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Abstract: Underarm throwing motions are crucial in various sports, including boccia. Unlike healthy
players, people with profound weakness, spasticity, athetosis, or deformity in the upper limbs may
struggle or find it difficult to control their hands to hold or release a ball using their fingers at the
proper timing. To help them, our study aims to understand underarm throwing motions. We start
by defining the throwing intention in terms of the launch angle of a ball, which goes hand-in-hand
with the timing for releasing the ball. Then, an appropriate part of the body is determined in order
to estimate ball-throwing intention based on the swinging motion. Furthermore, the geometric
relationship between the movements of the body part and the release angle is investigated by
involving multiple subjects. Based on the confirmed correlation, a calibration-and-estimation model
that considers individual differences is proposed. The proposed model consists of calibration and
estimation modules. To begin, as the calibration module is performed, individual prediction states for
each subject are updated online. Then, in the estimation module, the throwing intention is estimated
employing the updated prediction. To verify the effectiveness of the model, extensive experiments
were conducted with seven subjects. In detail, two evaluation directions were set: (1) how many
balls need to be thrown in advance to achieve sufficient accuracy; and (2) whether the model can
reach sufficient accuracy despite individual differences. From the evaluation tests, by throwing
20 balls in advance, the model could account for individual differences in the throwing estimation.
Consequently, the effectiveness of the model was confirmed when focusing on the movements of the
shoulder in the human body during underarm throwing. In the near future, we expect the model to
expand the means of supporting disabled people with ball-throwing disabilities.

Keywords: boccia; underarm throw; throwing estimation; shoulder movement; launch angle;
regression analysis

1. Introduction

Throwing motions are fundamental movement skills and a basic ability that people
should acquire [1–3]. People use the throwing motion for rehabilitation activities, contribut-
ing to the maintenance of mental and physical health [4–6]. In other words, this motion
improves athletic ability and has a positive psychological impact. However, people with
profound weakness, spasticity, athetosis, or deformity in the upper limbs struggle to control
their hands to hold or release a ball using their fingers with proper timing. Typical aids for
them include hand orthoses [7–9] and prosthetic hands [10–12]. Although people intend
these aids for daily life activities, they are not suitable for assisting throws that require fine
or agile coordination [13,14].

Boccia is a sports event designed for people with serious functional disabilities, and
has recently become an official event at the Paralympic Games. The rules of boccia resemble
those of curling, with players competing to determine who can get a ball closer to a
target by throwing. Recently, boccia has been spreading as a recreational pastime due to
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the simplicity of its rules and its high usefulness. It has become a familiar ballgame for
everyone from very young children to elderly people [15,16]. Although players use throws
in boccia matches, those who have difficulty throwing can also participate. These players
may kick balls or use an assistive device such as a ramp. Quite a few people with difficulty
in pitching would like to participate in games using their own throwing motions.

In rare instances, a boccia player with hand disorders may throw by wearing a small
pocket on the back of the hand to hold a ball. Several players throw the ball using an
assistive device designed to the level of their individual symptoms [17,18]. However, this
method does not solve the fundamental problem of releasing the ball with proper timing.
Moreover, assistive devices are not versatile, and depend on the level of disorder [19,20].
On the other hand, recent studies on throwing motion estimation based on contactless
sensors such as motion capture systems have been introduced [21–23]. This enables highly
accurate estimation for the throwing motions of the entire body; however, not only does
it require a large amount of data, it limits the estimation environment. Unlike existing
studies, we seek another assistive approach that utilizes throwing motions and caters to
as many players as possible regardless of individual differences. Unfortunately, no such
approaches have been found yet.

Thus, this paper presents an estimation scheme for throwing motion intention as a
first step towards providing throw support. Specifically, it considers underarm throwing, a
useful pose in boccia. Based on input data collected during the throwing motion, estimation
parameters related to release timing are examined. Next, the generality of the input data
used for estimation needs to be ensured. For this purpose, we examine which part of the
body to measure and how to connect the measured body part to the throwing intention.
Accordingly, this paper aims to find an assistive clue by understanding throwing motions.
We expect this to greatly increase the number of methods that can use and support the
throwing action.

