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Abstract: A typical magnetometer-based measurement-while-drilling (MWD) system determines the
azimuth of the bottom hole assembly during the drilling process by employing triaxial accelerometers
and magnetometers. The geomagnetic azimuth solution is susceptible to magnetic interference,
especially strong magnetic interference and so a rotary norm constraint filtering (RNCF) method for
azimuth estimation, designed to support a gyroscope-aided magnetometer-based MWD system, is
proposed. First, a new magnetic dynamical system, one whose output is observed by the magne-
tometers triad, is designed based on the Coriolis equation of the desired geomagnetic vector. Second,
given that the norm of the non-interfered geomagnetic vector can be approximated as a constant
during a short-term drilling process, a norm constraint procedure is introduced to the Kalman filter.
This is achieved by the normalization of the geomagnetic part of the state vector of the dynamical
system and is undertaken in order to obtain a precise geomagnetic component. Simulation and actual
drilling experiments show that the proposed RNCF method can effectively improve the azimuth
measurement precision with 98.5% over the typical geomagnetic solution and 37.1% over the KF in a
RMSE sense when being strong magnetic interference environment.

Keywords: measurement while drilling; azimuth estimation; rotary norm constraint filtering;
geomagnetic field

1. Introduction

Due to GNSS service outages that occur underground, the oil drilling industry em-
ploys mainly magnetometer-based MWD systems to navigate the drill bit through an
estimating of the orientation (including inclination and tool face angle, as well as az-
imuth) of the bottom hole assembly (BHA) during the drilling process [1–3]. By using
accelerometer/magnetometer triads to measure the projections of the three-dimensional
geographical field vectors (i.e., the Earth’s gravity field and magnetic field) on the BHA
frame, a magnetometer-based MWD system can autonomously provide a real-time ori-
entation estimation of the BHA, avoiding accumulative error in the gyroscope triad case.
Such a system can deliver a high-precision inclination/tool face angle of the BHA because
inclination/tool face angle-dependent components of the readings from the accelerometer
triad, i.e., the Earth’s gravity vector, possesses a strong tolerance for external interference.
Unfortunately, the magnetic interference from the drilling equipment (e.g., metallic materi-
als, magnetic debris in the drilling fluid) and the randomly located ore deposits and other
unknown interference sources may easily mask the desired azimuth-dependent part of
the readings from the magnetometer triad, i.e., the geomagnetic vector, leading to serious
distortion of the geomagnetic azimuth and even to a failure to drill to the destination [4,5].
Therefore, to improve azimuth precision, the magnetic readings from the magnetometer
triad should be effectively preprocessed in advance.
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To weaken magnetic interference from metallic drilling equipment, a magnetometer-
based MWD system is typically mounted inside an expensive non-magnetic drill collar [6].
This can effectively remove magnetic interference, due to the metallic materials of the drill
collar; however, use of a non-magnetic drill collar imposes the problem of high cost [7].
The removal of magnetic interference via software offers an alternative approach by which
to cancel out the magnetic interference that derives from metallic materials and is achieved
by characterizing mathematical models of these materials [8–10]. To alleviate magnetic
interference due to magnetic debris in the drilling fluid, Ref. [11] proposed the improvement
of ditch magnets through a combination of strong magnets and flow directors that would
remove metallic swarf from the drilling fluid. These pre- or post-processing methods can
effectively suppress well-known and constant magnetic interference sources of the drilling
equipment; however, random and unknown magnetic interference (e.g., ore deposits)
persist in causing poor azimuth measurement accuracy.

Software filtering methods play important roles in mitigating magnetic interference
during the drilling operations. The typical rolling-based and digital filter-based (i.e., aver-
age filter, FIR, etc.) auto-calibration methods of magnetic interference are simple but are
inapplicable to complex drilling environments [12]. To reduce the effects of perturbing
magnetic fields associated with magnetized sections of the drill collar, Ref. [13] proposed
a constant convergence algorithm that can iteratively estimate magnetic interference but
which can only estimate axial constant errors. To eliminate the adverse effects azimuth
that are imposed by accidental magnetic interference, Ref. [14] studied a new geomagnetic
azimuth solution that involves integration of the magnetic and gravity readings. Given
that the scalar product of two constant vectors will be constant in any coordinate system,
Ref. [15] proposed a scalar product constant SPC-based magnetometer error calculation
method on the prerequisite of an error-free accelerometer triad. The above software cor-
rection methods worked well, and with less severe magnetic interference, due to the poor
immunity of the magnetometer-based MWD system to strong magnetic interference.

