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Abstract: The Timed-Up and Go (TUG) test is widely utilized by healthcare professionals for assessing
fall risk and mobility due to its practicality. Currently, test results are based solely on execution time,
but integrating technological devices into the test can provide additional information to enhance result
accuracy. This study aimed to assess the reliability of smartphone-based instrumented TUG (iTUG)
parameters. We conducted evaluations of intra- and inter-device reliabilities, hypothesizing that
iTUG parameters would be replicable across all experiments. A total of 30 individuals participated
in Experiment A to assess intra-device reliability, while Experiment B involved 15 individuals to
evaluate inter-device reliability. The smartphone was securely attached to participants’ bodies at the
lumbar spine level between the L3 and L5 vertebrae. In Experiment A, subjects performed the TUG
test three times using the same device, with a 5 min interval between each trial. Experiment B required
participants to perform three trials using different devices, with the same time interval between trials.
Comparing stopwatch and smartphone measurements in Experiment A, no significant differences
in test duration were found between the two devices. A perfect correlation and Bland–Altman
analysis indicated good agreement between devices. Intra-device reliability analysis in Experiment A
revealed significant reliability in nine out of eleven variables, with four variables showing excellent
reliability and five showing moderate to high reliability. In Experiment B, inter-device reliability
was observed among different smartphone devices, with nine out of eleven variables demonstrating
significant reliability. Notable differences were found in angular velocity peak at the first and second
turns between specific devices, emphasizing the importance of considering device variations in
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inertial measurements. Hence, smartphone inertial sensors present a valid, applicable, and feasible
alternative for TUG assessment.

Keywords: biomechanical phenomena; smartphone; test reproducibility; program evaluation;
research instrument evaluation; timed-up and go test

1. Introduction

The Timed-Up and Go (TUG) test is widely used by healthcare professionals as a means
to evaluate various aspects of mobility [1]. Aligned with the International Classification of
Functioning, Disability and Health, the TUG test serves as a quick and straightforward tool,
highlighting the importance of gait and transfers in the performance of daily activities [2].
In addition to its role in the assessment of fall risk, the TUG test is also used to evaluate the
functionality of the lower extremities and overall mobility [3].

Currently, the clinical interpretation of the TUG test revolves around a single param-
eter, that is, the time taken by individuals to complete the test [2]. It is conventionally
established that a duration exceeding 15 s indicates a high risk of falls [3]. Despite the
growing application of the TUG test across various populations, uncertainties persist about
its accuracy in predicting fall risk outcomes in specific groups [2].

To address these concerns and facilitate a more objective evaluation of individuals’
performance, technological devices have been introduced in the assessment of the TUG
test [4]. These devices not only provide additional data for complementary analyses but
also have the potential to automate the test, allowing its administration in a home envi-
ronment [5]. These advancements represent significant progress in the field of functional
assessment, which benefits various populations.

Accelerometers and gyroscopes are currently the most commonly used sensors to
instrument the standard TUG test, in a method known as instrumented TUG (iTUG) [5].
Extensive research has focused on parameters such as test duration, average joint angles,
maximum trunk angle change, number of steps, threshold, and total foot contact time, as
evidenced by a systematic review conducted by Ponciano et al. (2020) [3]. Using built-in
inertial sensors, smartphones have emerged as a particularly promising tool for health
assessment, including the evaluation of the iTUG test. In particular, the widespread use of
smartphones in daily life eliminates the need for specific equipment acquisition, making
them a convenient option. However, it is imperative to validate and assess the reliability of
smartphone inertial sensors to fully understand their diagnostic potential [3].

Table 1 shows numerous studies that have demonstrated the applicability of inertial
sensors in smartphones for iTUG execution (see Table 1). The scarcity of validation against
gold standards and reliability studies remains evident. Gold standard validation in the
context of assessing a measurement tool or diagnostic test involves comparing its results
to those obtained from a widely accepted, definitive, or established reference method or
criterion. In the case of the Timed-Up and Go (TUG) test and its instrumented version
(iTUG), the gold standard could involve direct observation of the participant’s performance
by trained healthcare professionals (i.e., with a chronometer measurement) and detailed
motion analysis using sophisticated laboratory equipment that provides accurate and
reliable measurements of mobility, gait, and fall risk (i.e., motion camera acquisition).
Furthermore, reliability studies are crucial in assessing the consistency and dependability
of measurement tools or diagnostic tests, especially in healthcare contexts. In the context of
the TUG test and iTUG, reliability studies are essential for establishing the consistency of
the obtained measurements of mobility, gait, and fall risk. These studies ensure that the
results obtained from the TUG test or iTUG are not influenced by random variability or
measurement errors, thus enhancing the validity of the assessments.