The rest of this paper is organized as follows. Section 2 introduces the problem and its
definition. Section 3 details the formulation of the underarm throwing motions. Section 4
proposes an enhanced estimation scheme based on the formulation of the underarm throw-
ing motion and presents the evaluation results from extensive experiments to verify its
effectiveness. In addition, this section presents our findings and future directions. Finally,
Section 5 concludes our paper.

2. Problem Statement
2.1. Considerations of Underarm Throwing

This paper addresses what to measure during a ball throw and how to estimate from
the measured motions. When it comes to ball-throwing actions, we need to consider the
following three conditions: (1) throwing style, (2) the body part used for measurement and
estimation, and (3) the estimation parameters. Among these conditions, we first consider
the throwing style. Boccia players largely adopt two types of throwing styles: overarm and
underarm throws [24,25]. More players prefer the underarm throw, as it offers a tactical
advantage [26,27]. Consequently, the underarm throw style is more suitable for finding
clues to use their tactical throws.

Second, we select the shoulder as the body part to observe for estimation from the
standpoint of information acquisition. Many studies have focused on the kinematics of
throwing motions [28,29], and the shoulder plays an important role in acquiring information
about them [30,31]. In practice, a number of studies have attempted to use shoulder motion
as an interface for prosthetic hands. This trial indicates that the shoulder provides a large
amount of motion data [32,33].

Third, we discuss the estimation parameters for throwing. When people throw toward
a desired location with an underarm style, they tactically select a more appropriate speed
and launch angle [34,35]. We believe that by estimating the speed and launch angle, we
can then guess the location of a ball after it is thrown. Although throwing actions such as
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the swinging speed of the arm affect the ball speed, the timing of releasing the ball strongly
influences the launch angle of the ball.

2.2. Problem Definition

Based on the above considerations, this study defines the “throwing intention” as
the launch angle when underarm throwing. Next, shoulder movements as input signals
for estimation are employed. Additionally, assuming that a throwing intention will be
introduced into assistive devices, we aim to propose an estimation scheme that accounts
for contactless sensors and can be used in various places.

The objective of this paper is to determine how to estimate the motional intentions
when underarm throwing. As our solution approach, we aim to estimate the launch angle
from the swing of an arm during underarm throwing. As illustrated in Figure 1, the launch
angle when a swing is conducted is defined as Ra. Moreover, the estimated launch angle
after recording by a measurement device such as a camera is represented by R′

a. Depending
on the definitions, the relationship between Ra and R′

a is described as

Ra = R′
a. (1)

Figure 1. Conceptual illustration of measurement and estimation for underarm throwing motions.
The launch angle when a swing is conducted is defined as Ra, while the estimated launch angle after
recording by a measurement device such as a camera is represented by R′

a.

When tackling the problem, Equation (1) indicates the solution direction of how to
estimate Ra from the swing of the arm. We attempt to accomplish this study using the
following procedure:

• Select an appropriate body part, enabling the estimation of Ra.
• Investigate the relationship between the movements of the selected part and Ra and

evaluate its generality.
• Build an estimation model using the obtained relation that is adjusted for individual

differences and demonstrate its effectiveness through evaluation tests.

3. Formulation of Underarm Throwing Motion
3.1. Observation of Shoulder Movements

The shoulder was determined as the part of the body, as it is the closest part of the
upper limbs to the trunk of the body. Furthermore, the trunk and upper limbs greatly
contribute to the ball-throwing motion, and they are connected by the shoulder.

