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Abstract: The advancements of Internet of Things (IoT) technologies have enabled the implementation
of smart and wearable sensors, which can be employed to provide older adults with affordable and
accessible continuous biophysiological status monitoring. The quality of such monitoring data,
however, is unsatisfactory due to excessive noise induced by various disturbances, such as motion
artifacts. Existing methods take advantage of summary statistics, such as mean or median values,
for denoising, without taking into account the biophysiological patterns embedded in data. In this
research, a functional data analysis modeling method was proposed to enhance the data quality
by learning individual subjects’ diurnal heart rate (HR) patterns from historical data, which were
further improved by fusing newly collected data. This proposed data-fusion approach was developed
based on a Bayesian inference framework. Its effectiveness was demonstrated in an HR analysis
from a prospective study involving older adults residing in assisted living or home settings. The
results indicate that it is imperative to conduct personalized healthcare by estimating individualized
HR patterns. Furthermore, the proposed calibration method provides a more accurate (smaller
mean errors) and more precise (smaller error standard deviations) HR estimation than raw HR and
conventional methods, such as the mean.

Keywords: wearable sensors; precision care; functional data analysis; Bayesian inference; Gaussian
process; data quality; heart rate patterns; personalized patterns

1. Introduction

Population aging is a worldwide fundamental concern. Both the number and per-
centage of older adults are rising in every nation in the world. According to the World
Social Report 2023, the number of older adults in the world is projected to increase from
761 million in 2021 to 1.6 billion in 2050 [1]. Older adults are a particularly vulnerable
population with the potential for severe physical and economic limitations and drastically
deteriorating self-sufficiency. In addition, chronic multiple conditions, such as heart disease,
diabetes, and cancer, are common in older adults. These complex conditions require spe-
cialized healthcare services to monitor various health statuses, including physical activity
level, sleep quality, and fall risk [2], by tracking a variety of biophysiological variables,
such as heart rate (HR), blood pressure, and blood glucose. Advanced technologies that
aim to maintain older adults’ living independence have emerged as a promising solution
to address the healthcare needs of the aging population. These technologies enabled the
continuous capture of health-related information in an unobstructed manner, supporting
safer independent living as well as the early detection of health changes and care of older
adults [3]. Limited to the knowledge, attention, and discipline necessary to follow the

Sensors 2024, 24, 2970. https://doi.org/10.3390/s24102970 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24102970
https://doi.org/10.3390/s24102970
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0006-2462-897X
https://orcid.org/0000-0002-7606-8728
https://orcid.org/0000-0003-1110-2582
https://orcid.org/0009-0009-0215-0743
https://orcid.org/0000-0001-6210-2633
https://orcid.org/0000-0003-0268-2941
https://doi.org/10.3390/s24102970
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24102970?type=check_update&version=2


Sensors 2024, 24, 2970 2 of 15

management plan that includes monitoring relevant biophysiological variables, many older
adults will need the technology of wearable sensors, and the Internet of Things (IoT) to
achieve better clinical quality in monitoring their biophysiological variables, leading to an
improved quality of life [4].

Among the biophysiological variables, HR is an essential and widely used indica-
tor of cardiac activity in various physical and health conditions [5], given that HR is
strongly positively associated with cardiovascular morbidity and mortality [6]. Thus, HR
is a useful biomarker in monitoring cardiovascular disease and chronic degenerative
disease [7], for which older adults are susceptible. The negative impact of these diseases
is not limited to affecting the emotional and physical integrity of older adults, deriving
a series of fatal collateral consequences, such as falls [8]. Individuals who fell are found
to have increased variation in their HR and blood pressure than those who did not fall.
It suggests that cardiovascular lability may be an influential predictor of falls [9]. There-
fore, HR is considered a necessary biophysiological variable to be monitored by wearable
sensors equipped with reading technologies, such as photoplethysmography (PPG). Wear-
able PPG sensors measure HR by photodiodes that capture the changes of light reflection
from the microvascular bed of tissue, which quantifies the volumetric variations of blood
circulation. As a result, wearable PPG sensors are often designed as wrist devices, as
illustrated in Figure 1. Benefiting from this remote continuous HR monitoring by PPG
sensors, sequentially measured HR data over time, i.e., HR time series, can be collected for
health monitoring in a timely manner.

Figure 1. Illustration of a photoplethysmography (PPG) wearable sensor and collected heart rate
(HR) data, which include missing data and large variance (red bar illustrates the large variation of
heart rate measurements in consecutive timestamps).

