ﬁ Sensors

Article

Condition Monitoring and Predictive Maintenance of Assets
in Manufacturing Using LSTM-Autoencoders and
Transformer Encoders

Xanthi Bampoula, Nikolaos Nikolakis

check for
updates

Citation: Bampoula, X.; Nikolakis, N.;
Alexopoulos, K. Condition Monitoring
and Predictive Maintenance of Assets
in Manufacturing Using LSTM-
Autoencoders and Transformer
Encoders. Sensors 2024, 24, 3215.
https:/ /doi.org/10.3390/524103215

Academic Editors: Pavlos Lazaridis,
Christos Tachtatzis and Euler Cassio

Tavares De Macédo

Received: 28 February 2024
Revised: 11 May 2024
Accepted: 15 May 2024
Published: 18 May 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Kosmas Alexopoulos *

Laboratory for Manufacturing Systems and Automation, Department of Mechanical Engineering and
Aeronautics, University of Patras, 26504 Patras, Greece; baboula@lms.mech.upatras.gr (X.B.);
nikolakis@lms.mech.upatras.gr (N.N.)

* Correspondence: alexokos@lms.mech.upatras.gr; Tel.: +30-2610-910160

Abstract: The production of multivariate time-series data facilitates the continuous monitoring
of production assets. The modelling approach of multivariate time series can reveal the ways in
which parameters evolve as well as the influences amongst themselves. These data can be used
in tandem with artificial intelligence methods to create insight on the condition of production
equipment, hence potentially increasing the sustainability of existing manufacturing and production
systems, by optimizing resource utilization, waste, and production downtime. In this context, a
predictive maintenance method is proposed based on the combination of LSTM-Autoencoders and a
Transformer encoder in order to enable the forecasting of asset failures through spatial and temporal
time series. These neural networks are implemented into a software prototype. The dataset used for
training and testing the models is derived from a metal processing industry case study. Ultimately,
the goal is to train a remaining useful life (RUL) estimation model.

Keywords: deep learning; artificial intelligence; transformers; autoencoders; Long Short-Term
Memory (LSTM); predictive maintenance; remaining useful life

1. Introduction

One of the key aspects of Industry 4.0 is the integration of advanced technologies
into production processes. The Internet of Things (IoT), as the key enabler of Industry 4.0,
allows real-time data collection from a vast network of connected devices, sensors, and
systems [1-3]. However, the enormous amount of digital information and data, known as
Big Data (BD), generated and gathered by manufacturing Information and Communication
Technology (ICT) systems usually remains underutilized [4]. Accordingly, new methods
and models are needed that can truly benefit the ICT landscape and improve produc-
tion processes by simple monitoring, planning, control, or even online reconfiguration of
a system.

The process of examining these large and complex datasets, Big Data Analytics, can
uncover hidden patterns, correlations, and other insights that are not visible to the human
operator and support proactive decision making, transforming raw data into useful in-
formation and the transition from information to knowledge [5]. Big Data Analytics and
data-driven techniques are becoming increasingly important for condition monitoring in
various industries, including manufacturing, energy, transportation, and healthcare, reveal-
ing the actual condition of production equipment. Condition monitoring is the process of
monitoring the health and performance of equipment and systems to identify potential
issues and prevent failures. The goal of condition monitoring is to minimize downtime and
improve overall efficiency by detecting issues before they become critical [6]. In turn, this
could enable a transition from time-based preventive maintenance to predictive mainte-
nance (PdM) or a combination of them. Performing PdM on production lines—identifying

Sensors 2024, 24, 3215. https://doi.org/10.3390/s24103215

https:/ /www.mdpi.com/journal /sensors

https://doi.org/10.3390/s24103215
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4563-714X
https://orcid.org/0000-0002-3658-6838
https://doi.org/10.3390/s24103215
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24103215?type=check_update&version=1

Sensors 2024, 24, 3215

2 of 25

potential malfunctions in production equipment and estimating its remaining useful life
(RUL)—is beneficial and important as maintenance activities can be scheduled, preventing
equipment failures, minimizing downtime, and optimizing maintenance activities, lead-
ing to increased production and improved overall process performance [7-11]. However,
taking into account the existence of a wide spectrum of artificial intelligence methods and
tools, it is imperative to select an appropriate model which is capable of processing both
large and complex data as well as providing accurate predictions in a fast manner. The
existence of this gap is the motive of the present work, which aims to deliver a methodology
that takes advantage of data analytics algorithms in the processing of data captured in
production lines so as to give guidelines and detect features that can be used in PAM. As
such, the combination of LSTM-Autoencoders, as a preliminary preprocessing step, and
Transformer is a promising solution for addressing the above-mentioned challenges.

Additionally, the aim of this work is to propose a novel approach for fault detection
and RUL prediction. Autoencoders with Long Short-Term Memory (LSTM) networks and a
Transformer encoder are used to assess the operational condition of production equipment
and detect anomalies that are then mapped to different RUL values. A combination of
two LSTM-Autoencoder networks is proposed for classifying the current machine’s health
condition based on different corresponding labels and then one Transformer encoder is
used for RUL estimation. The main novelty of this approach is that a separate neural
network is trained for each label, leading to better results for each case. Consequently, this
method can be adjusted to several types of machines and labels. The proposed approach
has been evaluated in a steel industry case based on historical maintenance record datasets.
Finally, the development of a prototype method and the implementation of a software
prototype have shown that the proposed method can provide information regarding
the machine’s health without requiring any specialization and additional skills from the
industry operators.

The structure of this work is divided into six sections. After the end of the Introduction
section which presents the scope, challenges, and background of the present work, the
Literature Review section follows, including key points from the literature that evaluate
the performance of different data analytics algorithms and present how the topics of
maintenance in manufacturing processes are tackled. After the Literature Review, this
work continues with the Methods, Implementation and Case study sections, where the
methodology, the actions, and the means that are needed to perform predictive maintenance
in the actual case from industry are mentioned. Having created the models and extracted
the features, the Case study section includes a Discussion chapter which discusses the
models’ outputs and their interpretations as well as the competitive advantages. Finally, in
the Conclusions section the outputs of the involved developments are summarized.

2. Literature Review

The condition monitoring of equipment, ensuring good functionality over the years,
has become a requirement/necessity for industries [6]. Some of the key reasons are the
repair downtime and the increasing cost of equipment failures, due to the high technology
that is hidden in each machine and robot, and machine idling, due to repair operations
leading to less productivity, out of schedule deliveries, and, consequently, dissatisfied
customers [12,13]. Condition monitoring also assists the transition from the traditional,
reactive, and preventive type of maintenance to the modern PdM [14-16]. PdM relies on
Al technologies to analyze significant amounts of data as close to real time as possible,
detecting potential equipment failures [17-19]. Data-driven approaches/methodologies
are effective for PdAM as ML (machine learning) models can be trained on labelled data
during process failure without requiring an in-depth understanding of the underlying
process [20,21]. This allows industries and machine manufacturers to leverage the vast
amounts of data generated by industrial equipment, IoT devices, and edge devices to
predict upcoming failures in the near future and schedule maintenance activities before
they occur, extending the lifetime of the component [22-24]. Moreover, this kind of data-

Sensors 2024, 24, 3215

30f25

driven approach allows industries to continuously improve their predictive maintenance
procedures over time by updating, upgrading, and fine-tuning their ML predictive models
based on new data from the production site, improving the adaptability to any changing
condition, while being sure of the performance of equipment [25-27]. Many different
ML techniques have been explored and developed for PdM applications, as noted in
sources [28-33]. The choice of technique depends directly on the application as well as on
the given datasets and their characteristics [34].

Convolutional Neural Networks (CNNs) are a form of deep learning technique that
has found widespread use in image and video analysis [35]. CNNs can identify complex
patterns in the data that are not easily noticeable by a human operator [36,37] and are
capable of managing vast amounts of data, making them suitable for industrial applications
where massive amounts of sensor data are generated [38]. However, CNNs need labelled
data and struggle to effectively handle complex datasets when the data are homogeneous
and multi-channel [39,40]. Finally, CNNs are not well suited to handle sequences of data,
as they do not have the capability to maintain information from one step of the sequence to
the next, like Recurrent Neural Networks (RNNs) [41,42].

Recurrent Neural Networks (RNNs) are a type of deep learning architecture specifically
optimized to handle sequential data for tasks such as natural language processing, speech
recognition, and time-series forecasting [10]. With their feedback loops, RNNs are able to
remember information of previous units by allowing information to pass across timeline
steps [43]. Despite their strength in handling sequences, RNNs struggle to maintain long-
term dependencies and may degrade in accuracy over time as the length of the input
sequence increases, making them less practical for real-time predictions [44]. However,
researchers have developed variants of RNNs, such as LSTM networks, that address these
challenges and allow for more effective use of RNNs in PdM tasks [45].

LSTM is a type of RNN that is capable of handling the vanishing gradient problem in
traditional RNNs by introducing a memory cell and gating mechanism [46]. LSTMs can
retain information for long sequences and are capable of handling long-term dependencies,
making them suitable for sequential data tasks such as time-series forecasting, natural
language processing, and speech recognition [47,48].

