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Abstract: This paper presents a method based on particle swarm optimization (PSO) for optimizing
the power settings of unmanned aerial vehicle (UAVs) along a given trajectory in order to minimize
fuel consumption and maximize autonomy during surveillance missions. UAVs are widely used
in surveillance missions and their autonomy is a key characteristic that contributes to their success.
Providing a way to reduce fuel consumption and increase autonomy provides a significant advantage
during the mission. The method proposed in this paper included path smoothing techniques in
3D for fixed-wing UAVs based on circular arcs that overfly the waypoints, an essential feature in a
surveillance mission. It used the equations of motions and the decomposition of Newton’s equation
to compute the fuel consumption based on a given power setting. The proposed method used PSO to
compute optimized power settings while respecting the absolute physical constraints, such as the
load factor, the lift coefficient, the maximum speed and the maximum amount of fuel onboard. Finally,
the method was parallelized on a multicore processor to accelerate the computation and provide
fast optimization of the power settings in case the trajectory was changed in flight by the operator.
Our results showed that the proposed PSO was able to reduce fuel consumption by up to 25% in
the trajectories tested and the parallel implementation provided a speedup of 21.67× compared to a
sequential implementation on the CPU.

Keywords: unmanned aerial vehicle; surveillance; particle swarm optimization; fuel consumption;
equation of motion; optimization

1. Introduction

This paper deals with the problem of minimizing fuel consumption for fixed-wing
propeller UAVs. This is important in a surveillance mission as reducing the fuel consump-
tion of the UAV increases its autonomy and its range, allowing for longer distances to be
patrolled and longer times to be spent on targets. However, minimizing fuel consumption
for aircraft is difficult due to the complexity of estimating the fuel consumption. In fact,
most of the methods previously used to estimate the fuel consumption of aircraft have
relied on precomputed or experimentally recorded tables [1]. This may be sufficient for
commercial aircraft, which typically fly predetermined trajectories, but cannot be used
efficiently for UAVs, which fly ever-changing paths based on the progressing circumstances
of the mission. For the case of UAVs, it would be advantageous to have an accurate math-
ematical model to compute the fuel burn. Having such a model could also mean that it
would be possible to develop optimization algorithms for minimizing fuel consumption
along the trajectory.

Previous works that have focused on the estimation of fuel consumption for aircraft
include [1], which used a machine learning method, namely the support vector method, to
train a model from fuel consumption tables in order to estimate the consumption for an
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unseen trajectory. In [2], Xi and Jingjie used a similar support vector-based approach but
improved it with concepts from the just-in-time learning algorithm to focus the selection
of the relevant sampling set and concepts from the differential evolution and tune the
parameters of the support vector machine algorithm. Using their enhanced approach, they
achieved superior estimation results. Another example based on pre-calculated tables was
proposed in [3] where Zhang et al. used linear regression to estimate the fuel consumption
of a flight path. One other example using pre-calculated or experimental data was from [4],
where the fuel consumption was estimated using the RELAX algorithm. This algorithm
relies on a dataset and uses a very large number of repetitive iterations of signal components
to approximate signal parameters for the estimation of fuel consumption.

Other methods have relied on developing analytical models to directly calculate the
fuel consumption instead of relying on experimental datasets. This is the case of [5], in
which L’Afflitto and Sultan modeled the aircraft as a six degrees-of-freedom rigid body.
However, their method made several assumptions and did not consider the altitude of
the aircraft or the propeller efficiency. Another work relying on an analytical model was
proposed by Wang et al. in [6] for propulsion aircraft and can, therefore, not be used
for propeller aircraft, which is often the case for UAVs. One of the most complete works
using an analytical model to compute the fuel consumption of propeller aircraft was
published by us in 2012 [7]. The approach used Newton’s second law of motion to derive
the equations involved. These were Riccati equations or were reduced to such equations
after neglecting a small term. The equations were then transformed into second order linear
differential equations that were solved exactly. Despite the rigor of this work, there were
still approximations and the equations were valid for flight at constant speeds only. To
minimize fuel consumption along a trajectory by varying the power setting and velocity of
the UAV, it would be important to have equations for fuel consumption that are based on
the power settings of the UAV and not its speed.

