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Abstract: Detecting objects, particularly naval mines, on the seafloor is a complex task. In naval mine
countermeasures (MCM) operations, sidescan or synthetic aperture sonars have been used to search
large areas. However, a single sensor cannot meet the requirements of high-precision autonomous
navigation. Based on the ORB-SLAM3-VI framework, we propose ORB-SLAM3-VIP, which integrates
a depth sensor, an IMU sensor and an optical sensor. This method integrates the measurements
of depth sensors and an IMU sensor into the visual SLAM algorithm through tight coupling, and
establishes a multi-sensor fusion SLAM model. Depth constraints are introduced into the process
of initialization, scale fine-tuning, tracking and mapping to constrain the position of the sensor in
the z-axis and improve the accuracy of pose estimation and map scale estimate. The test on seven
sets of underwater multi-sensor sequence data in the AQUALOC dataset shows that, compared with
ORB-SLAM3-VI, the ORB-SLAM3-VIP system proposed in this paper reduces the scale error in all
sequences by up to 41.2%, and reduces the trajectory error by up to 41.2%. The square root has also
been reduced by up to 41.6%.

Keywords: underwater SLAM; ORB-SLAM; multi-sensor fusion

1. Introduction

The manufacturing and deployment of mines is relatively cheap, while detecting
them is a costly and dangerous effort. Due to its features, the seafloor can obscure the
devices from sonars, making it hard to detect bottom mines. These mines usually carry
larger warheads and more sophisticated sensors than moored ones, which make them
much harder to sweep. To detect these bottom mines, autonomous underwater vehicles
(AUVs) are increasingly being employed, which are equipped with a sidescan sonar or
a synthetic aperture sonar to carry out survey missions [1]. However, the underwater
environment poses a unique challenge to vision-based state estimation. In particular,
features caused by suspended particles, blurring, light and color attenuation are not as
clear as those on the surface of the water. Therefore, the results from different vision-based
state estimation packets show a large number of outliers, leading to inaccurate estimation
or even complete tracking loss. In the complex underwater environment, single-sensor
equipment, such as sonar or cameras, cannot meet the requirements of high-precision
autonomous navigation [2,3]. So, the method of multi-sensor fusion is the best choice [4,5].

At present, ORB-SLAM3-VI [6,7] still has the problems of inaccurate scale estimation
and easy loss of tracking after initialization after underwater dataset testing. IMUs (inertial
measurement units) and optical sensors are local sensors, which can only allow for local
observations. But estimation based on local sensors inevitably has a level of cumulative
drift. In contrast, global sensors (such as pressure gauges) can allow for global observations,
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and the output observation data do not have cumulative drift. However, due to noise
and a low observation frequency, they cannot be directly used in SLAM (simultaneous
localization and mapping) [8,9]. The combination of these two sensors can improve the
positioning accuracy of the detection equipment.

For this reason, we introduced new constraints on the scale factor and z-axis position
in the optimization; that is, we used a pressure sensor to measure the underwater depth
of the robot. By introducing depth constraints, we can obtain better estimates of scale
information and location. In this paper, we propose a visual–inertial pressure fusion-based
SLAM system based on ORB-SLAM3.

2. Data Pretreatment

We took the image acquisition time as the benchmark to conduct soft synchronization
for multi-sensor data. The frequency of IMUs is generally higher than that of the camera.
The IMU measurement data between the current frame and the previous frame are mapped
to the current frame, which ensures that each image has a corresponding IMU measurement
value during fusion. However, the frequency of the pressure sensor may be higher or lower
than the camera frequency, so the two cases need to be discussed separately.

When the frequency of the pressure sensor is higher than that of the camera, each frame
will correspond to multiple depth measurements, and the average of the measured values

will be taken as the depth of the current frame; that is,
∼
di =

1
M ∑M−1

k=0

∼
dk. At this point, the

variance of depth measurement becomes σdepth/
√

M. When the frequency of the pressure
sensor is lower, for example, the camera frequency in the AQUALOC dataset [10] is 20 Hz
and the measurement frequency of the pressure sensor is 5 Hz, and some images have no
corresponding pressure measurement. At this point, we believe that the underwater robot
is not dynamic; that is, the depth change is not significant. We can use interpolation to
estimate the depth of this frame; that is:

dt2 =
t2 − t1

t3 − t1
dt3 +

t3 − t2

t3 − t1
dt1 (1)

3. Factor Graph Optimization
3.1. Problem Description

A factor graph can decompose mathematical problems involving multiple variables
into products of multiple functions. In the SLAM problem, the factor graph is used as the
probability graph model, and the nodes are composed of random variables and probability
distributions. The SLAM system needs to use the maximum a posteriori estimation to solve
the random variables through observation.