Autoencoders are a type of neural network that are used for dimensionality reduc-
tion and feature learning, and they consist of two main components: an encoder that
maps input data to a lower-dimensional representation, and a decoder that maps the
lower-dimensional representation back to the original input data [49-51]. Autoencoders
are relatively simple to train and implement, making them a popular choice for PdM
applications. However, Autoencoders are limited to working with vector-based data, and
their performance can be poor with sequential data such as time series or speech signals.
This is because regular Autoencoders cannot handle the temporal dependencies inherent
in sequential data. To address this limitation, LSTM-Autoencoders have been proposed,
which combine the sequential processing capabilities of LSTMs with the feature learning
capabilities of Autoencoders [52]

LSTM-Autoencoders are a type of Autoencoder architecture that uses LSTM networks
as the encoder and decoder parts. Combining LSTM and an Autoencoder creates a powerful
architecture for sequence data processing tasks, such as anomaly detection, data denoising,
and feature extraction [53,54]. The Autoencoder structure enables the model to learn a
compressed representation of the data, while the LSTM part allows the model to capture
the time-series dependencies and long-term patterns in the data. This combination results
in an efficient and effective method for analyzing sequential data [55].

Without using sequence-aligned RNNs, CNNs, or LSTMs, the Transformer is the
first transduction model relying entirely on self-attention to compute representations of
its input and output, becoming more and more ubiquitous in deep learning [56,57]. The
Transformer architecture (Figure 1) was introduced in the 2017 paper “Attention is All
You Need” [58] and has since been used in many state-of-the-art models for NLP (natural
language processing) tasks such as language translation, sentiment analysis, and text

Sensors 2024, 24, 3215

4 of 25

classification. The main idea behind transformers is the use of self-attention mechanisms,
which allow the model to focus on different parts of the input sequence and learn the
relationships between them, making them well-suited for processing sequential data.
Transformers eliminate the need to train neural networks with large, labelled datasets
that are costly and time-consuming to produce by finding patterns between elements
mathematically [59-62].

QOutput
Probabilities

Add & Norm
Feed
Forward

Add & Norm

((Add & Norm] :
EEE1E Vi Multi-Head
Attention
J D) Nx
Nx | Add & Norm
Add & Norm NMasked
Multi-Head Multi-Head
Attention Attention
At At
] J \ —)
Positional @—6- @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Qutputs
(shifted right)

Figure 1. The Transformer model architecture.

In contrast to previous approaches, the use of the attention mechanism provided by
these architectures allows us to take into consideration a plethora of characteristics involved
in different forms of data [63,64]. Transformers have also been used for time-series data
analysis and forecasting as they are capable of capturing long-term dependencies in the
time-series data [65]. The use of Transformers for that kind of data analysis has shown
promising results and is an area of active research and development.

Consequently, this paper proposes and examines a supervised deep learning method,
combining a set of Autoencoders with Long Short-Term Memory (LSTM) networks and a
Transformer encoder, for fault detection, health condition estimation, and RUL prediction
of a machine. First, the set of LSTM-Autoencoder networks classify the general current
health of the machine into distinct labels, and then, only if the LSTM-Autoencoders indicate
that the machine’s health is bad, one Transformer encoder is used to classify the machine’s
status into specific classes corresponding to different RUL values.

3. Method

Currently, Al provides a plethora of tools, methods, and models for the prediction
of possible equipment malfunctions. Therefore, engineers have to face the challenge of
carefully selecting the most appropriate ML model. In the presented case study, alternative
ML models could be implemented, e.g., GRU, which requires the use of less computational
parameters, and, by extension, less computational resources, at the cost of losing long-term
dependencies built up in the dataframes. The two LSTM-Autoencoders have been used
as a preliminary preprocessing step in the approach in order to filter out any irrelevant
information and decide if the data require further analysis from the Transformer encoder.
Then, the Transformer encoder further processes and analyzes the data, mapping them into

Sensors 2024, 24, 3215

50f25

different RUL classes. So, using LSTM-Autoencoders as a preliminary preprocessing step
allows a balance between computational efficiency and model performance.

3.1. LSTM-Autoencoders

In order to train any set of LSTM-Autoencoders, sensor data are required, derived
from a production machine. After the training, the set of separate LSTM-Autoencoders can
classify new sensor data that have never been seen before to different operational machine
statuses. In particular, a variety of different sensors, that are placed on the machine, take
measures of multiple features from the equipment and its environment. Preprocessing
of the data is mandatory, as data coming from industry can be inconsistent, noisy, or
even incomplete, leading to poor model performance. Apart from that, identifying the
appropriate set of features associated with potential failures is a challenging task. So, in
order to model the degradation process of any machine and determine the critical values,
plotting the dataframe values is proposed. After the visualization of the data, and in
combination with the knowledge and maintenance records of the factory specialists, related
studies, and scientific dissertations of a machine, the key features can be selected.

LSTM-Autoencoders are used for the classification of the health condition of a ma-
chine to one or more categories as explained hereafter. The architecture of each LSTM-
Autoencoder depends on the problem and the categories to be identified. The proposed
approach requires, at a minimum, two categories to determine the health condition of the
equipment: one category to represent the equipment’s good health condition, typically
after maintenance or part replacement, and the other category to represent bad health con-
ditions, such as due to degradation or failure that requires maintenance from an operational
perspective. Additional categories, beyond the two mentioned, could be included based
on specific needs and requirements. However, this specific study uses the minimum of
two categories, namely “good health” and “bad health”, to classify the health status of the
equipment. In order to classify these categories, an LSTM-Autoencoder is trained for each
label, with different datasets, so the number of LSTM-Autoencoders equals the number
of labels.

In order to define these different datasets and train the individual LSTM-Autoencoders,
historical maintenance records are used in order to label the data based on their timestamp
and the number and type of different statuses selected. Finally, a data split is performed
to define, train, and test data for each LSTM-Autoencoder; 80% of the initial dataset is
used for the neural network training and validation, and the remaining 20% for testing the
neural network [66].

Figure 2 illustrates a high-level LSTM-Autoencoder architecture. As presented in the
following Equation (1), the input of each LSTM-Autoencoder is a time-series sequence,
A;, containing the values o;j of each sensor, denoting one of the variables measured at a
specific time, with n being the number of features.

A = [&11, Kip, Ki3, ..., ocij}, where aj; € R, withi, j€ Zandi <n (1)

Consequently, this time-series sequence is the input of each LSTM cell of the encoder,
along with the hidden output from the previous LSTM cell. Finally, the output of the
encoder is a compressed representation of the input sequence, the learned representation
vector, which includes all the hidden states from all the previous encoder LSTM cells. This
output is fed then into the decoder to reconstruct the original input sequence, processing
these encoded features through a series of LSTM decoder cells. As presented in Equation (2),
the output of the decoder layer is a reconstruction of the initial input time-series sequence
A/;, containing the reconstructed values of ijj of each sensor.

Aj = |ajy, iy, aj, ..., ajj|, where aj; € R,withi, j€ Zandi<n 2)

After the LSTM-Autoencoder training, the model is evaluated by feeding the test data,
defined earlier, as input to the model, and then, the reconstructed values are compared

Sensors 2024, 24, 3215 6 of 25

with the input values. The metric used to evaluate the model is the Mean Squared Error
(MSE) as presented in Equation (3).

1 n
MSE; =) (4 - Ay)° ©)
i=1

Following the training phase, new data, that the LSTM-Autoencoders have never
seen before, are provided as input to the networks, and each of them produce different
reconstructed values for the same input, as depicted in Figure 3.

r
_1 ox N2 Mean Squared Error
4{ MSE, = X (4 -4) X = number of data values
|
(

| MSE, =3 Ti,(A - 4)?]

: (
H 1
: l MSE, =~ S¥,(A-A")?]
A A, Output time-series sequence o
1 1
|

|/

T
| |
(L ™ F—{tst™ }—{ Lst™ }— oo

Decoding LSTM layer
[Encoded features] [Loss = % iy MSE;]

Encoding LSTM layer

@

(tst™ }—{tst™ }—{15T™ J—» oo
T T T

Ay A, A; Input time-series sequence A,

Timesteps [ul T 1 e —

A v Input multivariable
l 'w ‘l r \ | signal with x_features

Timestamps
Figure 2. High-level LSTM-Autoencoder architecture.

4 Features

Time-series data Matrix multiplication
r ! —
B (TV i S T N — N\ [l N [A
LSTM LSTM 4 Ry LSTM LSTM X Z, -
g
11 ; i =
LST™M LST™M R, LST™M LST™M X Z, .3
N
LSTM + LSTM Ry LSTM LSTM X Z, - <I| ®
P
LST™M LST™M R, LSTM LSTM X Z, A, -
J - AN PR I NN J J
@ @ i . £ 5 —
g. Input layer Encoding LSTM layers Repeat vector Decoding LSTM layers Time distributed layer Output layer
H
<
£
2 Matrix multiplication
r 1 '
) (—) [N
R, LSTM LSTM X Z, f}?
&) t j (z) =
R, LSTM LSTM X Z, I
N
R, LSTM LSTM X Zy .
%
() (el —— -
R, LST™M LSTM X Z, o A,
N J X J \
—
Input layer Encoding LSTM layers Repeat vector Decoding LSTM layers Time distributed layer Output layer

Figure 3. LSTM-Autoencoder architecture set.