When a ball is thrown in the underarm throwing style, an arm (including a hand) is
located below a shoulder [36]. Acromion movements in the shoulder are clearly observed
during underarm throwing. In other words, there are few blind spots hidden by the
underarm throwing motion. For these reasons, the movements of the acromion are regarded
as representative motions of the shoulder. For convenience, the movements of the acromion
were measured. Moreover, the geometric relationship between the shoulder’s motions and
Ra was investigated through preliminary experiments and analyses.
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3.2. Definition of Ball-Throwing Motions

To analyze the underarm throwing motion efficiently, we first described the throwing
motion before conducting preliminary experiments. As shown in Figure 2, a series of
underarm throwing motions was divided into four phases according to the state of the
swinging arm and the condition of ball holding. First, the period from holding the ball to
before swinging the arm backward was called the pre-swing phase. Second, the period in
which the arm is swung backward was called the backward-swing phase. Third, the period
when the arm swings forward before releasing the ball was defined as the forward-swing
phase. Fourth, the period after releasing the ball was called the post-release phase. The
times required for each phase are represented by t1, t2, t3, and t4, respectively.

Figure 2. Classification of four phases according to swing motion during underarm throwing.

A substantial disparity in motions is presumed during the pre-swing and post-release
phases among various people; thus, these phases were excluded from our analytical
process. Our analyses focused on the motions in the backward-swing and forward-swing
phases, which are expressed as Bsp and Fsp, respectively. Based on the sagittal plane, the
throwing direction is set to x⃗. The axis z⃗ is defined by rotating x⃗ 90◦ and counterclockwise.
The origin intersects x⃗ with z⃗. This defined coordinate system is expressed as x⃗⃗z-coord
for convenience. The typical coordinates of the shoulder are the acromia coordinates,
symbolized as ps (= (xs, zs)) (see Figure 2) with respect to the x⃗⃗z-coord.

3.3. Experimental Settings for Measurement of Underarm Throwing Motion

Figure 3 shows the equipment used in the experiments and its settings. To make
a distinction of Ra, the target frame was turned upright and positioned in front of each
subject. Three target plates (the top, middle, and bottom) in the target frame were installed
from the top downward. To capture ps in line with the changes in Ra, clothes that fit the
individual subjects were used. An in-house marker was attached to the shoulder of the
subject (left side of Figure 3). To curtail any influence on data acquisition due to marker
slippage, the marker location was checked and the clothes were adjusted after pitching.
The FDR-AX700 digital 4K video camera recorder (SONY Corporation, Tokyo, Japan) with
1080p and 120 fps was placed beside the subject to capture the movement of the marker.
We intended to suppress the disparity in the throwing speed by explaining the throwing
method so that the ball could fall near the goal object.

As mentioned in Section 2, measurement data from multiple subjects are required
when investigating the relationship between ps and Ra. Through open recruitment within
our university, seventeen subjects who agreed to our experimental plan participated (four-
teen males and three females, with a mean age of 23 ± 2 years old, height 155∼188 cm).
Before the preliminary experiments, the permission of the ethics committee of the Uni-
versity of Miyazaki was obtained (Approval No.: 2021-001). Furthermore, the informed
consent of all subjects was obtained after providing them with a sufficient explanation of
the experiments.

The reasons why we determined to use the FDR-AX700 video camera in the prelimi-
nary experiments were as follows. Employing a CMOS sensor type, this video camera with
a total of 14.2 megapixels provides a 16:9 aspect ratio. This wide-screen format results in
throw analyses that are effective for obtaining a broad range of movements. The camera’s
installed BIONZ X image processor allowed accurate image processing to be obtained for
the throwing motions.
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Figure 3. Preparation for preliminary experiments to investigate the relationship between ps and Ra.
The target frame was turned upright and was positioned in front of each subject. Three target plates
(the top, middle, and bottom) in the target frame were installed from the top downward. To capture
ps in line with the changes in Ra, clothes that fit the individual subjects were used. An in-house
marker was attached to the shoulder of the subject. To adjust each height of the three plates to the
height of individual subjects, the height of a marker “B” and the level of the hand when standing
upright were matched.

Through the above settings, the experiments were performed as follows: (1) the
subjects wore fitted clothes and pasted the marker on their shoulder; (2) each height of
the three plates was adjusted following the height of individual subjects (the height of a
marker “B” and the level of the hand when standing upright were matched on the right
side in Figure 3); and (3) the subjects threw 10 balls for each of the top, middle, and bottom
plates, for a total of 30 balls).