Although wearable PPG sensors enable the accessibility and remote monitoring of
continuous HR, data quality is of major concern due to technological and practical imper-
fections in real-world applications. The unsatisfactory quality of the data collected from
wearable sensors is usually manifested as two unavoidable characteristics of the HR time
series: missing data and large variance, as illustrated in Figure 1. Missing data, due to
data lost or incomplete data, is prevalent and can be due to various reasons. A few known
reasons for missing data include sensor malfunction, lack of sufficient battery power, trans-
mission problems, dropped connections, and problems with sensor synchronization [10].
Published studies rarely report detailed methodology to handle missing data. A commonly
used approach tends to focus on the concepts of “valid days” and “numbers of valid days”.
For example, researchers may consider the data valid if the device was worn for at least
10 of the 24 h for at least 5 of 7 days [11]. In addition, HR data collected by wearable PPG
sensors have large variance, because of their high susceptibility to motion artifacts [12]
and external light sources [13]. Specifically, these wearable PPG sensors used LED as a
light source and photo detector as a light reflection receiver to measure volumetric changes
in blood [14], which can be utilized to calculate the HR. When subjects are in movement,
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excessive noise will be induced by motion artifacts, typically caused by the displacement of
the sensor over the skin, changes in skin deformation, and ambient temperature [14].

The unsatisfactory quality of data poses great challenges to wearable-sensor-based
biophysiological monitoring, as the HR analysis relies on complete and precise HR measure-
ments. To overcome these challenges, numerous HR analysis methods have been developed.
Traditionally, it is common that specific cut-off values are used to target monitoring, leading
to only surrogate values, such as the mean or median, of the intermittently measured HR
data being used for interpretation while abandoning the missing HR data [15]. Linear
interpolation was commonly used in HR pre-processing to alleviate the impact of missing
data by filling the missing data based on a linear regression model estimated from the
adjacent HR values [16]. These conventional methods do not consider the temporal pattern
of the continuously measured HRs and may yield inaccurate health information.

Continuous HR monitoring enables the understanding and modeling of the temporal
patterns embedded in individuals’ HR data, such as daily activities [17], varying emo-
tions [18], and health status fluctuations. Therefore, it is imperative to ensure the quality of
HR data and reserve the temporal patterns. Recently, approaches considering the temporal
patterns of HR data have become prevalent. The autoregression (AR) model [19] was
employed to model the temporal patterns that exist in HR time series, resulting in accurate
HR prediction. However, the performance of this type of approach is sensitive to the data
quality. Bidirectional long-short-term-memory (Bi-LSTM) neural network and temporal
convolutional network (TCN) [20] were adopted to model the HR temporal patterns and es-
timate the missing data, given a large amount of historical HR for model training. However,
these models are only designed to estimate missing values in a short period, such as one
cardiac cycle. In contrast, the missing period in continuous HR monitoring is usually much
longer in practice. Furthermore, the successful training of the neural network-based models
requires a large amount of individuals’ historical HR data that may not be accessible.

Data imputation methods were reported for substituting missing HR data with pre-
dicted values. The Gaussian process (GP) [21] was employed to impute the missing HR
data and provide personalized monitoring. It has shown that GP is capable of accurately
estimating over 24 h of missed HR from wearable devices, and thus, the missing data
problem is shown in Figure 1 can be potentially resolved by GP. More importantly, the un-
certainties induced by imputation errors can be quantified by GP models to support clinical
decision making. For instance, a Gaussian process latent variable model (GPLVM) [22] was
proposed to impute the missing HR data. Specifically, a lower-dimensional embedding was
learned from a small complete dataset and then used to impute the missing values in the in-
complete dataset. Afterward, a support vector machine taking into account the imputation
errors was developed to conduct classification tasks, resulting in optimal support vectors
and improved classification results. However, GP imputes missing HR data and quantifies
uncertainty at each time stamp, leading to a prohibitive computational burden. Further-
more, the GP models the temporal pattern of HR with pre-defined covariance functions,
such as linear, exponential, and radial basis functions, which limit the compatibility to
model sophisticated correlation embedded in HR time series [23]. Furthermore, GP models
are susceptible to excessive noise induced by motion artifacts, leading to inaccurate mean
HR modeling and estimation.

In real-world scenarios, physical activities are inevitable, and the problem raised by
motion artifacts needs to be addressed to enhance the quality of the data measured by
wearable sensors. Filtering was commonly used to remove the motion artifacts in HR
pre-processing [24]. However, this method treated each HR data point (the HR measured
at a particular time stamp) independently and ignored the overall temporal patterns
of the continuously measured HR. Functional data analysis (FDA) [25] methods were
developed to model the HR time series with a functional HR curve represented by a linear
combination of basis functions in lower dimensions, resulting in lower computational costs
and dimensional reduction. In addition, FDA approximates the HR time series with a
smooth curve, considering the overall temporal patterns. This feature enables the removal
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of potential outliers induced by motion artifacts, as illustrated in Figure 2. Although FDA
is effective in modeling the time series data and reducing noise, its model estimation is
significantly affected by the presence of missing HR data.

Figure 2. Comparison of the raw heart rate (HR) measurements using photoplethysmography with
excessive noise induced by motion artifacts (in blue), and the smoothed HR time series by the
functional data analysis (in red).