In this context, the scientific value of comparing parameters obtained from different
smartphones lies in understanding the generalizability and reliability of smartphone-
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based assessments across various devices. This comparative analysis helps establish the
consistency and robustness of the measurements, irrespective of the specific smartphone
used. It also provides insights into the potential variability in sensor performance among
different smartphone models, which is essential for ensuring the reliability and validity of
the assessments in real-world settings.

Few investigations have studied the reliability of the iTUG considering different
examiners and different tests from the same individual [6–9]. Mellone et al. (2012) [6]
employed an Android smartphone and found excellent reliability between the smartphone
and commercial accelerometer and intra-subject reliability between two trials recorded by
the smartphone. Two additional studies [8,9] also confirmed inter-device reliability, albeit
focusing solely on temporal parameters. Another limitation is that none of the studies
assessed the replicability of the quantitative parameters of the iTUG across different devices.

Given the potential of smartphone inertial sensors to assess performance in the iTUG
test and the existing gap in the literature, the present study aims to evaluate the reliability of
the smartphone-based iTUG parameters. We proceeded with evaluations of intra and inter-
device reliabilities hypothesizing that iTUG parameters are replicable in all experiments. If
proven reliable, it might be a convenient and cost-effective means of assessing mobility and
fall risk, potentially applied in the field of functional assessment in healthcare.

Table 1. Studies that have demonstrated the applicability of inertial sensors in smartphones for
iTUG execution.

Autor (Year) Smartphone/
Positioning TUG Sensors

Gold-Standard
Validation and

Reliability
Objective Population

(Silva & Sousa,
2016) [10]

Not speci-
fied/Pocket or

waist or leg
30 s TUG Acc and

gyros No Segmentation of stages
and data extraction.

Elderly
individuals

from the
community.

(Mellone et al.,
2012) [6]

HTC
Desire/Lumbar

TUG
extended

(7 m)
Acc Reliability

Assessing the
intra-rater and

inter-rater reliability of
a smartphone in the

TUG test.

Without
criteria.

(Coni et al.,
2015) [11]

Sansumg
Galaxy SII and

SIII/Waist
TUG Acc and

gyros No

Classify the domains of
an instrumented Timed
Up and Go (TUG) test

and investigate the
functional decline

associated with aging.

Elderly
individuals.

(Galán-Mercant
&

Cuesta-Vargas,
2015) [12]

Iphone
4/Sternum

TUG
extended

(10 m)

Acc, gyros,
and magne-

tometer
No

Determine kinematic
variables that show the

highest level of
accuracy in

discriminating
between two groups of

elderly individuals
(frail and non-frail).

Frail and
non-frail
elderly

individuals.

(Milosevic et al.,
2013) [13]

Nexus
4/Pectoral TUG

Acc, gyros,
and magne-

tometer
No

Describing the
parameters used to

quantify the iTUG test
and algorithms for

extracting the
parameters from

signals captured by
smartphone sensors.

Individuals
with

Parkinson’s
disease and

healthy
individuals.
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Table 1. Cont.

Autor (Year) Smartphone/
Positioning TUG Sensors

Gold-Standard
Validation and

Reliability
Objective Population

(Galán-Mercant
et al., 2014) [7]

Iphone
4/Sternum

TUG
extended

(10 m)

Acc and
gyros Reliability

Assessing reliability
and concurrent

criterion validity.

Healthy older
adults (5).

(Palmerini et al.,
2011) [14] HTC/Lumbar

TUG
extended

(7 m)
Acc No

Identify the features
that are most sensitive

to locomotor
performance.

Healthy
individuals.

(Merchán-
Baeza et al.,

2018) [8]

Iphone 5s/Not
specified TUG

Acc, gyros,
and magne-

tometer
Reliability

Collect quantitative
data on lower limb
function during the

execution of the TUG
and STS tests in

individuals in the acute
phase of stroke.

Elderly
individuals.

(H. Yahalom
et al., 2020) [15]

Iphone
5s/Sternum TUG Gyros No

Characterize
Parkinson’s patients

and the gait
performance of

psychiatric patients
using neuroleptic
medication and

compare them with
Parkinson’s disease

and healthy controls.

Psychiatric
patients and
patients with
Parkinson’s

disease.

(Campillay
Guzmán et al.,

2017) [9]

Iphone
4/Lumbar TUG Acc and

gyros Reliability

Assessing the
reproducibility of the

elapsed times between
the start and end of the
subphases of the TUG

test.

Community-
dwelling older

adults.

(Ishikawa et al.,
2019) [16] Iphone/Abdomen TUG Acc and

gyros No

Evaluate the usefulness
of measuring the times
of 6 components of the

TUG.

Active older
adults and

patients with
normal

pressure
hydrocephalus.

(Bergquist et al.,
2020) [17]

Huawei
P8/Lumbar TUG Acc and

gyros No

Assess how well the
mean features of

inertial sensors could
predict the total score

of the CBMS.