3.4. Experimental Results for the Measurement of Underarm Throwing Motion

Two types of data were obtained from the experiments. The method for acquiring
these data is described below. The first data consisted of the Ra measurements when the
ball was thrown on the three plates (top, middle, and bottom). Ra was collected from the
captured video clips using a sampling frequency of 120 Hz. In practice, the data of Ra
tracking each ball were based on the use of the KINOVEA analysis software (Kinovea-
0.9.4-x64). We computed Ra as the mean angle of the ball (based on x⃗) within 50 ms of
the release. The data for each of the 30 throws by individual subjects were obtained by
excluding data that could not be properly extracted due to poor camera focus. Next, within
Bsp and Fsp, the second data were ps(t) according to time. ps(t) was obtained by tracking
the movements of the marker on the captured data.

Figure 4 displays Ra at the time when 10 balls were thrown by one subject in each
plate (the top, middle, and bottom), as well as ps(t) for one of the 10 balls thrown. From the
results in Figure 4a, we validated that Ra presented a low disparity. However, it changed
slightly depending on the plates. Additionally, the data in Figure 4b–d demonstrate
different movements for the two phases of Bsp and Fsp following the changes in Ra.

Figure 5 presents the displacement quantity of ps in the x⃗ and z⃗ directions as the time
ratio when individual subjects threw 10 balls in the middle plate. Here, the error bars
indicate 95% confidence intervals and the boxes represent distributions of measured data
in the range of 25–75%. Within these boxes, the black bars and the red dots symbolize
the medians and averages according to the time ratio, respectively. It can be observed
that despite throwing the ball into the same plate, ps(t) varied not only with each subject
but also with each ball that was thrown. A similar trend was observed for displacement.
Hardly any change was observed in the z⃗ direction relative to the movement in equivalent
intervals in the positive x⃗ direction in relation to the time ratio at the Bsp phase. Therefore,
a linear movement in relation to ps(t) with respect to the x⃗⃗z-coord shows a similar trend. As
for Fsp which we validated in the x⃗ direction, the type of movement was the same as that
in Bsp. In the z⃗ direction, the variations ranged from the negative direction to the positive
direction. A curved movement was noted in relation to ps(t).
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(a) (b)

(c) (d)

Figure 4. Experimental results for Ra (upper left) and displacement variations of ps with respect to
x⃗⃗z-coord when the balls were thrown in each plate (the top, middle, and bottom) of the target frame,
as shown in Figure 3. (a) Ra, (b) top plate, (c) middle plate, (d) bottom plate.

(a) (b)

Figure 5. Shoulder movements in x⃗ and z⃗ in time ratio for seventeen subjects; the values of x and z in
t1 were used as the reference. (a) x⃗ direction, (b) z⃗ direction.

In Figure 5, the two graphs depict wide variations in the error bars when comparing the
ranges of individual boxes with them. Although this may be due to individual differences,
these results had a large range of variations in the error bars. To ensure familiarity with the
experimental settings, throwing practices before the measurements were conducted with
one subject. In detail, we had the subject throw ten balls toward each target plate. Figure 6
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shows the displacement quantity of ps in the x⃗ and z⃗ directions as the time ratio when the
subject threw 10 balls in the middle plate. In spite of the similar trends in Figure 5, it was
verified that the variations in the error bars were reduced. Pretraining on throwing could
be an effective way to maintain a constant posture, resulting in reduced fluctuations in
the data.

(a) (b)

Figure 6. Shoulder movements in x⃗ and z⃗ in time ratio for one subject; where the values of x and z in
t1 were used as the reference. (a) x⃗ direction, (b) z⃗ direction.

After the completion of the experiments, the seventeen subjects were asked to fill out
a questionnaire. The questions were as follows:

• Have you been joining in recreational activities that involve throwing a ball (such
as boccia)?

• Do you find upper extremity movements, including throwing movements, burdensome?