The function of solving the maximum a posteriori estimation problem through factor
graph is as follows:

• The factor graph model can describe the mathematical relationship between random
variable nodes and observation error nodes.

• When adding a new node to the factor graph, if we first analyze the impact relationship
between it and the other nodes, we can only optimize the variables associated with
the new node. But, when the scale of the graph changes to some extent, we need to
optimize the whole graph. This optimization strategy reduces unnecessary calculation
and improves the optimization speed.

For example, the factor graph of a purely visual SLAM can be showed as Figure 1,
where x is the pose node, l is the landmark node, z is the observation value and f is the
equation of motion.
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Figure 1. Factor graph of visual SLAM. 
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Figure 1. Factor graph of visual SLAM.

The maximum posterior probability is:

argmax
x,l

∏ P(xk | xk−1)∏ P
(

zkj | xk, lj

)
(2)

Generally, the conditional probability of each factor is taken as Gaussian distribution.
For the equation of motion, it is:

xk = f (xk−1) + wk (3)

where wk ∼ N(0, Rk). So, we can obtain:

P(xk | xk−1) = N( f (xk−1), Rk) (4)

Similarly, for the observation equation, we can obtain:

P
(

zkj | xk, lj

)
= N

(
h
(
xk, lj

)
, Qkj

)
(5)

where Qkj is the covariance of the noise term of the observation equation, and h is the
observation equation.

So, we can solve Formula (10); that is, maximize N( f (xk−1), Rk) and N
(

h
(
xk, lj

)
, Qkj

)
.

To maximize the Gaussian distribution x ∼ N(µ, Σ), we can minimize its negative
logarithm. The negative logarithm of the probability density of the Gaussian distribution is:

−ln(P(x)) =
1
2

ln
((

2π)Ndet(Σ)
))

+
1
2

(
x− µ)TΣ−1(x− µ) (6)

Since the first term is independent of x, we just need to minimize the quadratic term
on the right. Combining this with Formula (10), we can obtain:

argmin
x,l

(
(xk − f (xk−1))

T R−1
k (xk − f (xk−1)) +

(
zk,j − h

(
xk, yj

))T
Q−1

k,j

(
zk,j − h

(
xk, lj

)))
(7)

The error items are defined as:

ek = xk − f (xk−1)

ekj = zkj − h
(

xk, lj

) (8)

For a least-squares problem, argmin
x,l

1
2‖e(x)‖2

, we can use the iterative method. First, we give an

initial value, and then we can repeatedly calculate the increment to update the optimization variables
until the end of the iteration to obtain a better solution. The specific steps are as follows:
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1. Give the initial value x0.
2. In the kth iteration, calculate the increment ∆xk to minimize ‖e(xk + ∆xk)‖2.
3. When ∆xk is small enough, stop the iteration; otherwise, solve xk+1 = xk + ∆xk and return to

the previous step.

The increment ∆x can be obtained by solving the increment equation H∆x = g. In the L-M
(Levenberg–Marquardt) method, H is JT J + λI.

3.2. Graph Optimization Based on g2o
This paper uses the general solver g2o (General Graph Optimization) [11] to solve the graph op-

timization problem. g2o is a collection of algorithms that can be used to solve the graph optimization
problem. It sup ports the use of the definition point method, edge selection method and linear solver
to solve nonlinear equations. The algorithm framework is shown in Figure 2.
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In practice, we use the Ceres [12] toolkit to calculate the gradient automatically and the Eigen [13]
toolkit to solve the linear equation, which is constructed in the form of the L-M method, namely(

JT J + λI
)
∆x = g.