Due to the lack of accurate methods for computing fuel consumption, very few meth-
ods exist to minimize fuel consumption along a trajectory. In [8], Frazzoli et al. used a
simulated annealing metaheuristic algorithm supplemented with a Monte Carlo simulation
to minimize the aircraft fuel consumption. Their model for the fuel burn was not based on
analytical formulas, but on a point mass model with the aircraft performance parameters
derived from an online database. One last example of fuel minimization was provided
in [9], where Brown and Anderson used PSO to compute a trajectory for a maritime radar
surveillance UAV that minimized fuel consumption. The fitness function relies on a simpli-
fied analytical model to compute the fuel consumption associated with a trajectory. In most
cases, these simplified models compute the fuel consumption based on a given aircraft
velocity. In fact, we show in this work that this cannot be done accurately, and that one can
only compute the velocity and fuel consumption of a UAV based on a given power setting.

This paper presents a method based on PSO for optimizing the power settings of
a UAV along a given trajectory in order to minimize fuel consumption and maximize
autonomy. Given a trajectory represented by a series of waypoints, such as the one shown
in Figure 1, our proposed approach first used a method inspired from [10] to smooth the
trajectory using circular arcs. However, what is unique to our work is that the geometrical
constructions were arranged so that the smoothed trajectory overflew the waypoint, which
is desired in a surveillance mission or for UAVs tasked with collecting data from distributed
wireless sensors, such those as described in [11]. Secondly, our method segmented the
trajectory into a large number of small segments and computed the power settings for each
segment using PSO.

One downside of using PSO or most metaheuristics in general is that their compu-
tation time can be long as they work by iteratively improving candidate solutions over
several iterations. To address this drawback, we resorted to parallel programming and im-
plemented PSO in parallel on a multicore CPU. This solution has been used in the literature
and three main approaches exist for this. The first one is to parallelize the evaluation of the
fitness function [12]. This approach is known as the primary–secondary architecture, where
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the primary thread delegates the heavy computation to the secondary threads. Another
approach is the island model, where each thread runs an independent instance of PSO and
they exchange their solutions based on a given policy. This approach is more complicated
to implement but has the advantage of limiting communication between the threads and
maximizing the fraction of the code that is parallelized. This approach is discussed in
detailed in [13]. The last approach is data-level parallelization [12], where low-level com-
putations are parallelized based on partitioning the data on multiple cores. This method is
mostly used in graphics processing units (GPUs) [14], but can also be used in CPUs. In this
work, we used a mix of the primary–secondary method and data-level parallelization in
that the fitness function of PSO was parallelized using multiple threads and the loops of
PSO were parallelized using a data-level approach. This provided the greatest acceleration.
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The contribution of this paper is fourfold. First, it provides a geometrical model
for smoothing a trajectory in 3D while overflying the waypoints, which is essential in
surveillance missions. Second, it provides an analytical formulation of the equation of
motion for an aircraft to accurately compute the velocity and fuel consumption based on a
given power setting. Third, it presents PSO that computes the power settings along the
trajectory that minimize fuel consumption and maximize autonomy. Fourth, it parallelizes
the proposed method in a multicore CPU, achieving a 21.67× speedup compared to a
sequential execution. As demonstrated in the results section, this allowed for a 56.3 km
trajectory to be optimized in just 22.36 s.

The analytical model used was the one found in classical textbooks, such as [15] and [16].
However, we incorporated a term that corresponds to the change in mass due to fuel con-
sumption. This has been rarely done, but it is important as fuel consumption reduces with the
weight of the aircraft. We then decomposed the equations in the Frenet–Serret coordinates
and arranged them so that they could be resolved using a Runge–Kutta method for a given
power setting.

