BER. This verifies that communication reliability can be improved
with the assistance of sensing results via typical computing techniques. With the enhanced
communication reliability, Figure 5b shows that the MSEs of AoA estimation based on
the combined CSI and received data signals are lower than those only based on pure CSI
estimation. Moreover, the larger number of packets, Ms, results in lower AoA estimation
MSEs. This is because a larger number of symbols can accumulate more effective energy
for sensing. Specifically, the improved BER performance enhances the accuracy of data
decoding, which further improves the estimation of correlation between the received data
signals and the decoded data, thus improving the AoA estimation performance.

The performance of the communication-efficient FL mentioned in Section 3.2 is shown
in Figure 6, where the total energy consumption versus the completion time for various
FL resource allocation schemes for sensing is provided. ‘FL-JO’ stands for the FL with
joint optimization of bandwidth and localization accuracy of the sensing tasks, ‘FL-EB’,
‘FL-FLA’, and ‘FL-TDMA’ stand for the schemes with equal bandwidth allocation for
multiple users, with fixed localization accuracy of the sensing task, and with users using
TDMA, respectively.
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Figure 6. Total energy versus the completion time for various FL resource allocation schemes. ‘FL-JO’
stands for the FL with joint optimization of bandwidth and localization accuracy of the sensing tasks,
‘FL-EB’, ‘FL-FLA’, and ‘FL-TDMA’ stand for the schemes with equal bandwidth allocation for multiple
users, with fixed localization accuracy of the sensing task, and with users using TDMA, respectively.

In Figure 6, there are 50 users to perform FL, which are uniformly distributed in a circle
area with a radius of 500 m. The wireless user location sensing dataset is adopted with
60,000 data samples. The maximum average transmit power of each user is 10 dBm and the
computation capacity of each user is 2 GHz. The total energy/time includes the parts for
both communication and computation. It is shown that the total energy decreases as the
total completion time increases. This is because a long completion time can ensure a small
transmit and computation power, thus reducing the total system energy. Moreover, FL-JO
achieves the best performance, since the server can select the set of users with high com-
munication channel gain, which can enhance the efficiency of communication-efficient FL
based on the sensing information including the users’ locations and CSI estimation results.
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5. Conclusions

In this article, we have proposed an ICSAC framework for 6G to realize the reciprocity
among CSC functions to enhance the communication reliability and latency, timeliness
and accuracy of sensing information acquisition, and privacy and security of computing
to support the IMN and immersive applications. Furthermore, we have elaborated on
the potential enabling technologies and outlined the corresponding challenges to achieve
them. Evaluation results show the feasibility of the proposed enabling technologies. This
article has drawn a blueprint for innovations of 6G IMN systems. In the future, the efficient
algorithms that can exploit the reciprocity of CSC functions to enhance the overall perfor-
mance and the theoretical bounds for CSC performance are the fundamental problems to
be resolved.
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