To enhance the quality of HR data collected from wearable sensors for continuous
physiological status monitoring, this paper proposes an FDA-based GP model, named
basis-expansion-based GP (BEGP), to learn HR temporal patterns. BEGP combines GP
and FDA, using the basis expansion of FDA to model the mean function and covariance
function in a GP model. The unique BEGP model enables the imputation of the missed HRs
and the reduction in the excessive variance induced by motion artifacts. The missing HR
values and their uncertainty are approximated by mean function and covariance function of
GP, respectively, which are modeled by FDA. Furthermore, a Bayesian inference framework
is developed to calibrate the HR temporal patterns by fusing the historical HR temporal
patterns and newly collected HR measurements.

The rest of the article is structured as follows. Section 2 describes the conducted
experiment, and methods proposed to remove motion artifacts and calibrate HR temporal
patterns. Section 3 presents the experimental results for validating the proposed method,
followed by a discussion in Section 4. Finally, conclusions are provided in Section 5.

2. Materials and Methods
2.1. Participants and Experimental Equipment

In this research, we recruited 10 older adults residing in assisted living or home
settings and conducted extensive data collection, and the subjects’ demographics and
health conditions are shown in Table 1. Our research team meticulously recorded an
array of biophysiological measurements by distinct sensors, including HR sensors, Garmin
Vivoactive 4/4S (Garmin Corporation, New Taipei City, Taiwan), Polar H10 (Polar Electro
Oy, Kempele, Finland); glucose monitor sensor, FreeStyle Libre 2 (Abbott Laboratories,
Chicago, IL, USA); and blood pressure sensor, Omron (Omron Corporation, Kyoto, Japan),
aimed for health status monitoring. Among these, we selected the Polar H10 and Garmin
watch, which measured HR in this analysis. Data collected by Polar H10 and Garmin were
downloaded via ECG logger for Polar H10 by Matti Mononen, version 2.3 (via Google
Play), and Labfront (PhysioQ, Boston, MA, USA), respectively. The Garmin Vivoactive
4/4S, worn on the non-dominant hand, delivered HR data every second. Garmin relies on
PPG for HR measurement, a method susceptible to motion artifacts, consequently yielding
less precise HR measurements. Meanwhile, the Polar H10, a wearable chest strap HR
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sensor, measured HR using a single lead electrocardiogram (ECG) which offered high
precision and accuracy. The recorded ECGs were inspected by cardiovascular clinicians to
remove artifacts that may affect HR measurements, via Python version 3.11.2 with Nerokit2
toolbox [26]. Hence, we employed Garmin as the primary data source for HR measurement,
with the Polar H10 serving as a supplementary means for data validation. Our collected
data indicate that the Garmin collected more comprehensive HR measurements compared
to the Polar H10. The detailed missing data rate and days of data collection for 10 subjects
(older adults) are listed in Table 2. HR measurements were randomly lost due to issues such
as sensor misplacement, battery drain, and unwillingness to wear the sensor. Furthermore,
caregivers spent an average of one hour charging the Garmin each day. Once the wearable
sensor stopped recording the data, a continuous time interval of data was missed before
the issue was fixed. Therefore, the missing data are randomly distributed over time and
manifested as losses of continuous time intervals. The low missing data rate from Garmin
provided complete information on individual-specific HR patterns, suggesting that the
Garmin wearable watch is appropriate for continuous and long-term monitoring of HR data;
while measurements collected from Polar H10 served as HR ground truth in evaluating the
accuracy of calibrated HR. All the HR data analysis was conducted in R version 4.3.1.

Table 1. Subjects’ demographics and their health conditions.

Characteristic Value (10 Subjects)

Age 79.6 (5.7) ∗ years old
Sex 5 male, 5 female

Ethnicity Number of Subjects (Percentage)

Hispanic or Latino 3 (30%)
White 3 (30%)

Black or African American 2 (20%)
American Indian or Alaska Native 1 (10%)

Asian American 1 (10%)

Health Condition Number of Subjects (Percentage)

High Blood Pressure 8 (80%)
Hypotension 2 (20%)
Dyslipidemia 7 (70%)

Ischemic/Coronary Heart Disease 2 (22%); one missed
Diabetes 4 (40%)

Chronic Kidney Disease 6 (60%)
Hypothyroidism 4 (40%)

Heart Failure 1 (11%); one missed
Depression 5 (50%)

Dementia/Alzheimer’s Disease 7 (70%)
Chronic Obstructive Pulmonary Disease 1 (10%)
With Medicine of Changing Heart Rate 5 (50%)

∗: Mean (standard deviation).

Table 2. Missing data rates and days of data collection for all subjects with ID (#number) from the
Garmin device.

Subject ID
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Garmin Missing Data Rate 0.4209 0.1700 0.1809 0.2709 0.1150 0.3076 0.2371 - 0.1725 0.2617
Days of Data Collection 16 16 15 12 15 14 15 - 13 16

- Dash means no record for the subject.