The relationships between the modules presented in this paper are illustrated in
Figure 2. Given a trajectory as a series of waypoints, the initial step was to smooth the
trajectory by connecting the line segments using circular arcs in a 3D space. Once the
trajectory was smoothed, the long segments were divided into equal parts. This ensured
that a power setting could be computed for each smaller segment. Then, PSO processed
the overall trajectory in batches of 20 segments with an overlap of 10 segments between
the sections. During the execution of PSO, each candidate solution (i.e., a sequence of
20 power settings) was tested using the Runge–Kutta method and the analytical model for
fuel consumption. Once the fuel consumption and speed of the UAV was computed along
the trajectory, the fitness function could be evaluated, which included the various physical
constraints related to the UAV. Finally, the optimized power settings were returned by
the program.
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The remainder of this paper is organized as follows. Section 2 describes the method
used to smooth the trajectory using circular arcs so that it is flyable by a fixed-wing UAV
while still overflying the waypoints. Section 3 presents the equations of motion for the UAV
with the decomposition of Newton’s equation, the absolute physical constraints related to
the UAV and the trajectories flown at a prescribed power. Section 4 introduces PSO and
explains how it was used in this research to compute the optimized power settings for the
UAV along the trajectory. Finally, Section 5 presents the results with a focus on the quality
of the solution computed and the acceleration provided by the parallel implementation in
a multicore CPU for fast computation.

2. Trajectory Smoothing Using Circular Arcs

A much-used and efficient method for generating paths for fixed-wing UAVs consists
of providing points from which a stickman path can be constructed as a continuous chain
of rectilinear segments linked one to another. This path is then smoothed out by replacing
the sharp corners where the rectilinear segments meet by continuous curves. This should
ensure the continuity of the path tangent, as this continuity corresponds to the continuity
of the velocity of the airplane. Since the dynamics of airplanes on circular arcs are relatively
easy to analyze, this is the type of connection that is preferred in path construction, and the
one that we considered here.

The points provided can play two different roles. In the first one, they end up being
outside of the path and a bypass arc of a circle is introduced inside the acute angle made
by the rectilinear segments. This arc of a circle is tangent to the two rectilinear segments.
Such points can be termed “control points” as their role consists of shaping the global path.
Alternatively, the path could go through the provided points, which then become true
“waypoints”. In this research, we examined this second approach in which the path went
through the waypoint.

We considered a passage from the incoming segment PiP to the outgoing segment PPf
that went through point P. Figure 3 shows such a connection as seen directly from above the
plane in which it lies, together with some geometrical constructions that we used to describe it.
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Let Ti and Tf denote the respective unit tangent vectors for the two rectilinear segments
PiP and PPf. The angle α between these segments is as follows.

Ti·Tf = −cos(α). (1)

Let T⊥
i denote the unit vector that is orthogonal to Ti and points toward the inside of

the angle Pi P Pf. Then, the center C of the connecting circular arc is as follows.

C = P + RT⊥
i . (2)

Let T
′
f denote the unit tangent vector for the rectilinear segment CPf and α’. Then, the

angle between Ti and −T
′
f is as follows.

Ti·T
′
f = − cos

(
α
′)

(3)

An equation describing the circular arc can be obtained by defining the two orthogonal
unit vectors p and q as follows.

p =
1

2cos(a′/2)

[
Ti − T

′
f

]
(4)

and q =
1

2sin(a′/2)

[
Ti + T

′
f

]
. (5)

so that the points x(ϕ) on the circular arc are as follows.

x(ϕ) = C + R [p cos(ϕ) + q sin(ϕ)]
with ϕ ∈

[
−
(

π − a
′
)/2,

(
π− a

′
)

/2].
(6)

where the angle ϕ is null at the midpoint between P and Q and increases in the counter-
clockwise direction around the center C of the circle, in the plane of the path, from P at
ϕ = −(π − α′ )/2 to Q at ϕ = (π – α′ )/2.

3. Equations of Motion for UAVs

The motion of airplanes is regulated by the power generated by its engines. In [15], it
was explained that, because of their internal combustion nature, engines produce power
that varies with altitude as the air density changes, according to the following equation.

P(h) = P(0)
ρ∞(h)

rs
(7)

in which ρ∞(h) is the density of the undisturbed air in front of the airplane at altitude h
and ρs and P(0) are, respectively, the values of ρ∞ and P at sea level. Most of the power
produced by the engines is transferred to the propellers that receive the power PA, as shown
in Equation (8).