Recently, multi-azimuth fusion techniques, based on different sensory sources and free
from magnetic interference, have been utilized to aid magnetometer-based MWD systems
in resisting strong magnetic interference. To achieve high precision azimuth measurement,
Ref. [2] used a Kalman filter (KF) to combine the geomagnetic azimuth and the azimuth
derived from drilling trajectory prediction. Ref. [16] established the nonlinear model of
orientation in a quaternion form, employing an unscented Kalman filter (UKF) to combine
the geomagnetic azimuth solution and the azimuth calculated from a single gyroscope. Our
prior work [17] studied the idea of extracting the geomagnetic vector in advance, before
which the extracted geomagnetic information is robustly fused together with the azimuth
derived from the gyroscope triad. Ref. [18] established a cut-off frequency-based error
model of geomagnetic vector, and the azimuth was estimated through the fusion of triaxial
gyroscopes and magnetometers. These studies aim to introduce aided azimuth sources, free
of magnetic interference, into the magnetometer-based MWD system in order to achieve
a high-precision azimuth measurement. However, both the trajectory prediction-based
azimuth and integral-based azimuth by gyroscope triad are corrupted by errors that are
accumulated over time due to the recursive strategy.

To resolve all of the aforementioned problems, this paper aims to develop a novel ro-
tary norm constraint filtering (RNCF) method for azimuth estimation based on a gyroscope-
aided magnetometer-based MWD system. This RNCF method features the use of KF to fuse
geomagnetic measurement of the magnetometer triad and the geomagnetic state propa-
gated by the Coriolis equation, based on the angular velocity measurement of the gyroscope
triad of the BHA. In addition, given that the norm of the non-interfered geomagnetic vector
can be approximated as a constant during a short-term drilling process, a norm constraint
procedure is then introduced into the measurement update of the KF in order to further
suppress magnetic interference by normalization of the interfered geomagnetic subset of
the state vector. The geomagnetic estimate is then utilized to deliver the azimuth of the
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BHA. This azimuth estimation approach takes advantage of not incurring accumulative
errors over time, as opposed to the multi-azimuth fusion approaches presented above.

The remainder of the paper is structured as follows: Section 2 shows the principle of
the azimuth solution of the gyroscope-aided magnetometer-based MWD system. Section 3
describes the magnetic dynamical system model. A detailed RNCF method with which to
obtain the desired geomagnetic vector is shown in Section 4. Section 5 presents experimental
results and discussions. Section 6 concludes the results of the study.

2. Principle of the Azimuth Solution of a Gyroscope-Aided Magnetometer-Based
MWD System
2.1. The Structure of the Gyroscope-Aided Magnetometer-Based MWD System

The gyroscope-aided magnetometer-based MWD system, introduced in this paper,
consists of three parts: the control system, the memory system, and the magnetic/inertial
surveying unit, as shown in Figure 1. The magnetic/inertial surveying unit incorporates
anisotropic magnetoresistive triaxial magnetometers, micromechanical triaxial accelerom-
eters and micromechanical triaxial gyroscopes. These are mounted in a titanium alloy
pipe in three mutually orthogonal directions in order to measure the Earth’s magnetic
field vector, the Earth’s gravity field vector, and the angular velocity vector in the BHA–
body coordinate frame (b-frame), respectively. According to the harsh requirements of the
drilling environment, the final candidates and the main performance parameters of the
above magnetic and inertial sensors are listed in Table 1.
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Figure 1. Gyroscope-aided magnetometer-based MWD system.

Table 1. Characteristics of the magnetic/inertial sensors.

Parameters Magnetometer
(HMC1043)

Accelerometer
(MS9010)

Gyroscope
(CRG20-02)

Range ±6 gauss ±10 g ±300◦/s
Resolution 120 µgauss 0.1 mg 0.03125◦/s

Bias stability - <0.25 mg 4.7◦/h
Noise 50 nV/

√
Hz 0.140 mg/

√
Hz 18 nV/

√
Hz

Working TEMP −40–125 ◦C −55–125 ◦C −40–105 ◦C
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2.2. Principle of the Typical Geomagnetic Azimuth Solution of a Magnetometer-Based
MWD System

A geographic coordinate system is selected as the reference frame (n-frame) with
which to represent the orientation (described by Euler angles, including inclination (θ), tool
face angle (γ) and azimuth (ψ)) of the BHA, with the Xn, Yn and Zn axis aligned with the
topographic north, east, and up directions, respectively, as shown in Figure 2.
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Vector transformation from the b-frame to the n-frame can be described by the direction
cosine matrix (DCM) Cn

b in Euler angles form [19].