4. SLAM Algorithm Based on Visual–Inertial Pressure Fusion
In this section, we tightly couple IMU and pressure measurement with visual data. Because

the optimization-based SLAM problem can be expressed by a factor graph, fusing new sensor
measurements with the SLAM problem is equivalent to adding new factors and nodes into the
graph. The process of our method is shown as Figure 3. Next, we will introduce the specific
algorithm process.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 14 
 

 

 

Figure 3. The process of SLAM algorithm based on vision–inertial pressure fusion. 

4.1. Residual Construction 

We need to estimate the pose 𝑇𝑖 = [𝑅𝑖 , 𝑝𝑖] and velocity 𝑣𝑖 in the global coordinate 

system and the gyro and accelerometer deviation, 𝑏𝑖
𝑔

and  𝑏𝑖
𝑎; the state vector can be cal-

culated using the following formula: 

𝑆𝑖 = {𝑇𝑖 , 𝑣𝑖 , 𝑏𝑖
𝑔

, 𝑏𝑖
𝑎} (9) 

To solve the state vector, we define the optimization problem as: 

𝑆𝑖 = arg 𝑚𝑖𝑛
𝑆𝑖

(𝐸visual (𝑆𝑖) + 𝐸imu (𝑆𝑖) + 𝐸depth (𝑆𝑖)) (10) 

When there is only a visual sensor, because the gravity direction is unknown, the 

direction of the z axis in the global coordinate system depends on the reference frame of 

the first frame. It cannot be guaranteed that the z axis is parallel to the gravity direction, 

and the depth information cannot be directly fused. Therefore, we use an IMU to estimate 

the gravity direction, align the z axis of the global coordinate system with the gravity di-

rection, and add the information from the pressure sensor to the optimization constraint. 

For depth measurement, it can be assumed that the z axis of the world coordinate system 

is collinear with the depth axis, so the depth residual is: 

𝑆𝑖 = arg 𝑚𝑖𝑛
𝑆𝑖

(𝐸visual (𝑆𝑖) + 𝐸imu (𝑆𝑖) + 𝐸depth (𝑆𝑖)) (11) 

The IMU pre-product component rotation, velocity and pose between frame 𝑖 and 

frame 𝑖 + 1 are expressed as ΔRi,i+1 , Δv𝑖,𝑖+1, Δp𝑖,𝑖+1. According to the pre-product com-

ponent and the state vectors 𝑆𝑖 and 𝑆𝑖+1, the construct inertial residuals can be calculated: 

r𝐼𝑖,𝑖+1
= [rΔR𝑖,𝑖+1

, rΔv𝑖,𝑖+1
, rΔp𝑖,𝑖+1

]

rΔR𝑖,𝑖+1
= log (ΔR𝑖,𝑖+1

T R𝑖
TR𝑖+1)

rΔv𝑖,𝑖+1
= R𝑖

T(v𝑖+1 − v𝑖 − gΔ𝑡𝑖,𝑖+1) − Δv𝑖,𝑖+1

rΔp𝑖,𝑖+1
= R𝑖

T (p𝑗 − p𝑖 − v𝑖Δ𝑡 −
1

2
gΔ𝑡2) − Δp𝑖,𝑖+1

 (12) 

Combined with the visual residual, inertial residual and depth residual, the visual–

inertial pressure SLAM can be considered as an optimization problem. Given k + 1 key 

frames, the state vector 𝑆𝑘
̅̅ ̅ = {𝑆0 … 𝑆𝑘} and 𝑙 3D points 𝒳 = {𝑥0 … 𝑥𝑙−1}, the optimization 

problem of visual–inertial pressure can be expressed as: 

𝑚𝑖𝑛
�̅�𝑘,𝒳

 (∑  

𝑙−1

𝑗=0

∑  

𝑖∈𝒦𝑗

𝜌Hub (∥∥r𝑖𝑗∥∥
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𝑘
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∥
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4.1. Residual Construction
We need to estimate the pose Ti = [Ri, pi] and velocity vi in the global coordinate system

and the gyro and accelerometer deviation, bg
i andba

i ; the state vector can be calculated using the
following formula:

Si =
{

Ti, vi, bg
i , ba

i

}
(9)

To solve the state vector, we define the optimization problem as:

Si = argmin
Si

(
Evisual (Si) + Eimu (Si) + Edepth (Si)

)
(10)