PA = ηP (8)

The parameter η is the efficiency of the propeller, which varies with the speed of the
airplane. The available power PA must be at least equal to the power required PR for the
airplane motion, which is determined by the equations of motion. The rate of fuel burning
is described by the following equation.

dW
dt

= −cP (9)
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in which W is the total weight of the airplane and c is the specific fuel consumption.
Chapter 5 of [16] explains how thrust is related to power for propeller driven airplanes.
The propeller power PA moves the air with thrust TA, as shown in Equation (10).

PA = TA (V∞ + ∆Vi). (10)

where V∞ is the airplane speed and ∆Vi is the speed increase of the air across the propeller
disk. Even when the airplane is not moving, there is power required to turn the propellers.
The available thrust TA is related to the power PA through a cubic equation, the solution of
which is as follows.

TA(h, V∞, PA) = P1/2
A (r∞ A)1/3


[

P1/2
A −

√
PA +

8r∞ AV3
∞

27

]1/3

+

[
P1/2

A +

√
PA +

8r∞ AV3
∞

27

]1/3
 (11)

where A = π Rad2 is the area traced by the propeller of radius Rad when it rotates.
In [7], it was shown that if Newton’s equation of motion takes into account the change

in the mass M of the airplane as fuel is burned, it takes the form of the following equation.

M
dv
dt

− (AFR)
[

dM
dt

]
v = F. (12)

In this equation, v is the airplane velocity, (AFR) is the air to fuel ratio in the combustion
process, which is about 14.7 for gasoline or diesel [17], and F is the total force acting on
the center of mass of the airplane. F has four components: the thrust TR produced by the
engines, the lift produced by the airfoil and the airplane body, the drag due to air resistance
and the force of gravity. The unit vector T is defined as being in the direction of the motion
of the center of mass of the airplane. It is, therefore, tangent to the path and we considered
that the thrust acts along its direction, as shown in Equation (13).

TR = TR T, (13)

The lift L is shown as follows.

L = LUL with L =
1
2

ρ∞S CLV2
∞, (14)

where UL is a unit vector. Assuming that the airplane is bilaterally symmetric, we let w be
the unit vector along the straight line from its left to its right wing tips. Then, UL = w × T
so that it is always perpendicular to the direction of motion. The drag is shown as follows.

D = −DTwith D =
1
2

r∞S CDV2
∞ (15)

and the force of gravity is shown as follows.

W = −Mgk, (16)

in which g is the gravitational constant and k is the unit vector in the positive direction of
the Earth z-axis.

3.1. Decomposition of Newton’s Equation

With the values of the force F given in Equations (13) to (16), Newton’s Equation (12)
becomes the following.

M

[
dV∞

dt
T +

V2
∞

R
N

]
− (AFR)

dM
dt

V∞T = TRT + LUL − DT − Mgk (17)



Sensors 2024, 24, 408 7 of 19

where T and N are, respectively, the Frenet–Serret unit tangent and unit normal vectors.
The projection of Equation (17) along the vector T yields the following equation for the
longitudinal motion.

M
dV∞

dt
− (AFR)

dM
dt

V∞ = TR − D − Mg(k·T). (18)

There are two components of Equation (17) that are perpendicular to T: one in the
direction of the normal N and one in the direction of the binormal B. Its component along
N is shown in Equation (19).

L (U L·N) = WAc in which Ac =
κ V2

∞
g

+ (k·N) (19)

is the centripetal acceleration. Projecting Equation (17) in the direction of B results in
Equation (20).

L(U L· B) = W(k·B) . (20)

Given Equations (19) and (20) and the fact that UL only has components along N and
B, it can be written as Equation (21).

UL =
W
L
[AcN + (k·B)B] . (21)

Thus,
L = Wn, (22)

with

n =

√
A2

c + (k·B)2 (23)

3.2. The Absolute Physical Constraints

All airplanes are subject to constraints that are due to their construction and the power
of their engines. These are as follows.

• The load factor n is bounded below by nmin and above by nmax, with nmax > 1 and
nmin ≤ −1.