Sensors 2024, 24, 3215 7 of 25

The integration of outputs from the two separate LSTM-Autoencoders is achieved
through a decision rule, based on their reconstruction losses, compared to the input. The
LSTM-Autoencoder with the lower reconstruction loss indicates better recognition of the
input dataset, and consequently, the input sequence is classified into the same category
state as the one used to train this specific LSTM-Autoencoder.

In this approach, LSTM-Autoencoders serve as a preprocessing step. If the LSTM-
Autoencoders classify the health status of the equipment as a “good state”, further anal-
ysis from the Transformer encoder is unnecessary. Otherwise, in case that the LSTM-
Autoencoders classify the health status of the equipment as a “bad state”, the same input
data are used as input to a Transformer encoder in order to identify its remaining useful
life (Figure 4).

features

Global AveragePooling1D
Y fauren
‘ flatten

e

softmax

acy rate 1 (%) =+ BiL, MSEy]

Accur:

[

3
=
=

& er
Bl T ‘ Mat

[Accuracy rate 2 (%) =2 £l MSE;]

Wit g EH

Input layer EncodingLSTM layers Repeatvector Decoding LSTM layers

Figure 4. LSTM-Autoencoders and Transformer encoder integration.

3.2. Transformer Encoder

The Transformer encoder is used for the identification of the current machine’s health
condition and mapping it to remaining useful life (RUL) by processing and extracting
meaningful information from the input data and making predictions.

In the proposed approach, three (3) classes are used for the classification representing
different health states of the machine. The data that belong to Class 0 represent the health
state of machines with an RUL of 34 days. The data that belong to Class 1 represent the
health state of machines with an RUL of 2-3 days. Finally, the data that belong to Class 2
represent the health state of machines with an RUL of 1 day.

In order to label the data into the three (3) different classes, historical maintenance
records are taken into consideration based on their timestamp. Finally, a data split is
performed to define, train, and test data for each LSTM-Autoencoder; 80% of the initial
dataset is used for the neural network training and validation, and the remaining 20% for
the neural network testing.

Figure 5, illustrates the Transformer encoder’s Multi-Head Attention architecture. The
input of the Transformer encoder is a window from time-series data that are processed
independently and contain the values of each sensor. After the Q, K, and V matrixes are
generated for each head independently, the next step is the matrix multiplications between
the Queries matrix and the transposed Keys matrix, determining the relationships or the
similarity of the Query and the Key values (the scores). These scores are then scaled down
by being divided by the square root of the Query and Key dimension in order to avoid any
exploding effect. SoftMax is then applied to the scaled score matrixes in order to obtain
the attention weights. Finally, the attention weights of the multiple heads are multiplied
with the value matrixes in order to produce one matrix for each head that contains the
information of a value corresponding to the whole input. So, as the Transformer model
has multiple heads (# of heads = h), the output is h matrixes. Finally, all separate h outputs
from each Attention Head are concatenated and then multiplied with the Wo matrix in
order to output a matrix with the same shape as the input. The output of the Multi-Head

Sensors 2024, 24, 3215 8 of 25

Attention is then added to the original input (Figure 6) and passes through a normalization
layer, making the model more robust and stable during training.

Wgh h=#of heads Multi-Head Attention
- Q1
Input wql |
] QhKh”
— x 1 QIKIT,
L
Kh X / Vi
Wkh h=#of heads
- K1
Input Wki | Scores.
x | }
e s

Vh ...Snﬂmx(ohkh'lﬂ)
Wyh h=2ofheads Softmax(QIK1" / |/di)

Ah
i vi Al
Input Wyl ‘ T
‘ =
X M
=

X ‘ Concat
Lookback 1 ‘ ‘

A
_ - *
= = L 1 J
WWH"H"WM o Ehdbm g u A A

{ Batch

L
r 1 Timesteps t
Ah
fore bbb 1o muliivariable signal

it ““}'[w.n“ with features x

Output of Multi-Head Attention

Timestamps

Figure 5. Transformer encoder Multi-Head Attention.

Output

Add & Norm

Feed
Forward

—
Nx

Add & Norm

Multi-Head
Attention
At
S R,

Positional
Encoding D
Input

Embedding

!

Inputs Input

Multi-Headed
Attention

Figure 6. Transformer model residual connection.

After the normalization, the output is then passed through a Feed Forward network
(Figure 7) and the output is added to the input and normalized again. Finally, the output
of the Transformer encoder is a continuous representation of the input containing all the
attention information that captures all the dependencies within the sequence. The output
is further processed and passes through GlobalAveragePooling1D in order to produce the
final output of the model and output the probabilities of the # of classes.

After the model training, the performance of the model is evaluated through the
sparse_categorical_accuracy. This metric calculates the percentage of correctly classified
samples in the dataset by comparing the predicted class labels with the true class labels.

Sensors 2024, 24, 3215

9 of 25

LayerNorm(- + -)

I

Linear

ReLu

Linear

LayerNorm(} § = + -)

Figure 7. Transformer model Feed Forward network.

4. Implementation

For the testing and the validation of the proposed approach and its potential use-
fulness for real-world applications, a prototype software system was implemented using
Python 3.7, incorporating the aforementioned method [67]. The system was integrated
using a computer with an Intel i7 processor (Intel(R) Core (ITM) i7-3770 CPU @3.40 GHz
3.80 Ghz), manufactured by Intel (Santa Clara, CA, USA). In terms of processing power,
the computer was equipped with an eight-gigabyte RAM memory from Samsung. Finally,
the aforementioned system was hosted and tested on a computer running Microsoft Win-
dows 10. Figure 8 illustrates a high-level representation of the LSTM-Autoencoder and
Transformer network implementation.

@ python

A) \

{JSON} Pandas r Keras TensorFlow

\ [\

Initial

State
Bad

State

Data
manipulation
&
features
selection

LSTM
Autoencoders

——>| Transformer RUL

Decision

Figure 8. LSTM-Autoencoder and Transformer model implementation.

At first, the sensor data were imported to the implemented system as JSON files,
processed to remove missing values, and finally converted to a dataframe format using
the Pandas library. In the final dataframe, each column represented the values of a single
sensor, a feature, sorted in chronological order based on their timestamp. The selection of
features, used to determine the level of degradation of the machine, was based mainly on
human knowledge of the equipment and process and our bibliographic research. Finally,
in order to increase the model performance, at a second level, two labels were used for
the LSTM-Autoencoder network, identifying the good and bad operating condition of
the monitored equipment, and then three labels were used for the Transformer network,
identifying the RUL of the monitored equipment through classification.

In order to implement the LSTM-Autoencoders, the Keras library was used. Keras is a
popular Python library that is widely used for developing and evaluating deep learning

Sensors 2024, 24, 3215

10 of 25

models as an open-source software library that provides a user-friendly interface for design-
ing and training neural networks. In the aforementioned proposed approach, the training
dataset was segmented based on historical maintenance records and then two separate
LSTM-Autoencoders were trained using data corresponding to each of the two equipment
states, namely good and bad. After the training the two separate LSTM-Autoencoders,
newly arrived data were fed into each of the two separate LSTM-Autoencoders, which are
connected in parallel, in order to classify them into one of the two supported labels, “bad
state” or “good state”.

Then, in order to implement the Transformer model, Keras library was also used. In
case the LSTM-Autoencoder result is that the machine is in a bad state, the Transformer
model will take the same input in order to further process the data and make a classification
of the RUL of the machine.

Finally, during the experimentation stage, the accuracy of the system’s results was
cross-validated using the actual maintenance records provided by the use-case owner, as
described in the following section.

5. Case Study
5.1. Hot Rolling Mill

The aforementioned approach was implemented into a software prototype that was
trained and tested in a real-world steel production industry case. The data used in this
study were derived from a hot rolling mill machine that is used for producing metal
bars. Figure 9 illustrates a high-level diagram of the rolling mill machine components and
their connectivity. Sensor values were initially stored in a local database on the motion
controller and then transferred to a Programmable Logic Controller (PLC) database, and
finally, in a historical database. Real-time data were transmitted from the PLC database to
the PC for RUL prediction via communication channels. Additionally, as the developed
framework was implemented on an industrial intranet, and there was no external com-
munications/exchange of data outside the factory, no mechanisms for data privacy and
security were incorporated.

Real-Time Data II

™)

PLC Profinet Motion
Controller

Historical Segment surface
Database

Hydraulic force

sensors temperatL{re sensors
s '

: =) o ——————
A Torque Motor 1\ ' . . ~— Rolling cylinder A

Historical Data II l

#[H Torque Motor

S l l . ~— Rolling cylinder B
i c——

KROHing Mill Coated segments /

Figure 9. Hot rolling mill machine diagram.

The rolling cylinders of the hot rolling mill have different geometrically coated seg-
ments attached to them, which are used to form the metal bars by applying force. The
rolling mill consists of three top and three bottom segments, each with a wear-resistant
coating. Regarding the preventive maintenance activities that take place for this machine,
the coated segments are scheduled to be replaced approximately every sixteen (16) days
or sooner in case of any unexpected damage, and the replacement of the coated segments
by the maintenance personnel typically lasts about two hours. The goal and objective of

Sensors 2024, 24, 3215

11 of 25

this study is to enable the turn from preventive maintenance into predictive maintenance
by anticipating the behaviour of the segments through RUL prediction with the use of
neural networks.