To alleviate the impact of motion artifacts and noise of Garmin HR measurements,
denoising, and calibration approaches have been developed to improve the data quality
of Garmin HR measurements. Section 2.2 introduces basis expansion for motion artifact
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removal in Garmin HR measurements. Section 2.3 proposes a BEGP for calibrating HR
patterns by fusing the historical HR patterns and newly collected HR measurements.

2.2. Motion Artifacts Removal by Basis Expansion

In this paper, HR time series were assumed to be continuous functions denoted by
x(t), where t ∈ [0, Tperiod] is the time, Tperiod represents the time period, such as one day. In
this paper, Tperiod = 24 h because we studied the diurnal HR pattern of older adults. The
continuous HR data time series x(t) is not directly observable, while a series of data points
[ti,j, yi,j] were measured by sensors, where ti,j denotes the jth timestamp on the ith day and
yi,j is the corresponding measurements of x(ti,j); i = 1, 2, 3, . . . , M represents the index of
days, and M is the total number of days; j = 1, 2, . . . , Ni denotes the index of timestamps
and Ni denotes the total number of timestamps in which the HR variable is measured
on ith day. However, the HR measurements may be contaminated by errors induced by
the imprecision of sensors and motion artifacts, and thus, yi,j can be represented as a
summation of the true HR value x(ti,j) and measurement error εi,j, as shown in (1), where
εi,j is assumed following an i.i.d. Gaussian distribution. To enable the motion artifacts
removal, basis expansion was employed to model the HR time series:

yi,j = x(ti,j) + εi,j, εi,j
i.i.d∼ N(0, σ2), (1)

x(t) = Φ(t)TC, (2)

where

Φ(t) = [ϕ1(t), ϕ2(t), · · · , ϕp(t), · · · , ϕP(t)]T , (3)

C = [C1, C2, · · · , Cp, · · · , CP]
T , (4)

are the basis functions and their corresponding basis coefficients, respectively, and P is the
total number of basis functions and coefficients. For instance, as illustrated in Figure 3, the
raw HR measurements can be approximated by a functional HR curve that was formed
by 13 basis functions, leading to remarkable dimension reduction and noise removal.
Furthermore, the estimated functional curve is a concise representation of the HR pattern
that demonstrates the trend of HR clearly, which enables personalized HR estimation. Φ(t)
are pre-defined functions, such as B-spline functions and wavelet functions, and their
choices can affect the performance of motion artifact removal. However, the selection
of basis functions was not the focus of this paper, which aimed to provide a flexible
method applicable to all different basis functions. In the case of health monitoring, B-
spline functions are used to model the HR data because they are widely used in healthcare
applications [25], and their differentiability conforms to the nature of HR dynamics.

Figure 3. An illustration of the modeling heart rate (HR) by basis expansion. The functional HR curve
is an approximation of the HR time series with motion artifacts removed.
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2.3. HR Calibration by Basis-Expansion-Based Gaussian Process

To calibrate the HR patterns estimated from historical HR data with newly collected
HR measurements, GP was adopted to model HR data and fuse the measurements. To
enable the calibration, a calibration prior, i.e., HR baseline, needed to be constructed by
utilizing the GP. Furthermore, as GP is capable of performing inference over the HR time
series instead of individual HR measurements, the missed HR between any two timestamps
could be estimated. The HR time series x(t) was assumed to follow a GP and could be
represented as:

x(t) ∼ GP(µ(t), k(t, τ)), (5)

where µ(t) is the mean function of GP, i.e., E[x(t)] = µ(t); k(t, τ) is the covariance function
of the GP, i.e., Var[x(t), x(τ)] = k(t, τ).

Most GP models [21,27] construct the covariance function k(t, τ) by parametric models
such as the popular squared exponential model: k(t, τ) = exp(− 1

2 |t − τ|2/β2), and assume
that the mean function µ(t) is 0 by centralizing the data. However, in a health monitoring
scenario, the HR time series exhibits a sophisticated correlation pattern, which is difficult
to model by traditional parametric models. Therefore, we did not restrict the covariance
function by certain traditional parametric models. Instead, basis expansion techniques
were introduced to represent the mean and covariance functions:

µ(t) = Φ(t)TC, (6)

k(t, τ) = Φ(t)TΣCΦ(τ). (7)

By combining GP and basis expansion from (2) and (5), the mean function µ(t) could be
modeled as (6) for an unbiased estimation of HR time series, and the covariance function
k(t, τ) could be modeled as (7) for modeling the correlation embedded in HR time series,
where ΣC is the covariance matrix of basis coefficients C. To simplify the notations, several
matrix-formed notations were introduced first: T i = [ti,1, ti,2, . . . , ti,j, . . . , ti,Ni ]

T denotes the
sampling timestamps vector, where the interval between two timestamps is unnecessary to
be the same; Y i = [yi,1, yi,2, . . . , yi,j, . . . , yi,Ni ]

T denotes the HR measurements vector; and
Φ(T i) is the basis kernel matrix at timestamps T i:

Φ(T i) =


ϕ1(ti,1) ϕ1(ti,2) · · · ϕ1(ti,Ni )
ϕ2(ti,1) ϕ2(ti,2) · · · ϕ2(ti,Ni )

...
...