• The lift coefficient is bounded below by CLmin and above by CLmax.
• The speed V∞ is bounded below by the stall speed Vstall at which the lift is not sufficient

to sustain the airplane motion. It is bounded above by the value VNE (the suffix NE
stands for “never exceed”), which is determined by the airplane construction. The
power available to move the airplane is bounded above according to the capacity of
its engines.

• There is also obviously a constraint on the fuel that is available.

For curved paths, the constraint on the load factor and on the lift coefficient impose a
lower limit on the turning radius of the path.

3.3. Trajectories with Prescribed Power

We considered the situation in which the power provided by the engine is specified
along the path as a continuous function of the distance s travelled along the path, as P(s)
for s = 0 to sf = the length of the path.

There were three differential equations to solve. The first one was Equation (2), in
which P = P(s). The second one was Equation (18), which described the longitudinal
component of Newton’s equation of motion. Replacing L by its value given in Equation
(22) resulted the following expression for CL.

CL =
2 Wn

ρ∞SV2
∞

, (24)
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Correspondingly, the drag D can be written as the following.

D = D(h, V∞, W) =
1
2

ρ∞SCD0V2
∞ +

2W2n2

πeARρ∞SV2
∞

(25)

Thus, Equation (18) becomes the following differential equation for V∞.

dV∞

dt
=

1
M

{
TR − (AFR)c

g
V∞P − D(h, V∞, W, n)

}
− g(k·T). (26)

The value of s is then obtained by solving the following equation.

ds
dt

= V∞ (27)

4. Power Setting Optimization Using PSO

PSO is a metaheuristic that was proposed by Kennedy and Eberhart in 1995 [18]
and has since been used for finding optimized solutions for a wide range of engineering
problems. The algorithm simulates the movements of a swarm of particles in a multidimen-
sional space similar to the movement of a flock of birds or a school of fish. The particles
represent the candidate solutions, and their positions evolve throughout the optimization
process based on personal and social influences. The flowchart of PSO is illustrated in
Figure 4.
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In step 1, the particles (i.e., the candidate solutions) and their velocity are randomly
initiated over the search space. In step 2, the fitness of each particle is then evaluated

using the fitness or evaluation function. For each particle, the best position
⇀
b t previously

occupied by the particle is updated in step 3. This represents the personal influence. Then,
in step 4, the best position

⇀
g t ever occupied by any particle of the swarm is updated. This is

the social influence. Based on its personal and the social influence, the velocity and position
of each particle are updated in steps 5 and 6 using the equations below.

⇀
v t+1 = ω

⇀
v t + c1

⇀
r 1. ×

(
⇀
b t −

⇀
x t

)
+ c2

⇀
r 2. ×

(
⇀
g t −

⇀
x t

)
(28)

⇀
x t+1 =

⇀
x t +

⇀
v t+1 (29)

where
⇀
r 1 and

⇀
r 2 are the vectors of random values between 0 and 1, ω is the inertia

weight, c1 is the personal influence weight and c2 is the social influence weight. The
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termination criterion is checked in step 7. In our case, PSO ran for a predetermined number
of iterations before terminating. Finally, the results (i.e., the best global solution

⇀
g t) is

returned to the caller.
In our proposed PSO-based algorithm, the candidate solutions represented the power

settings along the UAV trajectory. The trajectory was composed of linear segments and
circular arcs. However, the output of the smoothing function discussed in Section 2
represented the circular arcs as a sequence of short linear segments. This translated into a
trajectory composed only of linear segments in which some were long (segments between
the original waypoints) and some were short (segments forming the circular arcs). As a
pre-processing step, any segment longer than 500 m was divided into shorter segments.
This ensured that the power settings calculated by the proposed algorithm were at a fine
resolution. Once the trajectory was divided into a large number of small segments, the
segments were processed by PSO in batches of 20. This ensured that the dimension of the
problem was not too big and that optimized solutions were found in an acceptable time.

To evaluate the fitness of the candidate solutions, the Runge–Kutta method was used
to solve the differential equations presented at the end of Section 3 and compute the speed
and weight (i.e., fuel consumption) at the end of each segment starting from the first to the
20th segment of a batch. The constraints on the load factor, the lift coefficient, the maximum
speed and the maximum amount of fuel onboard were checked during the calculation. This
ensured that the UAV respected its physical constraints.