Cn
b =

cos ψ cos γ + sin ψ sin θ sin γ − cos γ sin ψ + sin γ cos ψ sin θ − sin γ cos θ
sin ψ cos θ cos ψ cos θ sin θ

sin γ cos ψ − cos γ sin ψ sin θ − sin γ sin ψ − cos ψ cos γ sin θ cos γ cos θ

 (1)

At a certain orientation, triaxial accelerometers measure the gravitational field about
the Xb, Yb and Zb axes of the BHA in the b-frame, termed gb

x, gb
y, and gb

z , respectively. The
outputs of the triaxial magnetometers, denoted by mb

x, mb
y and mb

z , represent the components
of the Earth’s magnetic field in the b-frame. In particular, the gravitational field and geomag-
netic vector in the n-frame can be taken as approximate constant vectors during the short-
term drilling process, described as gn = [0 0 g]T and mn = [0 m cos β − m sin β]

T,
where g is the magnitude of the local gravity acceleration, m is the local geomagnetic field
strength, and β represents the local geomagnetic inclination.

The gravitational vector with regard to the b-frame (gb) can be transformed from the
n-frame (gn) by Cb

n as follows:

gb = [gb
x, gb

y, gb
z ]

T
= Cb

n[0, 0, g]T, (2)

where Cb
n = (Cn

b )
T is the DCM from the n-frame to the b-frame.

Similarly, the Earth’s magnetic vector of the b-frame (mb) can be described as follows:

mb = [mb
x, mb

y, mb
z]

T
= Cb

n[0, mcosβ,−msinβ]T, (3)

Combining (1), (2) and (3), the typical geomagnetic azimuth solution of BHA is given
by the following:

ψ = arctan
g(gb

xmb
z − mb

xgb
z)

mb
y[(gb

x)
2
+ (gb

z)
2
]− gb

y(mb
xgb

x + mb
zgb

z)
± D, (4)

where gb
x, gb

y, gb
z , mb

x, mb
y and mb

z correspond respectively to gravity readings from the
accelerometer triad and with magnetic readings from the magnetometer triad, while D
defines the local geomagnetic declination, which can be premeasured.
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2.3. Principle of the Azimuth Solution of a Gyroscope-Aided Magnetometer-Based MWD System

As can be readily seen from (4), the typical geomagnetic azimuth solution depends
heavily on the magnetic outputs of the magnetometer triad. Unfortunately, magnetic
interference may easily mask the desired azimuth-dependent component of the magnetic
readings from the magnetometers, i.e., the geomagnetic vector, which leads to serious
distortion of the azimuth during the drilling process.

For an accurate azimuth of the BHA, in this paper, a gyroscope triad is used to aid the
typical magnetometer-based MWD system in shielding the typical geomagnetic azimuth
solution from magnetic interference. The main workflow of the azimuth solution of a
gyroscope-aided magnetometer-based MWD system is shown in Figure 3. A novel rotary
norm constraint filtering (RNCF) method is designed to decouple the desired geomagnetic
vector (x̂∗+m ) from the magnetic interference. Then, together with the Earth’s gravity vector
from the accelerometer triad, the desired geomagnetic vector is used to deliver the azimuth
of the BHA by (4).
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3. Dynamical System Model of Geomagnetic Vector

As shown in Figure 3, the state vector of the proposed RNCF consists of two types of
components of geomagnetic vector. One of these is the desired magnetic vector in the body
frame of the BHA (termed as vector mb

k), whose state can be propagated by the Coriolis
equation using the angular velocity of the BHA [18]. This propagation process is described
by the following:

mb
k = exp(−[ωb

k−1×] · Ts)mb
k−1 = mFk−1mb

k−1, (5)

where ωb
k−1 is the angular velocity vector of the BHA measured from the triaxial gyroscopes

and [ωb
k−1×] is the skew symmetric matrix of ωb

k−1. Measurement noise of the gyroscopes
leads to the propagation error of (5), which is given by the following:

δm′b
k ≈ −Ts[mb

k−1×]gwk−1 = mGk−1
gwk−1, (6)

where δm′b
k represents the propagation error, [mb

k−1×] is the skew symmetric matrix of
mb

k−1, and gwk−1 is the measurement noise of the gyroscopes at time k − 1.
The other component of the state vector is the external magnetic interference (termed

vector δmb
k), which can be approximatively characterized by a first-order Gaussian Markov

(GM) process [18], the model of the magnetic interference is as follows:

δmb
k = k1 · I3δmb

k−1 + k2 · I3
δwk−1 = δFδmb

k−1 +
δGδwk−1, (7)

where k1 is the correlation coefficient of the GM (the larger the k1, the lower the frequency
of the magnetic interference), k2 is the random intensity of the GM, δwk−1 is assumed to be
white Gaussian stimulation noise of the GM at k − 1 with zero mean and covariance matrix
δR, k1 and k2 are all environment-dependent parameters, and I3 is a 3 × 3 identity matrix.
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To obtain the dynamical system model of geomagnetic vector, the two components of
geomagnetic vector (mb

k and δmb
k) are incorporated into the state of the dynamical system.