5.2. Data Preprocessing

The hot rolling mill machine condition was monitored using a variety of sensors that
measured twenty-seven (27) different factors related to the equipment and its environment,
and the sensor installation and operation were carried out by the industrial case provider.
Of course, data coming from industry can be inconsistent, noisy, or even incomplete,
leading to poor model performance. Consequently, data preprocessing is a very important
step before being used for modelling and analysis [68]. All data preprocessing for this use
case was implemented through a separate software module. This module receives JSON
files as input. These files contain data from twenty-seven (27) sensors, and regarding the
sampling rate, it was chosen by the industrial case provider, and data were collected every
five milliseconds (5 ms). However, data storage took place within one-second (1 s) intervals.
Since the sampling rate was too dense, entries with zero or missing values were omitted.
The latter, i.e., entry omission, does not affect data consistency and quality since these data
are considered sensor faults. After completion of the above-mentioned processes, data
preprocessing is finalized, resulting in the creation of unified dataframe, which is ready to
be used for subsequent analysis.

5.3. Feature Selection

Nevertheless, identifying the appropriate parameters and features that could be linked
to possible equipment failures is not an easy task. In order to select the important param-
eters and features for our analysis, the first step in the process involved the plotting of
the data. By performing the visualization of the data, critical areas in the dataframe were
identified and focused on for further analysis of the dataframes. Furthermore, in order to
facilitate the process of feature selection, detailed discussions with experts from the factory
were performed. As such, tacit knowledge was obtained, which, by extension, enabled us to
level up the dataframe from raw data to information. Finally, the dataframe was also further
elaborated by combining raw data with information from historical maintenance records.
According to hot-rolling-mill-machine-related studies and scientific dissertations [69], four
relevant features for our approach were selected: the surface temperature of cylinders A
and B and the force of cylinders A and B on trailing arm (Table 1).

Table 1. Features selected.

Feature Name Feature Value Feature Description
Cylinder A segment surface Celsius (°C) Surface temperature of cylinder A
temperature
Cylinder B segment surface Celsius (°C) Surface temperature of cylinder B
temperature
Cylinder A hydraulic force Kilonewton (kN) Force of cylinder A on trailing arm
Cylinder B hydraulic force Kilonewton (kN) Force of cylinder B on trailing arm

5.4. LSTM-Autoencoder Architecture

Each LSTM-Autoencoder consists of an encoder and a decoder. The number of LSTM-
Autoencoder layers and neurons was selected and optimized following digital experimen-
tation and monitoring of performance metrics. Figure 10 illustrates the architecture of each
LSTM-Autoencoder and the data flow through the layers of the encoder for one sample of
the dataset of size 5 x 4 (assuming that timesteps = 5).

The input data have five timesteps and four features.

The first encoding LSTM layer (Layer 1, LSTM(128)) reads the input data and out-
puts one hundred and twenty-eight (128) features with five timesteps 5 x 128, as
return_sequences = True.

Sensors 2024, 24, 3215

12 of 25

e The second encoding LSTM layer (Layer 2, LSTM(64)) reads the input data 5 x 128
and after reduction, outputs a vector of size sixty-four (64) 1 x 64, the encoded feature
vector of the input data, as return_sequences = False.

e The repeat vector replicates the feature vector 1 x 64 five times and prepares the 2D
array input for the first LSTM layer in the decoder. The repeat vector is the bridge
between the encoder and decoder modules.

timesteps

Input sample
5 timesteps x 4 features

features

ENCODER| | - N
1%t Layer LSTM (128) 34 Layer RepeatVector (3)
Input 5 x 4 Input 1 x 64
Output 5 x 128 Output 5 x 64

return_sequences = True

LSTM { LSTM { LSTM { LSTM -‘LSTM -
204 Layer LSTM (64)
LSTM { LSTM { LSTM { LSTM -‘LSTM - Input5x 128
Output 1 x 64
return_sequences = False
LSTM { LSTM { LSTM { LSTM -{LSTM -
[omw [{1srae | omw |t { o

Figure 10. LSTM-Autoencoder encoder.

Figure 11, on the other hand, illustrates the data flow through the layers of the decoder.

e The first decoding LSTM layer (Layer 4, LSTM(64)) reads the input data 5 x 64 and
outputs sixty-four (64) features with five timesteps 5 x 64, as return_sequences = True.

o Thesecond decoding LSTM layer (Layer 5, LSTM(128)) reads the input data 5 x 64 and
outputs a vector of one hundred and twenty-eight (128) features with five timesteps as
return_sequences= True.

e The time distributed layer (Layer 6, TimeDistributed(Dense(4))) takes the output and
creates 128 x 4 (number of features outputted from the previous layer x number of
features) vector.

e The matrix multiplication between the output of Layer 5,5 x 128, and the output of
Layer 6, 128 x 4, resulted in a 5 x 4 output (the input and output dimensions match).

3d Layer RepeatVector (3)
Input 1 x 64
Output 5 x 64

A5x128 B 128 DECODER
5t Layer LSTM (128) 6t Layer TimeDistribute
Input 5 x 64 Input 5 x 128
Output 5 x 128 Output 5 x 4
4rdLayer LSTM (128) return_sequences = True return_sequences = True
Input 5 x 64
Output 5 x 64 N

return_sequences = True

L I

Figure 11. LSTM-Autoencoder decoder.

Table 2 presents the architecture of each LSTM-Autoencoder, which includes the layers
of the network created, the number of parameters (weights and biases) of each layer, and
the total parameters of the model, as also described previously. In machine learning and
neural networks, the number of parameters in a neural network can have an impact on
the processing complexity of the model [70]. In this approach, the number of trainable

Sensors 2024, 24, 3215

13 of 25

i Good state
ST d ik

édayl idayZ day3 day4 day5 day6 day7 day8 day9 day 10 dayll{

parameters in each network was 249.860, which resulted in the good performance of the
model.

Table 2. LSTM-Autoencoder: number of trainable parameters.

Layer Type Output Shape (Timesteps x Features) Parameters
inputl InputLayer 5x4 0
Istm1 LSTM 5x 128 68,096
Istm2 LSTM 1 x 64 49,408
repeatvectorl RepeatVector 5 x 64 0
Istm3 LSTM 5 x 64 33,024
Istm4 LSTM 5 x 128 98,816
timedistributedl =~ TimeDistributed 5x4 516
Total parameters: 249 860
Trainable parameters: 249,860
Non-trainable parameters: 0

5.5. LSTM-Autoencoder Training and Testing

Apart from monitoring the equipment condition and data collection from the sensors,
another very important piece of information is the historical maintenance records. In the
aforementioned approach, two separate LSTM-Autoencoders were trained in order to
classify data into one of the two supported labels, “bad state” or “good state”. Each of these
two LSTM-Autoencoders were trained with a different dataset representing the different
situations of the machine, defined according to the previous segment’s exchange records
(Table 3).

Table 3. Historical maintenance records.

Mounted Unmounted RUL Remark

1 day 1 day 12 12 days Large piece broken out of surface
2 day 1 day 15 15 days Large piece broken out of surface
3 day 1 day 16 16 days Preventive maintenance

4 day 1 day 15 15 days Large piece broken out of surface

As mentioned before, the coated segments are scheduled to be replaced approximately
every sixteen (16) days or sooner in case of any unexpected damage and failure. So, as
illustrated in Figure 12, we can assume that in the first two days that the coating was
mounted, the sensor data corresponded to a machines’ good state, and vice versa: the last
two days before the coating was unmounted, the sensor data corresponded to a machines’
bad state (Table 4).

Bad state

Input multivariable
signal with x_features

day12 |

R

P A
|

..............) S

Segment mounted

RUL |
.............. S,

Figure 12. Data selection for training LSTM-Autoencoders.

Sensors 2024, 24, 3215 14 of 25
Table 4. Data selected for training LSTM-Autoencoders.
RUL Remark Good Data Bad Data
1 12 days Large piece broken out of surface day 1-day 2 day 11-day 12
2 15 days Large piece broken out of surface day 1-day 2 day 14-day 15
3 16 days Preventive maintenance day 1-day 2 -
4 15 days Large piece broken out of surface day 1-day 2 day 14-day 15

Each dataset consisted of approximately 200,000 values. The datasets were then split
into training and test data, with 80% of the first part of the dataset used for training and
the remaining 20% used for testing. Both the training and test data were normalized to a
range from 0 to 1 to facilitate faster and better training of the neural networks.

Table 5 presents the training loss results after performing multiple experiments in
order to identify the ideal number of epochs, the window size, and the batch size in this
use case. Epoch refers to the number of times the entire training dataset is passed through
the neural network during the training process. In each epoch, the neural network goes
through all the training examples in the dataset. The batch size refers to the number of
samples that are processed at each training iteration, and the weights of the neural network
are updated after processing each batch.

Table 5. LSTM-Autoencoder training loss results (%).