When there is only a visual sensor, because the gravity direction is unknown, the direction of
the z axis in the global coordinate system depends on the reference frame of the first frame. It cannot
be guaranteed that the z axis is parallel to the gravity direction, and the depth information cannot
be directly fused. Therefore, we use an IMU to estimate the gravity direction, align the z axis of
the global coordinate system with the gravity direction, and add the information from the pressure
sensor to the optimization constraint. For depth measurement, it can be assumed that the z axis of the
world coordinate system is collinear with the depth axis, so the depth residual is:

Si = argmin
Si

(
Evisual (Si) + Eimu (Si) + Edepth (Si)

)
(11)

The IMU pre-product component rotation, velocity and pose between frame i and frame i + 1
are expressed as ∆Ri,i+1, ∆vi,i+1, ∆pi,i+1. According to the pre-product component and the state
vectors Si and Si+1, the construct inertial residuals can be calculated:

rIi,i+1 =
[
r∆Ri,i+1 , r∆vi,i+1 , r∆pi,i+1

]
r∆Ri,i+1 = log

(
∆RT

i,i+1RT
i Ri+1

)
r∆vi,i+1 = RT

i
(
vi+1 − vi − g∆ti,i+1

)
− ∆vi,i+1

r∆pi,i+1
= RT

i

(
pj − pi − vi∆t− 1

2 g∆t2
)
− ∆pi,i+1

(12)

Combined with the visual residual, inertial residual and depth residual, the visual–inertial
pressure SLAM can be considered as an optimization problem. Given k + 1 key frames, the state
vector Sk = {S0 . . . Sk} and l 3D points X = {x0 . . . xl−1}, the optimization problem of visual–inertial
pressure can be expressed as:

min
Sk ,X

l−1

∑
j=0

∑
i∈K j

ρHub

(
‖ rij ‖Σij

)
+

k

∑
i=1
‖ rIi−1,i ‖

2
ΣIi−1,i

+
k

∑
i=1
‖ di − d0 − pz ‖2

σ2
depth

 (13)

where Kj is the set of keyframes in which point j can be observed. ρHub is the Huber kernel
function [14] which can be used to reduce the influence of false matching on the re projection error.

4.2. Data Initialization
The purpose of the initialization step is to obtain good initial values for velocity, gravity direction,

scale and IMU deviation. Referring to the steps in ORB-SLAM3, the steps of visual–inertial pressure
(VIP) fusion initialization are also divided into three steps:

1. Visual estimation. Run the visual SLAM for two seconds, insert keyframes at the speed of
4Hz, and build a map. Using visual residual to constrain pose and map points, obtain initial
estimation of pose T0:k = [R, p]0:k, where the upper dash represents the scaled variable. Because
the drift in the visual estimation is very small, it can be used as the constraint of inertial
optimization.

2. Inertial pressure estimation. Take the initial estimation of the position and attitude obtained
from the previous optimization as the prior of the inertial pressure estimation, and fix the
position and attitude T0:k to optimize the state vector:

yk =
{

s, Rwg, b, v0:k
}

(14)

where s is the scale factor, which aims to restore the constructed map to the true scale, and Rwg is the
direction of gravity. The gravity g in the global coordinate system can be expressed as g = RwggI ,
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where gI = (0, 0, G)T , and G is the magnitude of gravity. b = (ba, bg) ∈ R6 represents the deviation
in the gyroscope and accelerometer. During initialization, b is regarded as a constant. v0:k is speed. In
the inertial pressure estimation, the pose is not optimized because we think the pose estimated by
vision is considered good enough.

The problem of inertial pressure optimization can be expressed as:

y∗k = argmin
yk

(
‖ b ‖2

Σb
+

k

∑
i=1
‖ rIi−1,i ‖

2
ΣIi−1,i

+
k

∑
i=1
‖ di − d0 − pz ‖2

σ2
depth

)
(15)

where Σb is the prior of IMU deviation, which limits the value range of deviation b to ensure that
the IMU deviation is closer to 0. A factor diagram of inertial pressure optimization is shown in
Figure 4. The vertex of the circle represents the variable to be optimized, and the square represents
the factor node/the residual term. {X0, X1 · · ·Xk} represents the k + 1 frame keyframe, keyframe
X0:k corresponding to pose T0:k and speed v0:k. b is the deviation, which is regarded as a constant
in this step and is constrained by a prior deviation. The dotted fixed box indicates that the variable
(circular node in the factor graph) is fixed; that is, pose T is fixed, and it only participates in the
residual calculation as a constraint, and will not be updated in this step. Depth residuals are only
used to estimate the state vector yk and gravity direction Rwg.
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After inertial optimization, the map can be scaled according to the estimated proportion,
and the global coordinate system of the map can be rotated to align the z axis with the estimated
gravity direction.