Since PSO works by improving a population of candidate solutions over a large
number of iterations, it can be time consuming to execute. For this reason, we developed a
parallel implementation of the algorithm for a multicore CPU. For this implementation, we
used OpenMP and multiple threads that evaluated the fitness of the candidate solutions
concurrently. This was possible because there were no dependencies between each of the
candidate solutions. When running on a multicore CPU, the threads were executed in
parallel, accelerating the computation.

5. Results
5.1. Computing Fuel Consumption at a Constant Power vs. a Constant Speed

In the first test, we used the analytical model presented in Section 3 to compute
the fuel consumption for the Silver Fox UAV, a small 30-pound surveillance UAV whose
specifications are given in [19]. This test allowed us to visually confirm the good working
of the proposed analytical model and to compare it to the previous works, specifically
the one published in [7]. The trajectory used was a linear ascending trajectory starting at
P0(0, 0, 0) and ending at P1(10,000, 0, 1000). The initial altitude was 0 m above mean sea
level (AMSL) and the final altitude was 1000 m AMSL. This represented a 10% climb over
10 km. The power setting of the UAV was set to 1196 W so that the average speed of the
UAV was 30 m/s along the trajectory. The speed and weight of the UAV are plotted in
Figures 5 and 6, respectively. The weight included the fuel and, therefore, its reduction
showed the fuel consumption along the trajectory. The total duration of the flight was 334 s.
The speed was initially 30 m/s. It increased to 30.78 m/s and reduced to 29.06 m/s at the
end of the trajectory. This was because the efficiency of the propeller was higher at a lower
altitude and lower at a higher altitude. The initial weight was 132 N and the final weight
was 131.716 N, which represented a fuel consumption of 0.284 N. One could intuitively see
the non-linearity of the fuel consumption equation; as fuel burned, the UAV got lighter and
its fuel consumption got lower.
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Figure 6. Weight of the UAV along the trajectory P0(0, 0, 0) to P1(10,000, 0, 1000) when flying at a
constant power of 1196 W.

To compare our study to the previous works, we implemented the method published
in [7] and used it to compute the fuel consumption along the same trajectory using a
constant speed of 30 m/s. This meant that the power setting of the UAV changed through-
out the flight, but this value was not easily observable from the method presented in [7].
The initial weight was 132 N and the final weight was 131.753 N, which represented a
fuel consumption of 0.247 N. This represented a difference of 14.9% compared to the fuel
consumption calculated by the model presented in this paper. However, although both
methods were used for the same trajectory with an average speed of 30 m/s, the method
here was used with a constant power settings while the method from [7] was used with a
constant speed, which explains the difference in the results.

5.2. Experimental Setup

To test the proposed PSO-based algorithm, a graphical user interface (GUI) application,
which is shown in Figure 7, was developed. This GUI application was programmed in
MATLAB®. It allowed for the selection of an area by specifying the coordinates of the
top-left and bottom-right corners of the map. Once specified, the application loaded the
digital elevation map (DEM) from previously downloaded Shuttle Radar Topography
Mission (SRTM) maps. The application then allowed the user to select the initial position of
the UAV and to append the waypoints. The elevation of the waypoints could be adjusted
using the scroll wheel on the mouse. The red lines represent the segments connecting the
waypoints using straight lines. These segments could not be flown as-is by a fixed-wing
UAV as they contained discontinuities at the waypoints. The smoothed trajectory, which
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passes over the waypoints before turning using a circular arc, is shown in yellow. The
red polygons represent no-fly zones, which helped the operator plan their mission. On
the bottom right of the GUI, one can see the altitude profile of the UAV. This was used to
confirm that the trajectory did not collide with the ground.
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Once a trajectory was planned in the GUI, the operator clicked on the export button
to export the waypoints forming the smoothed trajectory into a text file. This text file was
then processed by our proposed PSO-based algorithm to compute the power settings along
the trajectory. The PSO-based algorithm was programmed in C++.