Window Size 5 Window Size 10 Window Size 20
L
088 Batch 32 Batch 64 Batch 32 Batch 64 Batch 32 Batch 64
Good State 0.0016 0.0015 0.0156 0.0224 0.0345 0.0338
Bad State 0.0071 0.0071 0.0219 0.0438 0.0630 0.0416

After the training of the LSTM-Autoencoders, new datasets that the two separate
LSMT-Autoencoders had never seen before were then input. Each dataset was the input
for both LSTM-Autoencoders and each of them produced different reconstructed values
for the same input. The reconstructed values that presented a smaller reconstructed error
with the input are probably recognized better by this LSTM-Autoencoder. As a result, the
input dataset belongs to the same category state as the dataset that the LSTM-Autoencoder
was trained with. In Table 6, the first column refers to the actual states of the monitored
equipment on specific days according to the historical maintenance records of the hot
rolling mill, while the last two columns present the loss generated by each one of the two
LSTM-Autoencoders for the corresponding days.

Table 6. LSTM-Autoencoder test results.

Historical Maintenance Records Loss
Equipment State RUL Input Date AE Good State AE Bad State
Good State 15 days day 2 0.006 0.035
Good State 16 days day 1 0.006 0.015
Good State 16 days day 2 0.01 0.030
Bad State 15 days day 14 0.037 0.005
Bad State 15 days day 14 0.036 0.004
Bad State 15 days day 12 0.034 0.007
Bad State 15 days day 11 0.040 0.008
Bad State 15 days day 10 0.043 0.008
Bad State 16 days day 15 0.017 0.001
Bad State 15 days day 13 0.034 0.01

Bad State 15 days day 13 0.037 0.01

Sensors 2024, 24, 3215

15 of 25

5.6. Transformer Encoder Architecture

Figure 13 illustrates the architecture of one of the Transformer encoders and the
data flow through the layers of the encoder. Transformers consist of a fixed number of
stacked layers [71]. After windowing, the sample input data consists of five timesteps and
four features.

e A LayerNormalization layer normalizes the input data and outputs four features with

five timesteps (5 x 4).

A MultiHead Attention layer outputs four features with five timesteps (5 x 4).

A Dropout layer outputs four features with five timesteps (5 x 4).

An Addition layer outputs four features with five timesteps (5 x 4).

A LayerNormalization layer normalizes the input data and outputs four features with

five timesteps (5 x 4).

e A ConvlD layer operates as a feature extractor and captures patterns, applying a
1D convolution operation to the input, and outputs four features with five timesteps
(5 x 4).

e A Dropout layer randomly sets a fraction of input units to zero and outputs four
features with five timesteps (5 x 4).

e A ConvlD layer applies a 1D convolution operation to the input and outputs four
features with five timesteps (5 x 4).

Input sample

5 timesteps x 4 features

timesteps

LayerNormalization ConvlD
Input 5 x 4 Input 5 x 4
Output 5x 4 Output 5 x 4
Output
\ 5x4
710|211 | z12 | z13 | z14
Addition Dropout
Input 5 x 4 — Input5x 4 220 | z21 | 222 | z23 | z24
Output 5x 4 Output 5 x 4
230 | z31 | z32 | z33 | z34
740 | z41 | z42 | z43 | z44
Dropout ConvlD ‘
Input5x 4 Input 5 x 4
Output 5 x 4 Output 5 x 4

.

MultiHead Attention
Input 5 x 4
Output 5x 4

L1

LayerNormalization
Input 5 x 4

features

Output 5 x 4

Figure 13. Transformer encoder.

Finally, after the input passes through all of the stacked Transformer encoders, the
output is an encoded representation of the input. The number of stacked Transformer
encoders is selected and optimized following digital experimentation and monitoring of
performance metrics. The Transformer encoders create a continuous representation of
the input with attention information, capturing all the dependencies within the sequence.
Then, the output is further processed in order to produce the final output of the model,
as depicted in Figure 14. A GlobalAveragePoolinglD layer takes the input tensor and
computes the average value along the timesteps of the input tensor and outputs a tensor
with shape (# of samples, # of features). Then, this output is passed through the Dense
layer that applies linear transformation, followed by the ReLu activation function. Then,

Sensors 2024, 24, 3215 16 of 25

the output of the Dense layer passes through a Dropout layer. Finally, the output of the
Dropout layer is passed through a Dense layer with units = # of classes applying linear
transformation followed by the SoftMax activation function. This function outputs the
probabilities of the # of classes.

timesteps

l .Aatches

features

Output
Aatches

flatten

Input

features

Figure 14. Probability generation for the classification.

5.7. Transformer Encoder Training and Testing

For the Transformer model training, the segment’s exchange records (Table 3) are used
to label the data into different classes. For example, as illustrated in Figure 15, assuming
that the new segment was mounted on day one (1) and was unmounted because of a break
down on day twelve (12), the data from day 7 and day 8 can be labelled as Class 0, the data
from day 9 and day 10 can be labelled as Class 1, and finally, the data from day 11 can be
labelled as Class 2.

3-4 days

i

Input multivariable
signal with x_features

RUL

Figure 15. Data selection for training the Transformer encoder.

The input dataset consisted of approximately 300,000 values. The datasets were then
split into training and test data, with 80% of the first part of the dataset used for training

Sensors 2024, 24, 3215

17 of 25

and the remaining 20% used for testing. Both the training and test data were normalized to
a range from 0 to 1 to facilitate faster and better training of the neural networks.

Table 7 presents the best accuracy rate after performing multiple experiments in order
to identify the ideal window size and batch size in this use case.

Table 7. Transformer encoder training accuracy results (%).

Window Size 5 Window Size 10 Window Size 20
Batch 32 Batch 64 Batch 32 Batch 64 Batch 32 Batch 64
Accuracy (%) 73% 66% 81% 37% 96% 93%

Following the completion of the model training phase, a series of digital experiments
were conducted. For these experiments, new datasets were used, derived from the splitting
of the initial dataframe. These experiments share the same methodology, yet with different
datasets as input to the Transformer model. The output of each experiment is a set of
classification metric values and confusion matrices over the different classes. Finally, the
results from the experiments were cross-validated using the actual maintenance records
provided by the use-case owner for the evaluation of the system’s performance. Each class
corresponds to a different health state of the machine (Table 8).

Table 8. Classes and RUL definition.

Classes RUL
Class 0 3-4 days
Class 1 2-3 days
Class 2 1 day

Tables 9-11 present the classification metric values in order to evaluate the performance
of the Transformer model. The metrics used for the evaluation are Precision, Recall, F1
Score and Accuracy and are calculated for each class in each input dataset. The input
datasets used for the experiments were labelled as Class 0, Class 1, and Class 2 based
on the segment’s exchange records. Confusion matrixes are used in order to provide a
representation of the Transformer model’s actual class labels and the predictions for each
class (Figures 16-18). Each row of the confusion matrix represents the number of data
values that belong in the real class, and each column represents the number of data values
in the predicted class.

Table 9. Transformer results: Experiment 1—maintenance because of break down.

Precision (%) Recall (%) F1Score (%) Confidence (%) Support

Class 0 94% 70% 80% 70% 3600

Class 1 98% 97% 98% 97% 3600

Class 2 74% 94% 83% 94% 3580
Accuracy (%) 87%

Table 10. Transformer results: Experiment 2—maintenance because of break down.

Precision (%) Recall (%) F1Score (%) Confidence (%) Support

Class 0 89% 78% 83% 78% 3600
Class 1 96% 92% 94% 92% 3600
Class 2 76% 88% 81% 88% 3580

Accuracy (%) 86%

Sensors 2024, 24, 3215

18 of 25
Table 11. Transformer results: Experiment 3—maintenance because of break down
Precision (%) Recall (%) F1Score (%) Confidence (%) Support
Class 0 60% 16% 25% 16% 3600
Class 1 56% 65% 60% 64% 3600
Class 2 56% 88% 68% 88% 3580
Accuracy (%) 56%

true label

predicted label

Figure 16. Confusion matrix: Experiment 1—maintenance because of break down.

true label

predicted label

Figure 17. Confusion matrix: Experiment 2—maintenance because of break down.

true label
-

T

0 1
predicted label

Figure 18. Confusion matrix: Experiment 3—maintenance because of break down.

Sensors 2024, 24, 3215

19 of 25

The input datasets used for the following three experiments were labelled as Class
2 despite the fact that these data were taken the day before the preventive maintenance
activities based on the segment’s exchange records. As the segment exchange took place
preventively and not because of a segment break down, it indicates that the machine may
have had a few more days of expected life. Consequently, it is interesting to observe the
Transformer model’s predictions for these cases (Tables 12-14).

Table 12. Transformer results: Experiment 4—preventive maintenance.

Precision (%) Recall (%) F1Score (%) Confidence (%) Support

Class 0 0 0 0 0

Class 1 0 0 0 0

Class 2 100% 19% 32% 19% 3580
Accuracy (%) 19%

Table 13. Transformer results: Experiment 5—preventive maintenance.

Precision (%) Recall (%) F1Score (%) Confidence (%) Support

Class 0 0 0 0 0

Class 1 0 0 0 0

Class 2 100% 10% 20% 10% 3580
Accuracy (%) 10%

Table 14. Transformer results: Experiment 6—preventive maintenance.