For the first question, four respondents (23.5%) said yes, eleven (64.7%) said no, and
two (11.8%) had no response. The four subjects who replied in the affirmative said that
they participated in baseball games more than 2–3 times a month. For the second question,
all subjects answered no.

3.5. Model of Underarm-Throwing Motion

It was confirmed that there was a presence of constant tendencies in ps(t). Based on
the results, these tendencies fluctuated in accordance with Ra. To simplify the analyses,
ps(t) was modeled. ps(t) was derived and its fluctuations were observed by the change of
Ra into a variable. The modeling of ps(t) within Bsp is presented as a linear model based on
the trends depicted on the left side of Figure 7. Next, Fsp is represented as a curved model
on the right side of Figure 7. In the results compared in Figure 4, fluctuations occur in ps(t)
following the changes in Ra. Therefore, ps(t), in which fluctuation is notably observed in
the aforementioned model, was set as a variable.

The variables described in Figure 7 are explained below. For Bsp, a significant change
was acquired in the movement quantity l1 when the shoulder moves in the positive x⃗ and
on the slope θ1. Based on the conceptual description, l1 and θ1 can be expressed as follows:

l1 =
√
(xs(t2)− xs(t1))2 + (zs(t2)− zs(t1))2, (2)

θ1 = tan−1
( zs(t2)− zs(t1)

xs(t2)− xs(t1)

)
. (3)
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For Fsp, a significant change is observed in the movement quantity l2 during the
movement in the negative z⃗ and on the slope θ2 before the release of the ball. Given the
minimum value of ps(tp) in the curved model, if it is based on ps(t3) from the release to 50
ms before the release, then l2 and θ2 can be provided as follows:

l2 =
√
(xs(tp)− xs(t2))2 + (zs(tp)− zs(t2))2, (4)

θ2 = tan−1
( zs(tp)− zs(t2)

xs(tp)− xs(t2)

)
. (5)

Figure 7. Illustration for movement trend of ps(t) in underarm throwing. To observe ps(t) in practice,
a marker was attached to the shoulder, as shown in Figure 3.

3.6. Discussion of Underarm Throwing Motion Model

In this subsection, the impact of these variables on Ra according to the time ratio in
each phase is divided and analyzed. A well-known regression equation is employed when
Ra is the objective variable for the analysis method. Additionally, l1 in Equation (2) and
θ1 in Equation (3) are used as the explanatory variables of Bsp. In Fsp, the explanatory
variables are defined as l2 and θ2 in Equations (4) and (5), respectively. The determination
coefficient of R2 is employed to indicate how well the regression equation and actual data
fit for the evaluation method. As the analysis deals with quantitative data, the actual Ra
is used when throwing the ball toward the three plates. The regression equation of Bsp is
as follows:

Ra = a1l1 + a2θ1 + a0, (6)

where a1 and a2 denote regression coefficients and a0 indicates a fragment. Next, the
regression equation of Fsp is

Ra = b1l2 + b2θ2 + b0, (7)

where b1 and b2 refer to the regression coefficients and b0 to the fragment.
Figure 8a,b shows the analytical results for the number of subjects corresponding

to the determination coefficient of R2 in Equations (6) and (7) according to Bsp and Fsp,
respectively. Here, the vertical directions indicate the number of subjects in relation to the
determination coefficients. In Figure 8a, although some subjects present a highly precise
correlation with Ra, the results exhibit obvious disparity depending on the subject. On the
other hand, in Figure 8b the variables in Fsp present a highly precise correlation with Ra for
many subjects.



Sensors 2024, 24, 2972 9 of 17

(a) Bsp (b) Fsp

Figure 8. Analytical results for the number of subjects corresponding to the determination coefficient
of R2 in Equations (6) and (7) according to Bsp and Fsp. (a) Bsp, (b) Fsp.