3. Visual–inertial pressure joint optimization. Once we have a good estimate of the inertial
and visual parameters, we can perform joint visual–inertial pressure optimization to further
optimize the state vector and no longer fix the pose and map points. This optimization can be

seen in Figure 5. Every frame Xi corresponds to a state vector Si =
{

Ti, vi, bg
i , ba

i

}
; deviation b

conforms to random walk model, and the deviation of adjacent frames is constrained by prior
random walk residuals. The visual residual constrains the position and key frame pose Ti of the
3D map points. The inertial residual constrains pose Ti, speed vi and deviation bi. The depth
residual constrains pi in pose Ti = [Ri, pi].
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After determining the optimization variables and the corresponding optimization error, we can
add the corresponding nodes and edges to g2o to solve the optimization variables.

4.3. Scale Adjustment
In some specific cases, such as insufficient robot motion, initialization cannot converge to an

accurate solution, so an additional scale adjustment is required. In cluster adjustment, when the
scale factor s is explicitly expressed as an optimization variable rather than being implied in T, v, the
convergence speed, is much faster [15]. Scale adjustment is based on all the inserted key frames and
only adjusts the scale and gravity direction. We do not assume that the IMU deviation is constant
and use the estimated deviation of each frame. In the local mapping thread, we run the scale fine
adjustment every 10 s until the number of key frames in the map exceeds 200 or initialization has
been completed for more than 75 s. A factor diagram of the scale adjustment is shown in Figure 6.
The dotted fixed box indicates that the variable (circular node in the factor graph) is fixed; that is, the
posture Ti when the scale is adjusted, speed vi and deviation bi are all fixed and they only participate
in residual calculation. The scale factor s and gravity direction are optimized, which are constrained
by the depth residuals and inertial residuals.
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The optimization problem of scale adjustment can be expressed as:

argmin
yk

(
k

∑
i=1
‖ rIi−1,i ‖

2
ΣIi−1,i

+
k

∑
i=1
‖ di − d0 − pz ‖2

σ2
depth

)
(16)

During optimization, the parameters of the incremental update to the gravity direction can
be expressed:

Rnew
wg = Rold

wg Exp
(
δαg, δβg, 0

)
(17)

where Exp represents the conversion from the rotation vector to the rotation matrix. To ensure that
the scale is positive, the update of scale s is expressed as:

snew = sold exp(δs) (18)

In actual use, the local mapping thread has optimized the state vector many times. The
initialization and scale fine-tuning processes are shown in Figure 7. IMU initialization, VIPBA1
(Visual Inertial Pressure Bundle Adjustment) and VIPBA2 all call the initialization function Initialize
IMU. The initialization function first estimates the IMU state with only inertial pressure constraints,
and then optimizes the IMU state with the visual and inertial pressure constraints.

4.4. Tracking and Mapping
Visual–inertial pressure tracking is responsible for tracking altitude, speed, IMU deviation and

other state variables at the frame rate. The motion model enables us to predict the camera’s attitude
in the next frame. After the camera’s altitude is predicted, we can calculate the visual error, IMU
error and depth error to optimize the current frame state. Different optimization strategies are used
according to whether the map is updated. A map update refers to the generation of new keyframes
or the detection of closed loops.

When there is a map update, only the state vector of the current frame is optimized. When the
state vector Si is Equation (17), the error is Equation (21). To optimize the error, the optimization
result and the calculated matrix H are used prior to the subsequent frames.