Precision (%) Recall (%) F1Score (%) Confidence (%) Support

Class 0 0 0 0 0

Class 1 0 0 0 0

Class 2 100% 1% 1% 1% 3580
Accuracy (%) 1%

Confusion matrixes show that despite the fact that these data were taken the day
before the preventive maintenance activities and should belong in Class 2, the machine may
have had a few more days of expected life. According to Figures 19 and 20, the Transformer
model predicted that these data belong to Class 0 and have about 3—4 more days of life,
while, according to Figure 21, the Transformer model predicted that these data belong to
Class 1 and have about 2-3 more days of life.

true label
-
o
o
o

predicted label

Figure 19. Confusion matrix: Experiment 4—preventive maintenance.

Sensors 2024, 24, 3215 20 of 25

true label
=
o
o
o

276 369

1 2
predicted label

Figure 20. Confusion matrix: Experiment 5—preventive maintenance.

true label
-
o
o
o

139

0 1 2
predicted label

Figure 21. Confusion matrix: Experiment 6—preventive maintenance.

5.8. Discussion

In order to evaluate the performance of the proposed approach, four months of
machine operation data were used, and the datasets for training and testing were created
based on the historical maintenance records from the hot rolling mill machine.

For the LSTM-Autoencoder (Table 6) the difference between the losses of the two LSTM-
Autoencoders was enough in order to categorize and label the input data and identify the
health status of the hot rolling mill machine. The datasets for training and testing created
based on the historical maintenance records from the hot rolling mill machine

The results from the experiments were cross-validated using the actual maintenance
records provided by the use-case owner for the evaluation of the system’s performance.
According to the data presented in Tables 9-11, the Transformer model can predict the
equipment’s health state, predict the remaining useful life, and prevent any failure or break
down with high confidence. Additionally, the network results in Tables 12-14 show that
the equipment was still in a healthy state at the time of preventive maintenance activities.
Consequently, in a period of one (1) year, as preventive maintenance activities take place
every sixteen (16) days, the equipment could gain (on average) approximately fifty-seven
(57) more days of life and a 17,39% reduction in preventive stoppages.

As indicated in the LSTM-Autoencoder Training and Testing paragraph, the developed
framework can predict the equipment’s health status and the corresponding RUL values
with a high confidence rate. However, the fact that the confidence level remains less than
100% indicates that the developed framework is a complementary tool and provides good
estimates for the technician/engineer, and that human intervention is still required in order
to ensure seamless operation of the production line. Concretely, the developed framework
can be used as a smart suggestion system which monitors the status of the equipment and

Sensors 2024, 24, 3215

21 of 25

interprets data, in an attempt to inform technicians/engineers whether or not the specific
equipment requires maintenance to be carried out.

6. Conclusions

In conclusion, this study proposes a new approach for fault detection by evaluating
the condition of production assets and predicting their remaining useful life (RUL). In
order to integrate this solution, Autoencoders with Long Short-Term Memory (LSTM)
networks were combined with a Transformer encoder to evaluate the functional status of a
hot rolling mill machine in manufacturing, identify any anomalies, and map them to RUL
values. Initially, a combination of two LSTM-Autoencoder networks was trained for the
classification of the current machine’s health condition to the two different corresponding
labels of the machine, good state and bad state. Then, a Transformer encoder was trained
in order to estimate and predict the remaining useful life of this machine. The proposed
method was evaluated on a hot rolling milling machine.

The novelty of the proposed approach is that in the first phase, a separate LSTM-
Autoencoder is trained for one label, leading to better results, and making it easily ad-
justable to many labels following the exact same logic and procedure. The two LSTM-
Autoencoders were used as a preliminary preprocessing step in the approach in order to
filter out any irrelevant information and decide if the data required further analysis from
the Transformer encoder. Then, the Transformer encoder further processes and analyzes
the data, mapping them into different RUL classes. So, using LSTM-Autoencoders as a
preliminary preprocessing step allows a balance between computational efficiency and
model performance. Furthermore, considering the architectural characteristics of the Trans-
formers, key elements such as non-sequential processing and self-attention mechanisms
enable such models to process large datasets in real time and provide faster responses in
comparison to other similar models.

Real-world data from a hot rolling milling machine were used both for training and
testing of the neural networks, and the obtained results were satisfactory as presented
in this study. However, during the development of the presented method, several chal-
lenges emerged. One of the key limitations was the extensive data preprocessing required.
Concretely, a manual labelling process was mandatory, which was encountered by combin-
ing the dataframe with labels derived from historical maintenance records. Another key
limitation was the increased complexity of the data, which was addressed by iteratively
fine-tuning the hyperparameters of the model. By extension, additional experiments are
necessary to be conducted using a more extensive dataset of higher data quality for a longer
time period.

The results from all the different experiments show that the proposed approach
is promising and can help to improve maintenance planning, reducing redundant and
preventive stoppages in the production line, preventing any serious failure of the machine
before it happens, and leading to a decrease in the cost of maintenance operations. Finally,
the proposed method can provide information regarding the machine’s health without
requiring any specialization and additional skills from the industry operators.

However, one limitation of the proposed approach arises when dealing with data of
higher resolution with multiple labels, requiring multiple neural networks to identify the
machine’s status. Such cases can be computationally complex, and neural networks may
not be able to accurately recognize the neighbour states. Also, another limitation of this
approach is the requirement for maintenance records used to label the datasets, such as
component break downs and failures. These kinds of data are limited in the industry as
preventive maintenance activities are planned in order to avoid this kind of critical failure
of the equipment.

A next step for this approach is performance optimization by choosing different sets
of hyperparameters for each network, conducting experiments, and comparing the results.
Also, the robustness of the model to anomalies and noise data will be evaluated. The same
approach could also be tested with more than four features and high-dimensional data, or

Sensors 2024, 24, 3215 22 of 25

completely different set of features for training. This expansion will allow the model to
find and uncover more hidden patterns, relationships, correlations, and other insights that
may remain undiscovered within the constraints of the current implementation.

Future work will also focus on evaluating the proposed concept against other ma-
chine learning methods combining different neural networks for each step, using different
datasets from different real-world scenarios. In terms of implementation, and in order to
minimize the framework’s response time (i.e., real-time), a better network infrastructure
needs to be implemented in order to reduce network latency and system response. Further-
more, regarding the neural network operation, the utilization of high-power GPUs could
further reduce prediction time. Finally, in an attempt to improve the impact of the proposed
method, future work will involve the comparison of the developed model versus other
statistical models, e.g., the exponential degradation model. Finally, different architectures
for varying conditions will also be investigated and compared against the current approach.

Author Contributions: Conceptualization, K.A., N.N. and X.B.; methodology, K.A. and X.B.; soft-
ware: X.B.; validation, X.B.; formal analysis, X.B.; investigation, X.B.; resources, K.A.; data curation,
X.B.; writing—original draft preparation, X.B.; writing—review and editing, X.B., N.N. and K.A ;
visualization, X.B.; supervision, K.A. and N.N.; project administration, N.N.; funding acquisition,
K.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research has been partially funded by the European project “SERENA—VerSatilE
plug-and-play platform enabling REmote predictive mainteNAnce” (Grant Agreement: 767561).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author due to privacy restrictions.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Chryssolouris, G.; Alexopoulos, K.; Arkouli, Z. A Perspective on Artificial Intelligence in Manufacturing; Springer Nature:
Berlin/Heidelberg, Germany, 2023; Volume 436.

2. Rahman, M.S,; Ghosh, T.; Aurna, N.E; Kaiser, M.S.; Anannya, M.; Hosen, A.S. Machine Learning and internet of things in industry
4.0: A review. Meas. Sens. 2023, 28, 100822. [CrossRef]

3. Vaidya, S.; Ambad, P,; Bhosle, S. Industry 4.0—A glimpse. Procedia Manuf. 2018, 20, 233-238. [CrossRef]

4. Grabowska, S. Smart factories in the age of Industry 4.0. Manag. Syst. Prod. Eng. 2020, 28, 90-96. [CrossRef]

5. Sestino, A.; Prete, MLL; Piper, L.; Guido, G. Internet of Things and Big Data as enablers for business digitalization strategies.
Technovation 2020, 98, 102173. [CrossRef]

6. Liu, Z.; Mei, W,; Zeng, X.; Yang, C.; Zhou, X. Remaining useful life estimation of insulated gate biploar transistors (IGBTS) based
on a novel volterra K-nearest neighbor optimally pruned extreme learning machine (VKOPP) model using degradation data.
Sensors 2017, 17, 2524. [CrossRef]

7. Le Xuan, Q.; Adhisantoso, Y.G.; Munderloh, M.; Ostermann, J. Uncertainty-aware remaining useful life prediction for predictive
maintenance using deep learning. Procedia CIRP 2023, 118, 116-121. [CrossRef]

8. Lee, J.; Mitici, M. Deep reinforcement learning for predictive aircraft maintenance using probabilistic remaining-useful-life
prognostics. Reliab. Eng. Syst. Saf. 2023, 230, 108908. [CrossRef]