5.3. Computing the Power Settings to Minimize Fuel Consumption

In this test, we used the proposed PSO-based algorithm to compute the power settings
of the UAV in order to minimize fuel consumption on the overall trajectory. The UAV used
in this numerical simulation was still the Silver Fox UAV [19]. The trajectory used was the
one shown in Figure 7. It had a length of 56.323 km and was divided into equal segments
whose lengths did not exceed 500 m. This ensured a fine granularity when computing the
power settings along the trajectory as each small segment received its own power value.
This distance could be increased or reduced to accelerate the computation or obtain a higher
accuracy as decided by the user. Including the short segments used to form the circular arcs
at the waypoints, the segmenting of the trajectory resulted in 125 segments. PSO computed
the power settings for the UAV on each segment in order to minimize the fuel consumption
while respecting the physical constraints outlined earlier. To reduce the complexity of the
problem, the PSO processed the overall trajectory in batches of 20 segments with an overlap
of 10 segments between the sections. These dimensions were selected experimentally to
ensure a good and fast convergence of PSO. This also meant that PSO required 13 passes to
compute the power settings for the 125-segment trajectory used here. PSO was configured
with 200 candidate solutions, 1000 iterations, an inertia weight of 0.7298 and a personal
and social influence of 1.4960. The power settings, the speed, the altitude of the UAV,
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the distance travelled by the UAV and the weight of the UAV are shown in Figures 8–12,
respectively. The decreasing weight of the UAV represented the fuel being consumed by
the UAV along the trajectory. In these figures, the red dots represent the waypoints shown
in Figure 7. Based on the power settings found by PSO, the UAV could fly the trajectory
in 1921.3 s. Its speed varied between 16.49 m/s and 43.33 m/s. Its initial weight was
132.0 N and final weight was 131.192 N, representing a fuel consumption of 0.808 N for a
travelled distance of 56.323 km. One can also note that increased power was required when
ascending and decreased power was required when descending. In this particular scenario,
because the descents were so abrupt, the power settings were set to zero by PSO during the
descents, which reduced fuel consumption, but still allowed the UAV to maintain lift.
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5.4. Computing the Power Settings to Fly at a Constant Speed

In this test, we modified the objective function of PSO to maintain a constant speed
instead of minimizing the fuel consumption. This mimicked the behavior of most UAV
autopilots where the operator sets the cruising speed of the UAV at the beginning of the
mission and the autopilot maintains that speed throughout the flight. A flight at a constant
speed was used here as the baseline to compare our proposed approach, which varied the
power settings of the UAV to minimize fuel consumption. In this test, the cruising speed
of the UAV was set to 40 m/s. The power settings calculated by PSO and the resulting
speed and fuel consumption are shown in Figures 13–15. As shown in Figure 14, we can
see that the power settings quickly adjusted the initial speed to 40 m/s and ensured a
constant speed throughout the trajectory except when the UAV performed a too-rapid
descent. When flying at a constant speed, the UAV traveled the trajectory in 1393.8 s. Its
initial weight was 132.0 N and its final weight was 130.989 N, which represented a fuel
consumption of 1.011 N.
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In the previous test, when fuel consumption was minimized, the flying time was
longer, but the fuel consumption was 25.51% lower which significantly increased the range
of the UAV, confirming the advantage of the proposed PSO-based approach.

5.5. Other Scenarios

To demonstrate the efficiency of the proposed method on a wider range of trajectories,
we performed additional tests using two other trajectories, one from the mountainous re-
gions in Northeast Afghanistan and one in the French Alps, France. The two trajectories are
shown in Figures 16 and 18, respectively. The first trajectory could represent a surveillance
mission in the context of a military operation, while the second trajectory could be in the
context of a search and rescue mission. The altitude profiles of the two trajectories are
plotted in Figures 17 and 19. The Afghanistan trajectory had a length of 66.282 km and
its altitude varied between 1030 and 2249 m above mean sea level (AMSL). The France
trajectory had a length of 133.310 km and its altitude varied between 497 and 3490 m
AMSL. The proposed software was used to compute the power settings that minimize fuel
consumption for both trajectories. It was also used to compute the power settings to fly
at a constant speed. The results for both tests are listed in Table 1. For the Afghanistan
trajectory, the fuel consumption was reduced by 23.2% compared to flying at a constant
speed. In the case of the France trajectory, the reduction was 20.1%, which was slightly
lower, but still an impressive fuel reduction. This showed the efficiency of the proposed
algorithm for reducing fuel consumption on various trajectories.