. . .
...

ϕP(ti,1) ϕP(ti,2) · · · ϕP(ti,Ni )

. (8)

In this BEGP model, C and ΣC are the unknown parameters that need to be estimated.
Therefore, to compute the estimation of the HR mean and covariance function in (6)–(7), C
and ΣC must be estimated first. Based on (1)–(7), the parameter estimators Ĉ and Σ̂C could
be derived as follows:

Ĉi = [Φ(T i)Φ(T i)
T ]−1Φ(T i)Y i ∼ N(C, ΣC + (Φ(T i)Φ(T i)

T)−1σ2), i = 1, · · · , M; (9)

Σ̂C = SC − σ̂2

M

M

∑
i=1

(Φ(T i)Φ(T i)
T)−1, E(Σ̂)C = ΣC; (10)

where
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SC =
1

M − 1

M

∑
i=1

(Ĉi − C̄)T(Ĉi − C̄), (11)

C̄ =
1
M

M

∑
i=1

Ĉi ∼ N(C,
1
M

ΣC +
σ2

M2

M

∑
i=1

(Φ(T i)Φ(T i)
T)−1), (12)

σ̂2 =
1
M

M

∑
i=1

ϵT
i ϵi

trace(INi − H i)
, E(σ̂2) = σ2, (13)

ϵi = [INi − Φ(T i)
T [Φ(T i)Φ(T i)

T ]−1Φ(T i)]Y i = (INi − H i)Y i ∼ N(0, (INi − H i)σ
2), (14)

H i = Φ(T i)
T [Φ(T i)Φ(T i)

T ]−1Φ(T i), (15)

are the statistics used to compute the parameter estimators. E(.) denotes expectation; INi is
an Ni × Ni identity matrix. Among the estimators (9)–(15), Ĉi is an unbiased estimator of
coefficients C for HR on the ith day; ϵi is a residual vector; and C̄ is the mean of coefficients
estimator Ĉi in M days; the sample covariance of the coefficient estimator Ĉi is denoted
as SC, as shown in (11); σ̂2 and Σ̂C are the unbiased estimators of measurement error σ2,
and coefficients’ covariance matrix ΣC, respectively. Consequently, the HR pattern could
be estimated by the mean function in (6), and its uncertainty could be quantified by the
estimated covariance function in (7), which could be employed as an HR baseline.

Constructing such an HR baseline requires a large amount of data. Thus, historical
Garmin HR measurements were used to construct this prior, as shown in Figure 4a, where
its mean was the functional mean learned from historical Garmin HR measurements, and
3σ bound provided uncertainty quantification of possible HR range. Furthermore, such
an HR baseline could be corrected by newly collected HR measurements to improve the
accuracy of HR patterns, which was proposed in the next section.

Figure 4. Illustration of the proposed heart rate (HR) calibration by basis-expansion-based GP (BEGP).
At first, BEGP constructs the (a) HR baseline by estimating the HR functional mean and 3σ bound.
Then, the HR base is employed to calibrate the raw Garmin HR measurements, resulting in the
(b) calibrated HR functional mean, and narrower 3σ bound.

2.4. HR Pattern Calibration by Gaussian Process Posterior Updating

Although the HR baseline could be estimated by the proposed BEGP, it could be
further calibrated for more accurate estimation on a daily basis if newly collected HR
measurements were available. The calibration process could be performed under the
Bayesian inference framework, where the HR baseline, including an estimated HR pattern
in (6) and its covariance in (7), could be adopted as the prior of GP model:

x(t) ∼ GP(Φ(t)TC, Φ(t)TΣCΦ(τ)), (16)
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where its coefficient parameter C was estimated in (9). With newly collected HR mea-
surements Y∗ available, the coefficient parameter could be updated for a more accurate
estimation, which is shown as follows:

Ci|T i, Y∗
i ∼ N(C∗

i , Σ∗
i ) (17)

C∗
i = C + ΣCΦ(T i)[Φ(T i)

TΣCΦ(T i) + INi σ
2]−1(Y∗

i − Φ(T i)
TC), (18)

Σ∗
i = ΣC − ΣCΦ(T i)[Φ(T i)

TΣCΦ(T i) + INi σ
2]−1Φ(T i)

TΣC, (19)

resulting in an HR posterior:

x∗(t) ∼ GP(Φ(t)TC∗, Φ(t)TΣ∗
CΦ(τ)). (20)

As shown in Figure 4b, the HR functional mean from the HR baseline shifted towards the
test data, i.e., Polar H10 measurements, and achieved a calibration posterior, including an
updated HR functional mean for accurate HR pattern estimation and a narrower 3σ bound
of possible HR for smaller uncertainty.