To validate a highly precise correlation for Fsp, we plotted Ra in relation to l2 and θ2
in Figure 9. These results indicate that the actual data accumulated around the regression
equation, namely, the approximation plane. From the results, a highly precise correlation
was visually confirmed. Moreover, the slope of the correlation (coefficients and a fragment
in the regression equation) varied among the subjects. We considered the main causes that
contributed to the results to be individual differences such as ball-throwing poses and the
rotational range of the shoulder joints.

Finally, Figure 10 confirms that the time required for Fsp is shorter than for Bsp and
that the results for Fsp have a slighter variance depending on the subjects. Specifically, the
subjects requiring 500 to 700 ms for Bsp and 300 to 400 ms for Fsp had a majority. Moreover,
t1 ∼ t2 and t2 ∼ t3 had a slight effect on the changes in the target plates. Based on these
results, it could be concluded that Fsp requires less time and has less variation among
subjects compared to Bsp.

(a) (b)

Figure 9. Analytical results for l2 and θ2 corresponding to R2 in Equation (7) according to two subjects.
(a) subject #1 (R2: 0.905), (b) subject #2 (R2: 0.946).
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Figure 10. Analytical results of the required times for Bsp(t1 ∼ t2) and Fsp(t2 ∼ t3) when 10 balls
were thrown to each plate (the top, middle, bottom) in the target frame by seventeen subjects.

4. Enhanced Estimation Scheme and Evaluation Results

From the results of the preliminary experiments in Section 3, we confirmed the highly
precise correlation of ps(t) with respect to Fsp with Ra. However, ps(t) was obtained
offline by tracking the movements of the marker on the captured data. Furthermore, the
slope of this correlation varied among subjects. To overcome these limitations, this section
introduces an enhanced online model for estimating Ra that takes individual differences
into account. We demonstrate the effectiveness of the model through evaluation tests while
considering previous results.

4.1. Calibration and Estimation Model for Underarm Throwing Motions

As an enhanced estimation scheme, a calibration and estimation model for underarm
throwing motions is proposed. The computation flow in this model is shown in Figure 11.
The model comprises calibration and estimation modules. First, the prediction equation
for each subject is updated as the calibration module is performed. Then, R

′
a is estimated

employing the updated prediction equation in the estimation module.
In practice, in order to perform an online process during underarm throwing it is

necessary to refer ps(t) and Ra simultaneously. For that purpose, sensor-1 and sensor-2 are
respectively employed to observe ps(t) and Ra in real time. The details of the computational
processing of the model by the use of sensor-1 and sensor-2 are explained below.

To begin, the calibration module updates the slope of the correlation varying with the
subjects. In detail, during ball throwing, ps(t) is obtained using sensor-1. Then, l2 and θ2
are sought from the data. Meanwhile, Ra is input from sensor-2. By repeating the process
n times, the regression analysis is performed using these variables and the prediction
equation for individual subjects is derived accordingly. This equation is the same as the
regression equation (see Equation (7)), and uses the correlation confirmed in Fsp.

Next, R
′
a is estimated from ps(t) by executing the estimation module. The prediction

equation refined by the calibration module is applied to predict R
′
a, then l2 and θ2 are

obtained in a manner similar to that of the calibration module during ball throwing. As
Ra is actually thrown by the subject, it is acquired by substituting l2 and θ2 obtained in the
prediction equation. The estimation module outputs R

′
a that was actually thrown as Ra.
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Figure 11. Computation process of the calibration and estimation model for underarm throwing motions.

The calibration module copes with individual differences in ball-throwing styles as
the highlighting point in the model. A feature emerges as the generality of the motion
estimation, as no restrictions and complexity are imposed on specific programs executing
the computation processing on sensor-1 and sensor-2 extracting the data and on the device
outputting the results. However, the reliability of the proposed model depends on the n
number of balls thrown in the calibration module. Therefore, it is necessary to evaluate the
dependence between the n number of balls thrown and the estimation accuracy.