Table 1. Results of the proposed method for computing the power settings of the UAV along the
trajectory to minimize fuel consumption vs. flying at a constant speed.

Scenario Characteristics Flying at a Constant Speed Minimizing Fuel
Required

Fuel Required
Improvement

Scenario Location Length
(m)

Flight
Duration

(s)

Fuel
Required
(Newton)

Flight
Duration

(s)

Fuel
Required
(Newton)

1 Iraq 56,323 1393.8 1.011 1921.3 0.808 25.1%
2 Afghanistan 66,282 1651.2 1.130 2234.7 0.917 23.2%
3 France 133,310 3228.2 2.402 4413.9 2000 20.1%
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white, the trajectory in red, the smoothed trajectory that flies over the waypoints in yellow and no-fly
zones as red polygons.
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5.6. Speedup of the Parallel Implementation

Finally, in the last test, we measured the acceleration brought by the parallelization
in the multicore CPU. This test was run on a Dell 7920 workstation equipped with dual
Intel Xeon Gold 5218R CPU each with 20 cores for a total of 40 cores running at a base
frequency of 2.10 GHz. For this test, we used PSO to optimize the power settings on a
20-segment trajectory and repeated the test multiple times, varying the number of threads
used each time. Maximum speedup was expected when the number of threads equalled the
number of cores on the computer. The runtime and speedup measurements are illustrated
in Figure 20. Using one thread, PSO took 37.27 s to execute and only 1.72 s using 40 threads,
which represented a speedup of 21.67×. Based on this runtime, it took 22.36 s for PSO to
compute the power settings for the trajectory shown in Figure 7 using 13 passes.
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6. Discussion

Unlike the previous studies which relied on experimental tables to estimate the fuel
consumption of aircraft, this paper presented an accurate mathematical model that computed
the fuel burn and velocity of UAVs based on their power settings. This has a great advantage
in allowing for the development of optimization algorithms to minimize the fuel consumption
and maximize autonomy. In this paper, we used PSO for this purpose and demonstrated
using three scenarios that it is possible to minimize fuel consumption by optimizing the power
settings of the surveillance UAV while respecting the physical constraints of the UAV, such
as the load factor, the lift coefficient, the maximum speed and the maximum amount of fuel
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onboard. This is one of the first works in the field of fuel consumption minimization for UAVs.
Since the method splits the trajectory into shorter fixed-length section and processes them
sequentially, it is scalable to longer trajectories, as shown in the results. This is because PSO
only needs to deal with the dimension of the short section and not the length of the overall
trajectory. Moreover, because the algorithm uses a metaheuristic as its optimization engine,
it is possible to extend the fitness function and modify or add additional constraints. The
proposed approach also includes path smoothing methods based on circular arcs that overfly
the points of interest, which is essential for a surveillance UAV. Finally, the experimental results
showed that the proposed method can be efficiently parallelized on multicore processors to
accelerate the computation and ensure fast power settings optimization.

7. Conclusions

This paper proposed a PSO-based optimization algorithm to compute the power settings
along a flight trajectory in order to minimize UAV fuel consumption. Inputted as a series of
waypoints, the trajectory was first smoothed using circular arcs which overflew the waypoints,
a desired feature in a surveillance mission. PSO was then used iteratively to try a large
number of candidate power settings along the trajectory until it converged to an optimized
solution. In the fitness function, an accurate analytical model using the equation of motion of
the UAV was used to compute the fuel consumption associated to a given power setting. The
absolute physical constraints, such as the load factor, the lift coefficient, the maximum speed
and the maximum amount of fuel onboard, were considered in the optimization process. The
proposed algorithm was able to reduce the fuel consumption of the UAV by up to 25% in
the trajectories used during testing. The algorithm was parallelized in a multicore CPU and
achieved a 21.67× speedup compared to a sequential execution in a CPU.
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