To improve the accuracy of the HR patterns estimation, the HR baseline estimated
from historical Garmin HR measurements was considered as a calibration prior, then fused
with newly collected Garmin measurements under the posterior updating process (16)–(20)
of proposed BEGP. Consequently, the calibrated HR functional mean was balanced between
the HR functional mean from HR baseline and the newly collected HR, and could be
considered as a refined estimation of the HR pattern. To evaluate the effectiveness of the
proposed calibration approach, a few test points from Polar H10 were randomly selected as
HR ground truth, and the results are shown in Section 3.

3. Results

In this section, the results of artifact removal by basis expansion, as well as the
personalized HR pattern estimation, are demonstrated in Section 3.1, and the results of
Garmin measurements calibration are shown in Section 3.2.

3.1. Motion Artifact Removal and Personalized HR Pattern Estimation

To demonstrate the effectiveness of motion artifact removal by basis expansion, a
comparison between raw HR and HR functional curves is visualized in Figure 5. Specifically,
subject #10’s 15 days raw Garmin HR measurements and their mean over 15 days are shown
in Figure 5a. Although raw HR mean provided a trend of HR pattern, it included excessive
variations potentially induced by motion artifacts. The motion artifact embedded in raw
HR overwhelms the underlying HR pattern, making the true HR pattern unrecognizable.
In Figure 5b, after removing the noise induced by motion artifacts, the HR functional curves
clearly describe the trend of HR pattern, and the 3σ bound quantifies the regular variation
of HR.

With the basis expansion approach, subject-specific HR patterns were estimated as
functional curves that could be further compared, as shown in Figure 6. By comparing
the subject-specific HR patterns, the HR baseline was found to be significantly different
among subjects. Thus, to achieve personalized healthcare, it is imperative to construct
an individualized HR baseline for accurate monitoring, as traditional cut-off values were
improper for all subjects. Consequently, these personalized HR baselines can serve as a
foundation for tailoring healthcare intervention to the needs of each individual. The HR
pattern for subject #6 was extremely stable as the subject was implanted with a pacemaker.
Furthermore, some of the subjects shared similar HR patterns. For instance, subject #2 and
subject #3 could be monitored as a group, whilst subject #1 and subject #9 could be another
group. Such groups provide opportunities for tailoring group-specific healthcare and HR
monitoring for subjects who share similar HR patterns.
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Figure 5. Comparisons between the (a) overlays of raw heart rate (HR) patterns recorded over 15 days
from subject #10, with each day coded with a different color. HRs are crowded and HR patterns
difficult to interpret, and (b) the application of the corresponding HR functional curves by basis
expansion, HR functional mean, and 3σ bound by the basis-expansion-based Gaussian process, the
HR trends became concise and clear to visualize.

Figure 6. Visualization of subject-specific heart rate (HR) patterns that can be considered as personal-
ized HR baselines.

3.2. HR Pattern Calibration

To evaluate the performance of the proposed HR calibration method, the HR data
from the calibrated HR functional means were compared with Polar H10 HR measurements
which were considered as ground truth of HR. To extend the comparison, a few benchmark
methods were also compared and listed as follows:

• Method A: raw Garmin HR measurements;
• Method B: population mean of all subjects;
• Method C: subject-specific mean;
• Method D: functional mean of subject-specific HR;
• Method E: functional mean of calibrated HR. (proposed method)

In order to demonstrate the performance of HR modeling, HR values from each
method were compared with Polar H10 HR measurements, which are treated as ground
truth HR in this paper. Specifically, Polar H10 HR measurements from a testing day of
each subject were compared with estimated HRs from all methods. The testing days
are the days of Polar H10 data collection. For each subject, the historical Garmin HR
data were set as the days of data collection except the testing day. For instance, the
subject #2 has 16 days of Garmin HR recording, as shown in Table 1. After excluding the
testing day, the remaining 15 days of Garmin HR are employed as the historical Garmin
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HR data of subject #2. By utilizing these subject-specific historical data, the discrepancy in
HR patterns between subjects can be eliminated. However, the availability and amount of
subject-specific historical data depends on the number of days of data collection for each
subject, as shown in Table 2. After iterating the aforementioned process over all the testing
days, the mean squared error (MSE) and error standard deviation (Error SD) for each
subject could be calculated, which is visualized in Figure 7. The detailed MSE and Error SD
are shown in Table 3. HR estimation was unable to be performed for three subjects (#1, #4,
#8) due to the unavailability of HR ground truth obtained by the Polar H10. Thus, the HR
estimation performance for the three subjects cannot be evaluated because of lacking HR
ground truth, i.e., Polar H10 HR measurements.

Figure 7. Bar plot of mean squared error (MSE) to evaluate the heart rate (HR) estimation performance
of all methods for each subject. The MSE is calculated by comparing the HR estimation of each
method and ground truth (Polar H10 HR), where the best method provides the smallest MSE.