4.2. Evaluation Experiments for Calibration and Estimation Model

We performed evaluation experiments for the calibration and estimation model with
seven subjects to verify its effectiveness. Figure 12 shows the experimental settings. A
target frame with six numbered plates was prepared to examine the estimation accuracy of
R

′
a. We used a C920R web camera (Logicool Co., Ltd., Tokyo, Japan) with 1080p and 30 f ps

as sensor-1. In practice, the use of the web camera allowed to online compute ps(t) on an
LG Gram laptop PC (LG Electronics Co., Ltd., Seoul, Republic of Korea) with an Intel(R)
Core(TM) Ultra 7 processor 155H (Intel, Santa Clara, CA, USA) without transferring the
motion data captured by the video camera. Moreover, an LG 27UL500-W monitor (LG
Electronics Co., Ltd., Seoul, Republic of Korea) was used to display R

′
a based on ps(t)

computed in the model.

Figure 12. Preparation for evaluation experiments.

Next, the calibration module in the proposed model was used to update the prediction
equation online while conducting throws. Red and green markers were used to clearly
extract ps(t) with respect to Fsp from the motion data captured by sensor-1. As shown in
Figure 12, these markers were attached to the shoulder and upper arm of each subject,
respectively. Similar to the preliminary experiments in Section 3, ps(t) was read with the
red marker. On the other hand, the green marker was used to differentiate the beginning
time of Fsp from the overall swing motion. After the time of Fsp was determined, l2 and θ2
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were computed and applied to the online prediction equation (see the calibration module
in Figure 11). In practice, the extraction of these data was implemented using a Python-
oriented real-time object tracking technique through a web camera. Finally, boccia balls
were used for the throw.

Figure 13 presents the procedure for the evaluation experiments. Details on the
procedure are as follows. (1) The subject throws a ball toward a plate identified in advance.
Simultaneously, the main controller records l2 and θ2 extracted from ps(t) and the plate
number where the plate is hit. (2) The subject repeats the first procedure n times. The main
controller computes the prediction equation by performing regression analysis based on the
saved data. (3) After calibration, the subject throws a ball at a plate and the main controller
then estimates the numbered plate based on the prediction equation. In the evaluation
experiments, the output of the prediction equation should display Arabic numerals rounded
down after the decimal point as the estimated number on the monitor, as the number of
targets is R

′
a.

Figure 13. Process flow of the calibration and estimation model implemented as experimental settings.

We evaluated the estimation accuracy through these experiments based on the number
of hits when 20 balls were thrown toward the target plates. Two evaluation directions were
set to demonstrate the effectiveness of the proposed model: (1) how many balls needed
to be thrown in advance to generate the prediction equation with sufficient accuracy
(n numbers of throws in the calibration module), and (2) whether the proposed model
could reach sufficient accuracy despite individual differences. Based on these directions,
the following experiments were conducted:

• Investigating the estimation accuracy after changing the number of balls n thrown in
the calibration module

• Performing the evaluation experiments with multiple subjects and evaluating the
estimation accuracy based these results.

4.3. Evaluation Results and Discussion

Figure 14 displays the experimental scenes used to investigate the estimation accuracy
of the calibration-and-estimation model. The estimated Arabic numerals were displayed
on the monitor after the subject threw balls toward a target plate determined in advance in
the experiments. Through these experiments, we confirmed that the experimental setting
and devices worked well and that R

′
a could be estimated using the model.
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(a)

(b)

Figure 14. Experimental scenes used to investigate estimation accuracy. (a) a series of underarm-
throwing motions toward the four numbered plate, (b) underarm-throwing motion toward the two,
three, and six numbered plates .

Figure 15 presents the experimental results for the estimation accuracy. Here, we
prepared five types of experimental settings by changing the numbers of throws in the
calibration module stage. In particular, these results indicate the estimation accuracy when
using the prediction equation calculated by throwing five balls toward each number plate
in advance. Regarding the estimation accuracy when three balls were thrown in advance
at each number plate (total of 18 balls), the accuracy remained at about 80% even when
the number of balls increased. This outcome was connected to the fact that the prediction
formula converged based on the increase in the number of balls thrown. Consequently,
with the throwing of approximately 20 balls in advance, the proposed model could perform
the estimation with a stable level of accuracy.