The system’s state equation is given by the following:

xk = Fk−1xk−1 + Gk−1wk−1, (8)

where xk = [mb
k, δmb

k]
T

is the state vector, Fk−1 =

[mFk−1 03
03

δF

]
defines the transition

matrix from time k − 1 to time k, Gk−1 =

[mGk−1 03
03

δG

]
is the noise coefficient matrix,

wk−1 = [gwk−1, δwk−1]
T is the noise vector of the state equation, and mGk−1,δG, gwk−1 and

δwk−1 are the same as those presented in (6) and (7), respectively.
The observation vector of the dynamical system at time k denotes myk, which can be

measured from the triaxial magnetometers, which in turn can be described by the following:

myk = mb
k + δmb

k +
mwk, (9)

where mwk is the measurement noise of the triaxial magnetometers with zero mean and
covariance matrix mR.

The measurement equation of the dynamical system is then specified by the following:

yk = Hkxk + vk, (10)

where Hk = [I3 I3] describes the measurement matrix and vk =
mwk is the measurement

error vector.

4. Rotary Norm Constraint Filter Design
4.1. Kalman Filter Design

In this section, KF will be introduced to estimate the azimuth-dependent component
mb

k based on the dynamical system model designed in Section 3.
The following time update equations are used to propagate the state estimate and

covariance from one measurement time to the next, as follows:{
x̂−k = Fk−1x̂+k−1
P−

k = Fk−1P+
k−1FT

k−1 + Qk−1
, (11)

where x̂−k is the prior estimate of the state vector at time k, Fk−1 defines the transition matrix
from time k − 1 to time k, x̂+k−1 is the posteriori estimate of the state vector at time k − 1,
P−

k describes the a priori covariance of the state vector at time k, P+
k−1 is the a posteriori

covariance of the state vector at time k − 1, and Qk−1 = Gk−1

[gR I3
I3

δR

]
GT

k−1 is the process

noise covariance.
The measurement update equations are given by the following:

Kk = P−
k HT

k (HkP−
k HT

k + Rk)
−1

x̂+k = x̂−k + Kkεk

P+
k = (I − KkHk)P

−
k (I − KkHk)

T + KkRkKT
k

, (12)

where Kk is the Kalman gain matrix at time k, εk = yk − Hkx̂−k stands for the innovations,
and P+

k is the a posteriori covariance of the state vector at time k.

4.2. Rotary Norm Constraint Filtering Method

It is noticeable that the norm of the geomagnetic subset (mb
k) of the a posteriori state

estimate (x̂+k ) in (12) ideally equals the local geomagnetic intensity, while this condition
is no longer true when there exists magnetic interference, especially strong magnetic
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interference. Thus, it is essential to add a normalization procedure of the geomagnetic part
of the state estimate by minimizing a constrained cost function to guarantee a more precise
geomagnetic subset estimate in KF.

In this section, a novel rotary norm constraint filtering method corresponding with
the above procedure will be introduced in order to improve the estimation accuracy of
the geomagnetic vector based on the above KF design. For a clear understanding of the
following derivation, we first define some notations that are used later. The subscript “m”
denotes the variables associated with mb

k, while the subscript “δ” denotes the variables
related to δmb

k. In addition, the superscript “*” is added to some variables in order to
distinguish them from those of the KF.