9. dePater, I; Mitici, M. Predictive maintenance for multi-component systems of repairables with Remaining-Useful-Life prognostics
and a limited stock of spare components. Reliab. Eng. Syst. Saf. 2021, 214, 107761. [CrossRef]

10. Guo, L,; Li, N,; Jia, F; Lei, Y,; Lin, J. A recurrent neural network based health indicator for remaining useful life prediction of
bearings. Neurocomputing 2017, 240, 98-109. [CrossRef]

11. Chen, C.; Shi, J.; Lu, N.; Zhu, Z.H.; Jiang, B. Data-driven predictive maintenance strategy considering the uncertainty in remaining
useful life prediction. Neurocomputing 2022, 494, 79-88. [CrossRef]

12. Stavropoulos, P.; Papacharalampopoulos, A.; Vasiliadis, E.; Chryssolouris, G. Tool wear predictability estimation in milling based
on multi-sensorial data. Int. |. Adv. Manuf. Technol. 2016, 82, 509-521. [CrossRef]

13. Zhang, C; Yao, X.; Zhang, J.; Jin, H. Tool condition monitoring and remaining useful life prognostic based on a wireless sensor in

dry milling operations. Sensors 2016, 16, 795. [CrossRef] [PubMed]

https://doi.org/10.1016/j.measen.2023.100822
https://doi.org/10.1016/j.promfg.2018.02.034
https://doi.org/10.2478/mspe-2020-0014
https://doi.org/10.1016/j.technovation.2020.102173
https://doi.org/10.3390/s17112524
https://doi.org/10.1016/j.procir.2023.06.021
https://doi.org/10.1016/j.ress.2022.108908
https://doi.org/10.1016/j.ress.2021.107761
https://doi.org/10.1016/j.neucom.2017.02.045
https://doi.org/10.1016/j.neucom.2022.04.055
https://doi.org/10.1007/s00170-015-7317-6
https://doi.org/10.3390/s16060795
https://www.ncbi.nlm.nih.gov/pubmed/27258277

Sensors 2024, 24, 3215 23 of 25

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

Aivaliotis, P.; Georgoulias, K.; Chryssolouris, G. The use of Digital Twin for predictive maintenance in manufacturing. Int. J.
Comput. Integr. Manuf. 2019, 32, 1067-1080. [CrossRef]

Dhiman, H.S.; Deb, D.; Muyeen, S.M.; Kamwa, I. Wind turbine gearbox anomaly detection based on adaptive threshold and twin
support vector machines. IEEE Trans. Energy Convers. 2021, 36, 3462-3469. [CrossRef]

Dhiman, H.S.; Bhanushali, D.; Su, C.-L.; Berghout, T.; Amirat, Y.; Benbouzid, M. Enhancing Wind Turbine Reliability through
Proactive High Speed Bearing Prognosis Based on Adaptive Threshold and Gated Recurrent Unit Networks. In Proceedings
of the IECON 2023-49th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 16-19 October 2023; IEEE:
New York, NY, USA, 2023; pp. 1-6.

Gao, R;; Wang, L.; Teti, R.; Dornfeld, D.; Kumara, S.; Mori, M.; Helu, M. Cloud-enabled prognosis for manufacturing. CIRP Ann.
2015, 64, 749-772. [CrossRef]

Oo, M.C.M,; Thein, T. An efficient predictive analytics system for high dimensional big data. J. King Saud Univ.-Comput. Inf. Sci.
2022, 34, 1521-1532. [CrossRef]

Suh, J.H.; Kumara, S.R.; Mysore, S.P. Machinery fault diagnosis and prognosis: Application of advanced signal processing
techniques. CIRP Ann. 1999, 48, 317-320. [CrossRef]

Cerquitelli, T.; Nikolakis, N.; O'Mahony, N.; Macii, E.; Ippolito, M.; Makris, S. Predictive Maintenance in Smart Factories; Springer:
Singapore, 2021.

Huang, C.G.; Huang, H.Z.; Li, Y.FE. A bidirectional LSTM prognostics method under multiple operational conditions. IEEE Trans.
Ind. Electron. 2019, 66, 8792-8802. [CrossRef]

Liu, C; Yao, R.; Zhang, L.; Liao, Y. Attention based Echo state Network: A novel approach for fault prognosis. In Proceedings of
the 2019 11th International Conference on Machine Learning and Computing, Zhuhai, China, 22-24 February 2019; pp. 489-493.
Jaenal, A ; Ruiz-Sarmiento, J.-R.; Gonzalez-Jimenez,]. MachNet, a general Deep Learning architecture for Predictive Maintenance
within the industry 4.0 paradigm. Eng. Appl. Artif. Intell. 2024, 127, 107365. [CrossRef]

Alabadi, M.; Habbal, A.; Guizani, M. An Innovative Decentralized and Distributed Deep Learning Framework for Predictive
Maintenance in the Industrial Internet of Things. IEEE Internet Things J. 2024. [CrossRef]

Farahani, S.; Khade, V,; Basu, S.; Pilla, S. A data-driven predictive maintenance framework for injection molding process. . Manuf.
Process. 2022, 80, 887-897. [CrossRef]

Yousuf, M.; Alsuwian, T.; Amin, A.A.; Fareed, S.; Hamza, M. IoT-based health monitoring and fault detection of industrial AC
induction motor for efficient predictive maintenance. Meas. Control 2024. [CrossRef]

D’Urso, D.; Chiacchio, F.; Cavalieri, S.; Gambadoro, S.; Khodayee, S.M. Predictive maintenance of standalone steel industrial
components powered by a dynamic reliability digital twin model with artificial intelligence. Reliab. Eng. Syst. Saf. 2024, 243,
109859. [CrossRef]

Sawant, V.; Deshmukh, R.; Awati, C. Machine learning techniques for prediction of capacitance and remaining useful life of
supercapacitors: A comprehensive review. J. Energy Chem. 2022, 77, 438-451. [CrossRef]

Zhang, H.; Luo, Y.; Zhang, L.; Wu, Y.; Wang, M.; Shen, Z. Considering three elements of aesthetics: Multi-task self-supervised
feature learning for image style classification. Neurocomputing 2023, 520, 262-273. [CrossRef]

Kwak, D.; Choi, S.; Chang, W. Self-attention based deep direct recurrent reinforcement learning with hybrid loss for trading
signal generation. Inf. Sci. 2023, 623, 592-606. [CrossRef]

de Carvalho Bertoli, G.; Junior, L.A.P; Saotome, O.; dos Santos, A.L. Generalizing intrusion detection for heterogeneous networks:
A stacked-unsupervised federated learning approach. Comput. Secur. 2023, 127, 103106. [CrossRef]

Mohammed, A.; Kora, R. A comprehensive review on ensemble deep learning: Opportunities and challenges. |. King Saud
Univ.-Comput. Inf. Sci. 2023, 35, 757-774. [CrossRef]

Pang, Y.; Zhou, X.; Zhang, J.; Sun, Q.; Zheng,]J. Hierarchical electricity time series prediction with cluster analysis and sparse
penalty. Pattern Recognit. 2022, 126, 108555. [CrossRef]

Zonta, T.; Da Costa, C.A.; da Rosa Righi, R.; de Lima, M.].; da Trindade, E.S.; Li, G.P. Predictive maintenance in the Industry 4.0:
A systematic literature review. Comput. Ind. Eng. 2020, 150, 106889. [CrossRef]

Huang, S.-Y,; An, W.-J.; Zhang, D.-S.; Zhou, N.-R. Image classification and adversarial robustness analysis based on hybrid
quantum-—classical convolutional neural network. Opt. Commun. 2023, 533, 129287. [CrossRef]

Li, Y,; Hao, Z.; Lei, H. Survey of convolutional neural network. J. Comput. Appl. 2016, 36, 2508.

Li, Z,; Liu, E; Yang, W.; Peng, S.; Zhou,]. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE
Trans. Neural Netw. Learn. Syst. 2021, 33, 6999-7019. [CrossRef] [PubMed]

Bueno-Barrachina,].-M.; Ye-Lin, Y.; Nieto-Del-Amor, F,; Fuster-Roig, V. Inception 1D-convolutional neural network for accurate
prediction of electrical insulator leakage current from environmental data during its normal operation using long-term recording.
Eng. Appl. Artif. Intell. 2023, 119, 105799. [CrossRef]

Guo, Y.; Zhou, Y.; Zhang, Z. Fault diagnosis of multi-channel data by the CNN with the multilinear principal component analysis.
Measurement 2021, 171, 108513. [CrossRef]

https://doi.org/10.1080/0951192X.2019.1686173
https://doi.org/10.1109/TEC.2021.3075897
https://doi.org/10.1016/j.cirp.2015.05.011
https://doi.org/10.1016/j.jksuci.2019.09.001
https://doi.org/10.1016/S0007-8506(07)63192-8
https://doi.org/10.1109/TIE.2019.2891463
https://doi.org/10.1016/j.engappai.2023.107365
https://doi.org/10.1109/JIOT.2024.3372375
https://doi.org/10.1016/j.jmapro.2022.06.013
https://doi.org/10.1177/00202940241231473
https://doi.org/10.1016/j.ress.2023.109859
https://doi.org/10.1016/j.jechem.2022.11.012
https://doi.org/10.1016/j.neucom.2022.10.076
https://doi.org/10.1016/j.ins.2022.12.042
https://doi.org/10.1016/j.cose.2023.103106
https://doi.org/10.1016/j.jksuci.2023.01.014
https://doi.org/10.1016/j.patcog.2022.108555
https://doi.org/10.1016/j.cie.2020.106889
https://doi.org/10.1016/j.optcom.2023.129287
https://doi.org/10.1109/TNNLS.2021.3084827
https://www.ncbi.nlm.nih.gov/pubmed/34111009
https://doi.org/10.1016/j.engappai.2022.105799
https://doi.org/10.1016/j.measurement.2020.108513

Sensors 2024, 24, 3215 24 of 25

40.