Figure 15. Experimental results for the estimation accuracy according to the number of throws

Table 1 summarizes the estimation accuracy for three subjects when throwing 20 balls
after the number of 18 balls were executed in the calibration module. We confirmed that
even subject #3, with the lowest estimation accuracy, was able to achieve a high estimation
accuracy of 70%. Figure 16 exhibits comparisons between Ra and R

′
a per a ball from

the subjects with the highest and lowest estimation accuracies. It can be observed that
although Ra was different from R

′
a, the estimated number was close to the actual number.

According to the subjects, these experiments display different estimation accuracies under
the proposed model. On the different levels of accuracy depending on subjects, these results
confirm that individual differences were taken into consideration during the estimation.
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Table 1. Estimation accuracy according to individual subjects when throwing 20 balls.

Subject Number of Throws Accuracy (%)

subject #1 20 80
subject #2 20 85
subject #3 20 70

(a) (b)

Figure 16. Comparative results between Ra and R
′
a according to each throw when subject #2 and

subject #3 pitched each of 20 balls, respectively. (a) case of subject #2, (b) case of subject #3.

Finally, we conducted another experiment with a boccia player who was unable to
grip balls. This player threw the ball using a pocket-like brace on the back of the hand
(Figure 17). The height of the target frame was adjusted considering the height from his
shoulder to the floor. We asked the player to execute throwing motions towards individual
numbered plates of the target frame. The player performed the throws twice for each
number plate in detail. The obtained results of l2 and θ2 are shown in Figure 18. As
expected, the results confirm that there was a constant correlation between l2 and θ2 and
the plates. As a result of these experiments, there seems to be a high possibility that the
proposed model is suitable even for people with upper limb disabilities.

Figure 17. Experiment scene with a boccia player who is unable to grip the ball.

The two main features of the calibration and estimation model are described as follows.
First, this model focuses only on the movements of the shoulder in the human body during
underarm throwing. Second, the model takes individual differences into account during the
estimation. In the evaluation tests, we confirmed that by throwing 20 balls in advance the
model could account for individual differences in the Ra estimation. Consequently, these
features could be attributed to the results of movement analysis conducted on multiple
subjects. It was verified that a correlation existed between ps(t) and changes in Ra in the
movement analyses. Additionally, the slope of the correlation showed variations due to the
differences in ball-throwing postures and the rotation range of the shoulder joints. This
slope of the prediction equation in a calibration module could be adjusted through the fact
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that balls were thrown in advance. Therefore, it is possible that the feasibility of a throwing
estimation can consider individual differences. However, as our evaluations were limited
to a specific age group, we considered studying a wider age group to obtain new insights.
In our future work, we will deal with these limitations.

Figure 18. Experimental results for correlations of l2 (left) and θ2 (right) according plate numbers by
the boccia player introduced in Figure 17.

5. Conclusions

To estimate ball-throwing intentions based on swinging motions, we determined
the shoulder as an appropriate part of the body and investigated its relationship to Ra
in multiple people. Although there was a correlation in the subjects between ps(t) and
Ra, individual differences existed in terms of the slope of the correlation. Based on the
confirmed relationship, a calibration and estimation model which enabled the consideration
of individual differences was proposed, and its effectiveness was proven by conducting
extensive experiments.

We expect the proposed model to greatly expand the means of supporting disabled
people with ball-throwing disabilities. For example, we plan to develop a ball-throwing
robot equipped with the proposed model as an interface. The ball-throwing robot is
expected to throw the ball with the same swinging motion as that of a person with ball-
throwing disabilities. As this idea does not require an assistant, we aim to spread the joy
of participating in sports without the burden of nursing care. In addition, as the launch
angle of the ball is controllable, we expect to increase use possibilities from a tactical point
of view in boccia matches. As we can control Ra during throwing, the robot can enable
people with throwing disabilities to intuitively gain enjoyment from the game and improve
their physical strength and motor skills in order to realize enhanced sociability.
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