Suppose that the 6 × 1 state vector xk is partitioned into xm,k and xδ,k as follows:

xk = [xm,k, xδ,k]
T, (13)

where xm,k stands for the desired Earth’s magnetic vector (mb
k) and xδ,k denotes the magnetic

interference (δmb
k). The estimate error associated with each partition of xk will be minimized

independently.
The estimate error covariance before the measurement update can be partitioned is

as follows:

P−
k =

[
P−

m,k P−
δ,k

]
=

[
(P−

m,k)
T

(P−
δ,k)

T

]
=

[
P−

mm,k P−
mδ,k

P−
δm,k P−

δδ,k

]
, (14)

The a posteriori covariance of the state vector is partitioned as follows:

P+
k =

[
P+

m,k P+
δ,k

]
=

[
(P+

m,k)
T

(P+
δ,k)

T

]
=

[
P+

mm,k P+
mδ,k

P+
δm,k P+

δδ,k

]
, (15)

The Kalman gain is partitioned appropriately as follows:

Kk = [Km,k, Kδ,k]
T, (16)

To conduct the above procedure of the norm constraint of the state vector, xm,k is
desired to have a predefined value, the constraint of which is equivalent to the following:√

(x̂+m,k)
T
(x̂+m,k) = ∥H∥, (17)

where ∥H∥ is the corrected norm of the Earth’s magnetic vector obtained by the IGRF model.
Combining (12) and (17), the state constraint can be expressed more conveniently as a

constraint, as follows:

(x̂−m,k + Km,kεk)
T
(x̂−m,k + Km,kεk) = ∥H∥2, (18)

Rearranging (18) yields the following:

εT
k KT

m,kKm,kεk + 2(x̂−m,k)
TKm,kεk + (x̂−m,k)

Tx̂−m,k − ∥H∥2 = 0, (19)

The a posteriori covariance matrix P+
k , given by the Joseph formula of (12), can be

rewritten as follows:

P+
k = P−

k − KkHkP−
k − P−

k HT
k KT

k + KkWkKT
k , (20)

where Wk = HkP−
k HT

k + Rk.
Substituting (14), (15), and (16) into (20) and rearranging yields the following:

P+
mm,k = P−

mm,k − Km,kHkP−
m,k − (P−

m,k)
THT

k KT
m,k + Km,kWkKT

m,k, (21)
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P+
δδ,k = P−

δδ,k − Kδ,kHkP−
δ,k − (P−

δ,k)
THT

k KT
δ,k + Kδ,kWkKT

δ,k, (22)

Equations (21) and (22) indicate that the matrix P+
mm,k is only a function of Km,k, and

that P+
δδ,k is only a function of Kδ,k. Additionally, the trace of P+

k is equal to the sum of the
traces of P+

mm,k and P+
δδ,k. The two facts imply that the minimum of the sum is equal to the

sum of the minima, or that

min
Kk

(
tr(P+

k )
)
= min

Kk

(
tr(P+

mm,k) + tr(P+
δδ,k)

)
= min

Km,k

(
tr(P+

mm,k)
)
+ min

Kδ,k

(
tr(P+

δδ,k)
)

(23)

Equation (23) suggests that the optimal gain Kk can be calculated independently by
minimizations of the two portions of Km,k and Kδ,k.

Calculating ∂[tr(P+
δδ,k)]/∂Kδ,k = 0 yields the following:

Kδ,k = (P−
δ,k)

THT
k W−1

δ,k , (24)

where ∂[tr(P+
δδ,k)]/∂Kδ,k represents the partial derivative of the trace of P+

δδ,k to Kδ,k.
Similarly, according to ∂[tr(P+

mm,k)]/∂Km,k = 0, the optimal gain of xm,k is:

Km,k = (P−
m,k)

THT
k W−1

k , (25)

The a posteriori estimate (KF) of xm,k is as follows:

x̂+m,k = x̂−m,k + (P−
m,k)

THT
k W−1

k εk, (26)

The Kalman gain is recomputed in order to satisfy the constraint in (19), and the
augmented performance index of Km,k is given by the following:

J = tr(P+
mm,k) + λk

(
εT

k KT
m,kKm,kεk + 2(x̂−m,k)

TKm,kεk + (x̂−m,k)
Tx̂−m,k − ∥H∥2

)
, (27)

where λk is the Lagrange multiplier.
The performance index “J” is minimized and the constraint is simultaneously satisfied

when the optimal gain is chosen as follows:

K∗
m,k = Km,k + (

∥H∥∥∥∥x̂+m,k

∥∥∥ − 1)x̂+m,k
εT

k W−1
k

εT
k W−1

k εk
, (28)

where K∗
m,k defines the constrained Kalman gain of xm,k. Further details related to solving

the constrained optimization of (28) are listed in the Appendix A.
The measurement update of xm,k after the norm constraint of the desired geomagnetic

vector is given by the following:

x̂∗+m,k = x̂−m,k + K∗
m,kεk, (29)

Combining (25), (26), (28) and (29) and rearranging yields the following:

x̂∗+m,k =
∥H∥∥∥∥x̂+m,k

∥∥∥ x̂+m,k, (30)