41.

42.

43.

44.

45.

46.

47.

48.
49.

50.

51.

52.

53.

54.

55.

56.

57.
58.

59.

60.

61.

62.

63.

64.

65.

66.

67.
68.

Fernandes, M.; Corchado, J.M.; Marreiros, G. Machine learning techniques applied to mechanical fault diagnosis and fault
prognosis in the context of real industrial manufacturing use-cases: A systematic literature review. Appl. Intell. 2022, 52,
14246-14280. [CrossRef] [PubMed]

Rout, A K.; Dash, P; Dash, R.; Bisoi, R. Forecasting financial time series using a low complexity recurrent neural network and
evolutionary learning approach. J. King Saud Univ.-Comput. Inf. Sci. 2017, 29, 536-552. [CrossRef]

Zhang,].; Wang, P; Yan, R.; Gao, R.X. Deep learning for improved system remaining life prediction. Procedia CIRP 2018, 72,
1033-1038. [CrossRef]

Malhi, A.; Yan, R.; Gao, R.X. Prognosis of defect propagation based on recurrent neural networks. IEEE Trans. Instrum. Meas.
2011, 60, 703-711. [CrossRef]

Wang, Y.; Zhao, Y.; Addepalli, S. Remaining useful life prediction using deep learning approaches: A review. Procedia Manuf.
2020, 49, 81-88. [CrossRef]

Gao, S.;; Huang, Y,; Zhang, S.; Han, J.; Wang, G.; Zhang, M.; Lin, Q. Short-term runoff prediction with GRU and LSTM networks
without requiring time step optimization during sample generation. J. Hydrol. 2020, 589, 125188. [CrossRef]

Yan, H.; Qin, Y.; Xiang, S.; Wang, Y.; Chen, H. Long-term gear life prediction based on ordered neurons LSTM neural networks.
Measurement 2020, 165, 108205. [CrossRef]

Gers, FA.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000, 12, 2451-2471.
[CrossRef] [PubMed]

Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735-1780. [CrossRef] [PubMed]

Abhaya, A.; Patra, B.K. An efficient method for autoencoder based outlier detection. Expert Syst. Appl. 2023, 213, 118904.
[CrossRef]

Zhou, C.; Paffenroth, R.C. Paffenroth. Anomaly detection with robust deep autoencoders. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13-17 August 2017;
pp- 665-674.

Liao, W.; Guo, Y.; Chen, X,; Li, P. A unified unsupervised gaussian mixture variational autoencoder for high dimensional outlier
detection. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10-13 December
2018; IEEE: New York, NY, USA, 2018; pp. 1208-1217.

Jeon, S.; Kang, J.; Kim, J.; Cha, H. Detecting structural anomalies of quadcopter UAVs based on LSTM autoencoder. Pervasive Mob.
Comput. 2022, 88, 101736. [CrossRef]

Dou, T.; Clasie, B.; Depauw, N.; Shen, T.; Brett, R.; Lu, H.-M.; Flanz,].B.; Jee, K.-W. A deep LSTM autoencoder-based framework
for predictive maintenance of a proton radiotherapy delivery system. Artif. Intell. Med. 2022, 132, 102387. [CrossRef] [PubMed]
Bampoula, X.; Siaterlis, G.; Nikolakis, N.; Alexopoulos, K. A deep learning model for predictive maintenance in cyber-physical
production systems using Istm autoencoders. Sensors 2021, 21, 972. [CrossRef] [PubMed]

Sagheer, A.; Kotb, M. Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series
forecasting problems. Sci. Rep. 2019, 9, 19038. [CrossRef]

Mo, Y.; Wu, Q.; Li, X.; Huang, B. Remaining useful life estimation via transformer encoder enhanced by a gated convolutional
unit. J. Intell. Manuf. 2021, 32, 1997-2006. [CrossRef]

Hao, J.; Wang, X.; Yang, B.; Wang, L.; Zhang, J.; Tu, Z. Modeling recurrence for transformer. arXiv 2019, arXiv:1904.03092.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Lukasz, K ; Illia, P. Attention is all you need. arXiv
2017, arXiv:1706.03762.

Ntakouris, T. Timeseries Classification with a Transformer Model. Keras, 2021. Available online: https:/ /keras.io/examples/
timeseries/timeseries_classification_transformer/ (accessed on 10 January 2024).

Bergen, L.; O’Donnell, T.; Bahdanau, D. Systematic generalization with edge transformers. Adv. Neural Inf. Process. Syst. 2021, 34,
1390-1402.

Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Yangqi, Z.; Wei, L.; Liu, PJ. Exploring the limits of transfer
learning with a unified text-to-text transformer. J. Mach. Learn. Res. 2020, 21, 5485-5551.

Chen, D.; Hong, W.; Zhou, X. Transformer network for remaining useful life prediction of lithium-ion batteries. IEEE Access 2022,
10, 19621-19628. [CrossRef]

Huertas-Garcia, A.; Martin, A.; Huertas-Tato, J.; Camacho, D. Exploring Dimensionality Reduction Techniques in Multilingual
Transformers. Cogn. Comput. 2023, 15, 590-612. [CrossRef] [PubMed]

Hu, W.; Zhao, S. Remaining useful life prediction of lithium-ion batteries based on wavelet denoising and transformer neural
network. Front. Energy Res. 2022, 10, 1134. [CrossRef]

Joseph, V.R. Optimal ratio for data splitting. Stat. Anal. Data Min. ASA Data Sci. |. 2022, 15, 531-538. [CrossRef]

Python Language Reference, Version 3.7. Available online: https://docs.python.org /3.7 /reference/ (accessed on 29 January 2021).
Al-Taie, M.Z.; Kadry, S.; Lucas, J.P. Online data preprocessing: A case study approach. Int. J. Electr. Comput. Eng. 2019, 9, 2620.
[CrossRef]

https://doi.org/10.1007/s10489-022-03344-3
https://www.ncbi.nlm.nih.gov/pubmed/35261480
https://doi.org/10.1016/j.jksuci.2015.06.002
https://doi.org/10.1016/j.procir.2018.03.262
https://doi.org/10.1109/TIM.2010.2078296
https://doi.org/10.1016/j.promfg.2020.06.015
https://doi.org/10.1016/j.jhydrol.2020.125188
https://doi.org/10.1016/j.measurement.2020.108205
https://doi.org/10.1162/089976600300015015
https://www.ncbi.nlm.nih.gov/pubmed/11032042
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.1016/j.eswa.2022.118904
https://doi.org/10.1016/j.pmcj.2022.101736
https://doi.org/10.1016/j.artmed.2022.102387
https://www.ncbi.nlm.nih.gov/pubmed/36207077
https://doi.org/10.3390/s21030972
https://www.ncbi.nlm.nih.gov/pubmed/33535642
https://doi.org/10.1038/s41598-019-55320-6
https://doi.org/10.1007/s10845-021-01750-x
https://keras.io/examples/timeseries/timeseries_classification_transformer/
https://keras.io/examples/timeseries/timeseries_classification_transformer/
https://doi.org/10.1109/ACCESS.2022.3151975
https://doi.org/10.1007/s12559-022-10066-8
https://www.ncbi.nlm.nih.gov/pubmed/36341132
https://doi.org/10.3389/fenrg.2022.969168
https://doi.org/10.1002/sam.11583
https://docs.python.org/3.7/reference/
https://doi.org/10.11591/ijece.v9i4.pp2620-2626

Sensors 2024, 24, 3215 25 of 25

69. Spuzic, S.; Strafford, K.N.; Subramanian, C.; Savage, G. Wear of hot rolling mill rolls: An overview. Wear 1994, 176, 261-271.
[CrossRef]

70. Spuzic, S.; Strafford, K.; Subramanian, C.; Savage, G. Low complexity autoencoder based end-to-end learning of coded communi-
cations systems. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium,
25-28 May 2020; IEEE: New York, NY, USA, 2020; pp. 1-7.

71. Simoulin, A.; Crabbé, B. How many layers and why? An analysis of the model depth in transformers. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing: Student Research Workshop, Bangkok, Thailand, 1-6 August 2021; pp. 221-228.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/0043-1648(94)90155-4

	Introduction
	Literature Review
	Method
	LSTM-Autoencoders
	Transformer Encoder

	Implementation
	Case Study
	Hot Rolling Mill
	Data Preprocessing
	Feature Selection
	LSTM-Autoencoder Architecture
	LSTM-Autoencoder Training and Testing
	Transformer Encoder Architecture
	Transformer Encoder Training and Testing
	Discussion

	Conclusions
	References