Table 3. Comparison of heart rate (HR) estimation performance of all methods for each subject based
on mean squared error (MSE) and error standard deviation (Error SD).

Subject ID Method A Method B Method C Method D Method E

#2 11.36 (1.96) § 119.78 (3.26) 20.66 (2.35) 20.25 (2.28) 7.92 ∗ (1.63) ∗

#3 103.19 (6.80) 133.18 (5.39) 62.10 (5.75) 59.56 (5.67) 78.31 (6.16)
#5 65.48 (4.50) 99.63 (5.21) 53.10 (3.96) 48.40 (3.82) 45.12 (4.27)
#6 3.42 (1.66) 130.60 (3.74) 2.57 (1.45) 2.50 (1.46) 3.74 (1.57)
#7 47.07 (4.62) 143.14 (5.76) 89.17 (5.40) 92.53 (5.22) 43.42 (4.64)
#9 25.41 (3.65) 109.60 (3.62) 43.67 (3.98) 42.55 (3.91) 17.98 (2.74)

#10 11.59 (2.66) 21.20 (3.52) 17.58 (2.81) 18.75 (2.79) 11.46 (2.41)

Overall 49.15 (5.31) 97.32 (5.53) 42.48 (4.61) 40.13 (4.38) 35.83 (4.25)

§ Values in parenthesis are error SD. * Bold values indicate the best MSE or best error SD.

By comparing the HR estimation MSE across each subject, Method E (proposed) has
the best performance among all subjects except subject #3 and subject #6, as shown in
Table 3. Subject #6 was implanted with a pacemaker, leading to extremely stable HR
measurements, as shown in Figure 6. Therefore, the subject’s HR mean is capable of
providing accurate HR estimation. Method E failed to achieve the best HR estimation
performance due to two factors:

• I.: Large variations from Polar H10 HR measurements. The Polar H10 HR measure-
ments are selected as the HR measurements ground truth because of its use of ECG
to allow accurate elimination of artifacts, which offers high precision and accuracy.
As shown in Figure 8a,b, the Polar H10 HR measurements, i.e., test data (red dots),
provide more precise and accurate HR measurements than raw Garmin HR measure-
ments (purple dots). However, as shown in Figure 8c, subject #3’s Polar H10 HR
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measurements have much higher variations than the Garmin HR measurements. Such
abnormal Polar H10 HR measurements can be caused by the sensor displacement or
malfunction, which needs to be further investigated.

• II.: Large HR magnitude discrepancy between Polar H10 HR measurements and
Garmin HR measurements. The proposed method was developed to mitigate the
impact of missing values and large variations from the wearable devices. As shown
in Figure 8a,b, the calibrated HR functional mean provides a complete and precise
HR estimation by the proposed method. However, as shown in Figure 8c, most of the
raw Garmin HR measurements are much lower than the test data, i.e., Polar H10 HR
measurements, leading to an underestimation of HR by the proposed method. The
large HR magnitude discrepancy between Polar H10 HR measurements and Garmin
HR measurements may be caused by the sensor inaccuracy or malfunction, which
cannot be solved by the proposed method.

Consequently, method E is not the optimal method for subject #3’s HR estimation,
because of factors I. and II., which should be examined further.

Figure 8. Comparison of heart rate (HR) calibration results for (a) subject #5, (b) subject #9, and
(c) subject #3.

The overall MSE provides a comprehensive evaluation of the HR estimation perfor-
mance from different methods. By comparing Method A and Method E, the smaller MSE of
Method E indicated the superiority of the proposed method over the raw Garmin measure-
ments in terms of HR accuracy, as the proposed method fused raw Garmin measurements
and HR baseline to obtain a more accurate HR estimation. Furthermore, the proposed
calibration method provided a more accurate HR value, i.e., calibrated HR functional
mean, and a possible range of HR, i.e., calibrated 3σ bound. By comparing Method B and
Method C, the significantly smaller MSE of Method C indicated the necessity of personal-
ized monitoring, where each subject is supposed to have a personalized HR baseline. By
comparing Method C and Method D, Method D achieves a smaller overall MSE, which
demonstrates the importance of reducing motion artifacts in the HR baseline construction,
while an overly smooth functional curve may lose the details of the HR pattern, leading to
a larger MSE in some subjects. In this study, Method D was used to estimate the overall
personalized HR pattern instead of providing exact HR measurements. By comparing
Method D and Method E, Method E has the smallest overall MSE and overall Error SD,
which indicates the effectiveness of the proposed BEGP. Specifically, learned from historical
Garmin measurements and newly collected measurements, the HR baseline successfully
calibrated the HR pattern and achieved the most accurate and precise HR with the smallest
overall MSE and smallest overall Error SD.