Substituting K∗
m,k into (21) and rearranging yields the a posteriori covariance matrix

of x̂∗+m,k:

P∗+
mm,k = (I − K∗

m,kHk)P
−
m,k(I − K∗

m,kHk)
T + K∗

m,kRk(K
∗
m,k)

T, (31)

Therefore, (28), (30), and (31) are the measurement update operations in regard to
norm constraint.
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5. Experimental Results
5.1. Simulation Experiments

In this experiment, a simulation is first conducted in order to validate the proposed
RNCF method by MATLAB (2018a), and the motion trajectory of the gyroscope-aided
magnetometer-based MWD system is designed. The gyroscope-aided magnetometer-based
MWD system turns around the Zn-axis in circles on a horizontal plane, while the theoretical
parameters of the azimuth motion trajectory, including triaxial angular velocity, triaxial
geomagnetic vector (or the projection of the geomagnetic vector on the horizontal plane),
and the azimuth of the MWD, are generated by a generator. Given this, the raw triaxial
angular velocity data are obtained from a mixture of theoretical data and noise based on
the selected gyroscope listed in Section 2. Meanwhile, for a more realistic simulation of the
strong magnetic disturbance in the drilling process, the raw triaxial magnetic field data
are obtained from the theoretical data with the addition of substantial random magnetic
disturbance noise and measurement noise derived from the magnetometers.

The parameters of the generated azimuth motion trajectory are as follows: first, the
geomagnetic field strength is 0.5257 Gauss, the magnetic declination is 4.93◦ (W), and the
inclination is 53.77◦. These parameter settings are geographically related to the laboratory.
Second, the random magnetic disturbance is modeled as a first-order GM process of
(7) with k1 = 0.9 and k2 = 0.02. Third, the theoretical triaxial angular velocity is (0;0;10◦),
the original azimuth is 355.07◦ and the sampling point N is 7200 with the sampling 50 Hz.

The simulation experiments are conducted as follows: first, the theoretical and raw
data are generated, as shown in Figure 4. Second, the raw magnetic data are filtered by
the proposed RNCF method, compared with the typical geomagnetic filter [13] and KF [2]
widely utilized in MWD. Third, the root mean square error (RMSE), norm and azimuth of
these magnetic data are calculated in order to evaluate filtering performance.

Sensors 2024, 24, x FOR PEER REVIEW 10 of 15 
 

 

{ }0 0.1,0.1,0.1,0.2,0.2,0.2diag=P , where the sensor-related parameters are set based on Ta-
ble 1. 

Then, the simulation experiments are repeated five times with each using a different 
length of the 7200 data to reduce accidental errors. A certain trial is shown in Figures 4–8. 
The results of the RMSE values are summarized in Table 2, where each value stands for 
the mean of all five experiments. 

 
Figure 4. The triaxial magnetic data of the simulation test setup. (a) The theoretical data and (b) the 
raw triaxial magnetic data in the simulation. 

Table 2. Comparison of the RMSE of the different magnetic field data. 

Magnetic Field (Gauss) Raw Typical KF The Proposed 
RMSE (X-axis) 0.0472 0.0222 0.0121 0.0061 
RMSE (Y-axis) 0.0466 0.0195 0.0090 0.0047 
RMSE (Z-axis) 0.0470 0.0211 0.0129 0.0033 

At first, the stability and reliability of the proposed RNCF is validated by the variance 
of the geomagnetic estimate ( ,mm mm

− +P P ) of the RNCF, as shown in Figure 5. It can be seen 
from this figure that the variance converges to a steady-state value, which indicates that 
the proposed RNCF is stably convergent. 

 
Figure 5. The a posteriori geomagnetic estimation error variance of the proposed RNCF. 

As can be seen from Figure 6, some random magnetic disturbance in raw triaxial 
magnetic data have been removed by the typical geomagnetic filter, while there is sub-
stantial random magnetic disturbance by KF and the proposed RNCF. In addition, Table 
2 further shows that the filtering performance of the proposed RNCF is superior to KF or 
to the typical geomagnetic filter in a RMSE sense. 

M
ag

ne
tic

 fi
el

d(
G

au
ss

)

M
ag

ne
tic

 fi
el

d(
G

au
ss

)

0 20 40 60 80 100 120 140
time/s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 10-4

X-axis
Y-axis
Z-axis

Figure 4. The triaxial magnetic data of the simulation test setup. (a) The theoretical data and (b) the
raw triaxial magnetic data in the simulation.