Elderly
individuals

attending an
outpatient
clinic and

healthy elderly
individuals.

2. Methods
2.1. Ethical Considerations

The procedures carried out in this investigation were approved by the Research Ethics
Committee of the Federal University of Pará (CAAE: 63499622.0.0000.0018), adhering to
the guidelines for research involving human subjects described in Resolution 466/2012 of
the National Health Council.
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2.2. Participants

We conducted experimental procedures to evaluate intra-device reliability (Experiment
A) and inter-device reliability (Experiment B). For Experiment A, a total of 30 individuals
(males: 15; females: 15; mean age ± standard deviation [SD] = 26.96 ± 1.5 years; mean
weight ± SD = 75.08 ± 16.03 kg; mean height ± SD = 1.69 ± 0.09 m; mean body mass index
[BMI] ± SD = 26.02 ± 4.6 kg/m2) participated in the study, selected through convenience
sampling. For Experiment B, a total of 15 individuals (males: 8; females: 7; mean age ±
SD = 21.06 ± 2.76 years; mean weight ± SD = 66.8 ± 11.8 kg; mean height ± SD = 1.69 ±
0.1 m; mean BMI ± SD = 23.45 ± 3.6 kg/m2) made up the sample.

For both experiments, the inclusion criteria required participants to be young adults
between the ages of 20 and 40, and the exclusion criteria included a history of orthopedic
surgeries and musculoskeletal disorders in any limb that could be exacerbated by the test
procedures. All participants completed a form providing information on their age, weight,
height, and sex. No participant reported trauma in the last month. A schematic figure
depicting the design of the experiments is shown in Figure 1.
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Figure 1. Summary of the experiment’s design.

2.3. Instruments

For Experiment A, we attached to the participant a smartphone and for Experiment
B, we used three smartphones: Samsung A32, Xiaomi Redmi note 9i moto g20. Table 2
summarizes smartphone characteristics.

Table 2. Smartphone’s characteristics.

Device Dimensions Weight Inertial Unit Gyroscope
Range/Resolution

Accelerometer
Range/Resolution

Xiaomi Redmi Note 8 158.3 × 75.3 × 8.4 mm, 190 g Mode BOSCH ±2000 degrees per
second/16-bits

±16 g
16 bit

Samsung A32 158.9 × 73.6 × 8.4 mm 184 g model LSM6DSL ±2000 degrees per
second/16-bits

±16 g
16 bit

Xiaomi Redmi note 9i 164.9 × 77.1 × 9 mm 194 g model: bmi260 ±2000 degrees per
second/16-bits

±16 g
16 bit

moto g20 165.2 × 75.7 × 9.2 mm 200 g icm40607 ±2000 degrees per
second/16-bits

±16 g
16 bit

For both experiments, we used the Android application Momentum Science to record
and save the inertial time series during the execution of the iTUG with mean sampling rate
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of 50 Hz. The Momentum Science App has been validated for different motion assessment
protocols [18,19] and is available on the Play Store.

For all procedures, the smartphone was attached to the participant’s body using a
specially designed strap and positioned at the level of the lumbar spine between the L3
and L5 vertebrae (Figure 2).
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Figure 2. Smartphone attachment.

2.4. Experimental Protocol

For Experiment A, the subjects performed the Timed Up and Go (TUG) test three
times with the same device, with a 5 min interval between each trial. The first trial
was simultaneously measured using the Momentum Science App and timed using the
stopwatch feature of the IWO W27 Smartwatch (Watch 7 Pro, Shenzhen, China) to compare
the data related to the duration of the test. The Momentum Science App mentioned on
line 172, page 6, is utilized to record and save inertial time series during the execution of
the iTUG with a mean sampling rate of 50 Hz. It has been validated for different motion
assessment protocols and is available on the Play Store. For Experiment B, the subjects
performed three trials, but each trial used a different device.

For all experiments, the participants were orally instructed not to use their arms for
support during the rising and sitting phases. The instructions given to the participants were
standardized and given by an experienced person (the same one) to facilitate understanding
and minimize the risk of misinterpretation. The test path was marked with adhesive tape,
including the endpoint after three meters.

The protocol followed the standard steps outlined below. The subject sat with their
back in contact with the chair backrest. The data collection in the Momentum Science App
was initiated by tapping the screen, and the participant remained seated for 5 s until the
experimenter provided an oral command to go. In sequence, the subject stood up and
walked in a straight line for three metres; after reaching a distance of three metres, the
participant turned around and returned walking back to the chair. The subject turned again
to sit back in the chair. Once in place, a 5 s interval was counted to allow data collection
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to be completed. Each participant was fitted with a smartwatch securely fastened to their
non-dominant wrist. This position was chosen to minimize data variability and interference
from dominant hand movements. The smartwatch was configured to ‘Flight Mode’ to
prevent notifications during the test. Data collection commenced with a verbal cue, sig-
nalling the participant to start the TUG test and was manually initiated on the smartwatch.
Collection ceased automatically after a predefined duration post-test completion to ensure
all relevant data were captured. Time synchronization was conducted between the smart-
watch and the smartphone application used for the iTUG to ensure time-stamped data
from both devices were aligned for subsequent analysis. Post experiment, data from the
smartwatch were downloaded via a secure Bluetooth connection to a designated computer.
The time data were compared with the smartphone.