4. Discussion

In this study, we aimed to construct personalized baseline norms for continuous
HR monitoring using wearable sensors with Bayesian inference techniques. The initial
development of wearable sensors has significantly expanded our capacity for real-time
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and continuous measurements, providing an abundance of data points. Recent studies
have focused on the analysis of HR variability (HRV). By analyzing HR data measured
by wearable sensors and extracting signals and features from PPG or ECG, these studies
have become valuable screening or diagnostic tools in various clinical specialties, such
as screening for diabetes, myocardial infarction, and sleep apnea [28]. However, it is
crucial to acknowledge that the reliability of HRV information relies on the integrity of the
original HR data. A missing data rate exceeding 20% may lead to the risk of estimation
errors exceeding 20% [29]. In the context of analyzing real-world data, which is often
chaotic, heterogeneous, and prone to various measurement errors, the quality of real-world
data is lower than the data collected in controlled laboratory environments. This may
result in misleading or erroneous conclusions [30]. Our study addresses these challenges
by employing the refined GP model, specifically the BEGP model, to estimate missing
HR data. This approach quantifies uncertainty in filling data gaps and diverges from
traditional single summary statistics (e.g.: mean, median, and mode), aligning more closely
with the principles of precision medicine. Furthermore, despite the lower activity levels
typically observed in elderly populations compared to younger counterparts, suggesting
a potentially reduced likelihood of PPG artifacts due to activity, our findings reveal that
artifacts persist and pose challenges for constructing personalized HR trend curves in
older adults.

Our study has several limitations. Firstly, the sample size of this study is relatively
small. However, each participant underwent two weeks of continuous biophysiologic
monitoring with HR measured simultaneously by Polar H10 and Garmin watch. Previous
studies have indicated that a minimum of 8 days of observational data is required to achieve
a reliability of 0.8 [31]. The amount of observation data collected in this study should,
therefore, allow for reliable estimates of individual trends. Additionally, the study sample
only consists of elderly individuals. While we validated the feasibility and effectiveness of
this method in this specific cohort, it is important to recognize that the performance of this
approach may be influenced not only by the amount and pattern of missing data but also
by inter-individual physical variability. Therefore, extrapolating these results to different
population groups or clinical settings requires careful validation.

In future research, we plan to explore the performance of this method across diverse
age groups, encompassing various health conditions and activity levels, to determine its
broader utility and potential limitations. By conducting these investigations, we aim to
enhance the generalizability and applicability of our findings beyond the scope of our
current study. Additionally, we aim to further explore GP-estimated HR data in HRV
analysis, conducting a comparison study of HRV outcomes with different methods for
filling in missing HR values. Moreover, while this study constructs individual daily HR
baseline norms through Bayesian inference, linking these norms to longitudinal health
trajectories is an intriguing area for exploration. For instance, this could be investigating
whether HR data exceeding an individual subject’s norm could serve as an early warning
signal for change in health conditions, or exploring associations between changes in the
norm curve and specific diseases [32]. These avenues represent important areas for in-depth
research and potential clinical applications.

5. Conclusions

In this paper, a BEGP method is proposed to improve the data accuracy of wearable
PPG sensor HR measurements. Specifically, basis expansion is utilized to estimate HR
patterns as functional curves by removing excessive noise that is potentially induced by
motion artifacts. The estimated functional curves can be employed to estimate the person-
alized HR baseline. The discrepancy of personalized HR baseline among different subjects
indicates the importance of tailoring personalized health care. Among the personalized
HR baseline, some of the subjects share similar HR patterns and can be grouped. These
subject groups provide the opportunity to design tailored healthcare monitoring strategies
for subjects who share similar biophysiological variable patterns. Additionally, once the
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personalized HR baseline is established, it can serve as an early warning sign for potential
health events or aid in assessing the risk of developing specific diseases. For instance, if
newly monitored HR exceeds the established baseline range, it could indicate the occur-
rence of new infection events. Further research into this methodology will not only validate
the efficacy of BEGP in analyzing HR signals across diverse groups but also encompass the
exploration of BEGP’s applicability to various other biophysiological signals beyond HR,
including EEG, respiratory rate, and body temperature, among others.

If newly collected HR measurements are available, BEGP can serve as a calibration
method to correct the HR baseline constructed from wearable PPG sensor historical HR
measurements by fusing the newly collected HR measurements under a Bayesian inference
framework. In this study, a wearable PPG sensor, i.e., Garmin, was employed for older
adults’ HR monitoring, and an ECG sensor, i.e., Polar H10, was utilized to provide the
HR ground truth. Several benchmark methods are compared for HR estimation, and the
proposed calibration method achieves the smallest overall MSE and Error SD, which implies
the effectiveness of calibrating HR patterns for accurate HR estimation. Furthermore,
the subject-specific mean obviously outperforms the population mean, which shows the
necessity of constructing a personalized HR baseline. Overall, this paper provides a new
method for estimating personalized HR baseline and proposes a BEGP model for improving
the data quality of HR measurements from the wearable PPG sensor.
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