The main parameters of the KF and the proposed RNCF are set as follows:
gR = 0.0004, mR = 0.0001, k1 = 0.9, k2 = 0.02, and ∥H∥ = 0.5257. The initial state
vector and the initial covariance are as follows: x0 = [0, 0.5257, 0, 0.01, 0.01, 0.01]T,
P0 = diag{0.1, 0.1, 0.1, 0.2, 0.2, 0.2}, where the sensor-related parameters are set based
on Table 1.

Then, the simulation experiments are repeated five times with each using a different
length of the 7200 data to reduce accidental errors. A certain trial is shown in Figures 4–8.
The results of the RMSE values are summarized in Table 2, where each value stands for the
mean of all five experiments.
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Table 2. Comparison of the RMSE of the different magnetic field data.

Magnetic Field (Gauss) Raw Typical KF The Proposed

RMSE (X-axis) 0.0472 0.0222 0.0121 0.0061
RMSE (Y-axis) 0.0466 0.0195 0.0090 0.0047
RMSE (Z-axis) 0.0470 0.0211 0.0129 0.0033
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At first, the stability and reliability of the proposed RNCF is validated by the variance
of the geomagnetic estimate (P−

mm, P+
mm) of the RNCF, as shown in Figure 5. It can be seen

from this figure that the variance converges to a steady-state value, which indicates that
the proposed RNCF is stably convergent.

As can be seen from Figure 6, some random magnetic disturbance in raw triaxial mag-
netic data have been removed by the typical geomagnetic filter, while there is substantial
random magnetic disturbance by KF and the proposed RNCF. In addition, Table 2 further
shows that the filtering performance of the proposed RNCF is superior to KF or to the
typical geomagnetic filter in a RMSE sense.

As shown in Figure 7, the norm of the raw triaxial magnetic data shows substantial
fluctuations between 0.35 and 0.70 Gauss with an RMSE 0.0475 Gauss. Due to the strong
magnetic disturbance, the norm of the typical geomagnetic filter presents some between
0.47 and 0.58 Gauss with an RMSE 0.0215 Gauss. The norm of the KF shows some fluctua-
tions between 0.51 and 0.69 Gauss with an RMSE 0.0082 Gauss, while the proposed RNCF
always maintains 0.0057 Gauss (the geomagnetic field strength) due to the normalization
of the geomagnetic subset of the state vector.

Figure 8 shows the azimuth errors determined from the raw magnetic readings, the
typical geomagnetic solution, the KF, and the proposed RNCF, followed by the steady-state
azimuth error values (the last length—500) in Table 3. As detailed in Figure 8 and Table 3,
the azimuth error determined from the raw magnetic data shows great fluctuations between
−33.4◦ and 36.6◦, the typical geomagnetic azimuth solution fluctuates between −10.6◦

and 13.5◦, while the steady-state errors of the azimuth derived from KF and the proposed
RNCF are relatively smaller, within 1◦, while the steady-state error of the proposed RNCF
is limited to within 0.6◦ and outperforms the KF within 1◦. It can be concluded that the
performance improvements of the proposed RNCF over the typical geomagnetic solution
and KF are, respectively, 98.5% and 37.1% for the azimuth measurement precision in
an RMSE sense, which suggests that the proposed RNCF achieves the highest azimuth
measurement precision compared with the typical and KF. However, the performance of
the proposed RNCF depends on the rotary angular velocity of the BHA. The higher the
rotating speed of the BHA, the better the observability of the change rate of the geomagnetic
vector sensed by angular velocity, and the higher the accuracy of the proposed RNCF.
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Table 3. Comparison of the azimuth error of the four methods.

Methods Raw Typical KF The Proposed

Maximum error (◦) 36.62 13.50 0.96 0.63
Minimum error (◦) −33.41 −10.62 −0.93 −0.51

Mean error (◦) −1.59 −1.53 0.79 0.54
Steady-state RMSE (◦) 52.17 38.64 0.89 0.56

5.2. Actual Drilling Experiment

To further demonstrate the feasibility of the proposed RNCF method to strong mag-
netic interference, the real field-test data are selected for testing. Meanwhile, the azimuth
derived from the triaxial magnetic readings using the proposed RNCF method is compared
with the typical geomagnetic solution [10] and the triaxial magnetic readings using KF [2].