When the map is not updated, the state vectors of two adjacent frames are optimized. The
corresponding state variable to be optimized becomes {Si, Si+1}, and the error becomes:

Evisual (Si) + Evisual (Si+1) + Eimu (Si, Si+1) + Edepth (Si) + Edepth (Si+1) + Eprior (Si) (19)

where Eprior is the previous error calculated according to the previous frame. Its calculation
formula is:
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Eprior (Si) = ρ

([
eT

ReT
v eT

p eT
b

]
∑
p

[
eT

ReT
v eT

p eT
b

]T
)

(20)

where
eR = log

(
Ri

BWRi
WB

)
ev = vB − vi

B

ep = pi
B − pi

B eb = b
i − bi

(21)

ρ is the first-order robust kernel function. In Formula (29), Ri
BW, vB, pi

B,
_
b

i
represent the

information about the previous frame, and Ri
WB, vi

B, pi
B, bi represent the current optimization result

of the previous frame. The purpose of the previous error is to prevent the result of the previous frame
from changing too much.
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For the local mapping thread, the local window retains N key frames and all points of these
key frames, and then optimizes them. At the same time, all other key frames that can observe these
points also participate in error calculation, constraining the positions of the map points, but the state
of these key frames is fixed in the optimization.

5. Results and Evaluation
5.1. Scale Optimization Results on Data Set AQUALOC

Multi-sensor fusion can improve the accuracy of SLAM mapping. For monocular SLAM, the
most important role of the fusion of other sensors is to restore the true scale.

5.1.1. Scale Error Statistics
We define the scale error according to the length of the predicted track before and after alignment

with the real track:

Scale error =
Track length before alignment
Track length after alignment

− 1 (22)
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We have produced statistics on the scale error in the prediction of trajectory of multiple se-
quences, and the results are shown in Table 1. A negative scale error means that the predicted map is
smaller than the real map, and a positive scale error means that the predicted map is larger than the
real map.

Table 1. Absolute trajectory error [16] of harbor sequences.

Algorithm Harbor_01 Harbor_02 Harbor_03 Harbor_04 Harbor_05 Harbor_06 Harbor_07

ORB-SLAM3-VI −23.3% −17.1% 5.0% −18.3%/43.7% 6.6% −31.6% −2.7%/−18.2%
ORB-SLAM3-VIP −4.2% −2.6% −0.8% 3.4%/2.5% 0.4% 5.4% -0.1%/1.5%

It can be seen from the comparison of the results for the scale errors that the scale errors of
ORB-SLAM3-VIP’s predicted map tracks are all within 5.4%. Compared with ORB-SLAM3-VI, the
scale errors are reduced by 2.6–41.2%. ORB-SLAM3-VI cannot restore the map to the true scale,
because the IMU has no direct effect on the position p. It estimates the position p through two
integration calculations, which is more vulnerable to noise.

5.1.2. Result Analysis for the Harbor_01 Sequence
Here, we analyze the process of scale optimization. According to the flow chart in Figure 7, the

map scale has been adjusted many times in the local mapping thread, including three changes the
to initialization functions and n scale adjustments. n depends on the number of key frames being
greater than 200 or the cumulative interval time of all key frames in the optimization exceeding 75s.
In the process of initialization function and scale adjustment, a scale factor will be calculated. Every
time the scale factor is calculated, the size of the map is updated.

We recorded the scale factor obtained by each optimization when running SLAM on sequence
harbor_01, and calculated the length ratio of the predicted trajectory and the predicted trajectory
after scale alignment, which is recorded as the relative scale. The scale proportions of predicted
trajectory of ORB-SLAM3-VI and ORB-SLAM3-VIP are 0.767 and 0.958, respectively. According to
the optimized scale factor, we can deduce the relative scale of each optimized map and draw the
image. The change in the relative scale in the optimization process is shown in Figure 8.

Sensors 2024, 24, x FOR PEER REVIEW 11 of 14 
 

 

0.958, respectively. According to the optimized scale factor, we can deduce the relative 

scale of each optimized map and draw the image. The change in the relative scale in the 

optimization process is shown in Figure 8. 

Scale AdjustmentInitialize

O
p

ti
m

iz
ed

 R
el

a
ti

v
e
 S

ca
le

 

Figure 8. Relative scale of harbor_01 during optimization. 