In the actual continuous drilling process, there is no method that could be used to
obtain the real azimuth of the BHA, when failing to accurately evaluate the accuracy of
the azimuth of the BHA. In this paper, the stability of the azimuth of the BHA during a
horizontal directional drilling process with a small fluctuation in azimuth will be used to
assess the accuracy [2]. Experimental data have been specially collected from the MWD
surveying system shown in Section 2 in a stationary horizontal drilling process with
substantial magnetic interference in the Tarim oilfield, Xinjiang, China, from June, 2017.
The sampling frequency of the magnetic and inertial surveying unit is 50 Hz, while the
output frequency of the off-line azimuth determined from the collected magnetic and
inertial data by the above four methods is 0.5 Hz. For better observation of the stability of
the azimuth, the relevant azimuth values are removed from their respective average value,
and the final results are detailed in Figure 9, followed by the probability density function
(PDF) and standard deviation (STD) of those final azimuths, shown in Figure 10.
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Figure 9. Comparison of the azimuths from raw magnetic readings, the typical geomagnetic solution,
KF, and the proposed RNCF.

As evident in Figure 9, the azimuth derived from the raw magnetic readings and the
typical geomagnetic solution show significant fluctuations. This is because of their poor
immunity to the strong magnetic interference, while azimuth derived from the magnetic
readings filtered by KF and RNCF are relatively smaller, due to the assistance of the
gyroscope triad.

Figure 10 further shows the stability of these azimuths. The PDF of the raw magnetic
readings is the widest and shortest one, with the greatest fluctuation between −20◦ and
16◦ and the highest STD of 5.7869, while the proposed RNCF is the narrowest and highest
one, with the smallest fluctuation within ± 1◦ and with the shortest STD of 0.2832. The
KF shows better stability within ± 3◦ with the STD of 0.7761, compared with the typical
geomagnetic azimuth solution, which ranges from −10◦ to 8◦ with an STD of 2.7339. It is
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not hard to conclude that the stability improvement of the azimuth of the proposed RNCF
over the typical geomagnetic solution is about 89.6% and the KF 63.5% in an STD sense,
which indicates that the proposed RNCF method presents the best stability and determines
the accurate azimuth of the BHA with the highest probability compared with the typical
geomagnetic solution and the KF mentioned above.
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Figure 10. Comparison of the statistical parameters of the azimuths from raw magnetic readings, the
typical geomagnetic solution, KF, and the proposed RNCF. (a) The PDF of the azimuth. (b) The STD
of the azimuth.

6. Conclusions

As presented, the typical geomagnetic azimuth solution of the magnetometer-based
MWD system is susceptible to interference while drilling, especially strong magnetic
interference. Aiming to address this problem, this paper manages to develop a novel
rotary norm constraint filtering method (RNCF) for azimuth estimation in order to de-
couple the desired geomagnetic vector from magnetic interference by a gyroscope-aided
magnetometer-based MWD system. The novelty of the RNCF method is that two features
that are easily implemented in the drilling process are utilized. One of these is that the
desired geomagnetic vector of the BHA can be equivalently estimated by the Coriolis
equation using the angular velocity measurement of the gyroscope triad, and the other is
the norm constraint of the desired geomagnetic vector. Experimental results show that the
proposed RNCF method can effectively decouple the desired geomagnetic field from the
magnetic interference and improve the azimuth measurement precision by 98.5% over the
typical geomagnetic solution and 37.1% over KF in an RMSE sense in a strong magnetic
interference environment.

Despite the performance enhancement in azimuth accuracy, the proposed method still
has room for improvement. The proposed method mainly focuses on magnetic interference
from the well-known interference sources that derive from drilling equipment and random
sources from the nearby environment during the drilling process (e.g., the randomly located
ore deposits). As a result, future work should consider the possible magnetic interference
from the operation of the drilling process, e.g., rotation speed, which might contribute to
the improvement of the accuracy performance of the azimuth.
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Appendix A

The following derivations are used to obtain (28):
Calculating ∂(J)/∂Km,k = 0 yields the following:

−2(P−
m,k)

THT
k + 2Km,kWk + 2λk(x̂

−
m,kεT

k + Km,kεkεT
k ) = 0 (A1)

The Km,k satisfied with (A1) is just the K∗
m,k. Using the matrix inversion lemma, it

follows that
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m,k = (P−

m,k)
THT

k W−1
k − λkx̂−m,kεT

k W−1
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k W−1
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Substituting (A2) into (19) and rearranging yields the following:
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(A3)

Finally, it follows that

λk =
−1

εT
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k εk
±
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k εk
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(A4)

Substituting (A4) into (A2) and combining (25) and (26) yields (28), as follows:

K∗
m,k = Km,k + (

∥H∥∥∥∥x̂+m,k

∥∥∥ − 1)x̂+m,k
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