If the relative scale in the figure is 1, which means that the scale is the same as the 

real map. The relative scale before initialization is the scale of the map constructed by the 

purely visual SLAM relative to the real map, which can be considered as random. It can 

be seen from Figure 8 that the scale estimation of the VIP system converges faster and 

more accurately than that of the VI system. It is proved that the proposed vision–inertial 

pressure fusion framework is effective in restoring the monocular SLAM scale. 

We compared the mapping results of ORB-SLAM3-VI and ORB-SLAM3-VIP without 

scale alignment, as shown in Figure 9. 

 

Figure 9. Comparison of scale unaligned estimate trajectory for harbor_01 underwater sequence. 

Figure 8. Relative scale of harbor_01 during optimization.

If the relative scale in the figure is 1, which means that the scale is the same as the real map.
The relative scale before initialization is the scale of the map constructed by the purely visual SLAM
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relative to the real map, which can be considered as random. It can be seen from Figure 8 that the
scale estimation of the VIP system converges faster and more accurately than that of the VI system. It
is proved that the proposed vision–inertial pressure fusion framework is effective in restoring the
monocular SLAM scale.

We compared the mapping results of ORB-SLAM3-VI and ORB-SLAM3-VIP without scale
alignment, as shown in Figure 9.
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The prediction of the z-axis position by the two algorithms is shown in Figure 10. The z axis
direction represents the direction of gravity in the world coordinate system. It can be found that the
introduction of pressure sensor makes the depth estimation of the algorithm closer to the true value.
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5.2. Track Prediction Results on Data Set AQUALOC
In this section, ATE RMSE is also used to evaluate the mapping trajectory, and the scale of

the predicted trajectory is aligned with the true value without considering the results of the scale
optimization. We conducted experiments to produce statistics for ATE RMSE values of different
methods, as shown in Table 2, where VI represents the joint optimization of visual inertia, and VIP
represents the joint optimization of visual and inertia pressure. We tested on the AQUALOC dataset
and calculated the absolute trajectory error RMSE of each algorithm after scale alignment. The test
on the AQUALOC dataset showed that IMU’s estimation of motion is not accurate when the lack of
visual constraint is too long, and it is easy to “fly” along the trajectory. After we lose visual tracking
on the harbor_04 and harbor_07 sequences, we no longer use the IMU for tracking.

From Table 2, we can see that the RMSE of the VIP system is 6.1–41.6% lower than that of the VI
system. It is shown that the introduction of the pressure sensor has improved the mapping accuracy.
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Table 2. Absolute trajectory error in harbor sequences.

Sequence Harbor_01 Harbor_02 Harbor_03 Harbor_04 Harbor_05 Harbor_06 Harbor_07

RMSE 0.437 0.081 0.108 0.140/0.237 0.076 0.057 0.081/0.203
ORB-SLAM3-VI(m) min 0.039 0.005 0.009 0.043/0.068 0.012 0.006 0.029/0.065

max 1.191 0.163 0.239 0.342/0.486 0.156 0.138 0.187/0.374

RMSE 0.113 0.054 0.051 0.098/0.151 0.047 0.026 0.044/0.108
ORB-SLAM3-VIP(m) min 0.021 0.005 0.007 0.022/0.039 0.009 0.006 0.019/0.047

max 1.082 0.157 0.129 0.289/0.427 0.134 0.116 0.130/0.296

UW-VIP(m) [17] RMSE 0.42 0.37 0.26 1.56 0.09 0.06 1.16

6. Conclusions
Based on ORB-SLAM-VI, we propose the ORB-SLAM-VIP algorithm for visual–inertial pressure

fusion. First, we introduce IMU and pressure sensor models, including the corresponding relationship
between pressure and depth, the IMU motion model and IMU pre integration. Then, we introduce
how to carry out tight coupling optimization. We give a method to calculate the error term of the IMU
and pressure sensors, and introduce the optimization process to the initialization, scale fine-tuning,
tracking and mapping steps. Finally, we tested our method on the AQUALOC dataset and evaluated it
from the perspective of monocular scale recovery and trajectory error, respectively. The experimental
results show that, compared with ORB-SLAM-VI, ORB-SLAM-VIP can not only restore the scale more
correctly, but can also improve the accuracy of mapping to a certain extent. The proposed method
can be applied to improve the operational efficiency of naval mine countermeasures.
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