Figure 3 shows the different stages of the iTUG test.
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Figure 3. TUG test phases (A) and smartphone-based iTUG assessment (B). In (A), the phases
involved rising from a chair (a,b), walking along a 3 m path (c), making a turn to return to the
chair (d), walking back to the chair (e), making a second turn to sit in the chair (f) and sitting down
(g). Inertial time series data were collected during the test and subsequently analyzed to derive
performance-related features. In (B), the accelerometer and gyroscope signals during the test are
represented, as well as the segmentation of phases as explained below (events 1 to 7). The signals
depicted in this figure represent the norms.
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2.5. Data Processing

The Momentum Science App exported the accelerometer and gyroscope recordings as
text files, which were imported and analyzed using MATLAB routines (MATLAB R2015a,
Mathworks, Carlsbad, CA, USA). A linear trend removal procedure was applied to the
inertial time series using the detrend function. The accelerometer signals were divided
by 9.81 to represent the data in gravitational units. Then, the norm of the vectors of the
accelerometer and gyroscope signals was calculated according to Equation (1).

norm =
√

x2 + y2 + z2 (1)

On this, x, y, and z are the acceleration or angular velocity vectors in the mediolateral,
vertical, and anteroposterior axes, respectively.

A linear interpolation procedure was performed on the resultant vectors to achieve
a sampling rate of 100 Hz since it facilitates better comparison between mobile devices.
The interpolated signal was then filtered using a second-order bidirectional Butterworth
filter with a cutoff frequency of 5 Hz. In summary, filtering the interpolated signal with a
second-order filter having a cutoff frequency of 5 Hz is necessary to reduce noise, prevent
aliasing, condition the signal, and focus on the relevant frequency content for further
processing or analysis.

To identify temporal parameters and waveform amplitudes of inertial signals, the
algorithm searched for 6 transient events (Figure 3):

1. Event 1: Identification of the start of the test. The gyroscope time series was evaluated
to identify the start of the rise from the chair, as previously described in the litera-
ture [20] We calculated the mean and standard deviation of the angular velocity in a
time interval of 1 s in a baseline period before the rise from the chair. We considered
as the onset of the test when the angular velocity exceeded this mean plus two times
the standard deviation of the angular velocity in the resting time interval (red dashed
line in Figure 3).

2. Event 2: Identification of the test end. Like the identification of the movement onset,
we also used the gyroscope time series to identify the test end. In this case, the time
interval used as baseline was after the individual sat back in the chair. The algorithm
read retrogradely the time series to indicate the end of the test as the moment which
the angular velocity exceeded the mean plus two standard deviations of the resting
time interval (blue dashed line in Figure 3).

3. Events 3 and 4: Identification of the moments of the turns during the test. We observed
the presence of two transient components in the angular velocity time series. The first
prominent component represented the turn at 3 m of walking from the chair (here
we named as G1 component in the gyroscope time series), and the second prominent
component represented the turn in front of the chair to sit it back (here we named G2
component in the gyroscope time series).

4. Event 5: Identification of the moment to complete the standing posture. To identify
this event, we used the acceleration time series. We searched for the acceleration peak
of a transient component just after the test onset and before the first turn moment
(here we named as A1 component in the acceleration time series).

5. Event 6: Identification of the moment when the subject sits back in the chair. Like to
find the moment to complete the stand-up posture, we also used the acceleration time
series to find the moment to start the transition from stand-up posture to sit back in
the chair, which is represented by a transient component existing just after the second
turn moment and before the test end (here we named it the A2 component in the
acceleration time series).

Based on these 6 temporal markers, 11 variables of interest were calculated: total
test duration, in seconds (s), representing the time interval between the test onset and
test offset; go walk duration, in seconds, representing the time interval between the A1
component peak and the moment of the G1 component peak; return walk duration, in
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seconds, representing the time interval between the G1 component peak and G2 component
peak; sit to stand duration, in seconds, representing the time interval between test onset and
the A1 component peak; stand to sit duration, in seconds, representing the time interval
between the A2 component and test offset; acceleration peak during the sit to standing
transition, in gravitational units (g); acceleration peak during the stand to sit transition
in gravitational units (g); angular velocity peak during the first turn, in radians/seconds
(rad/s); angular velocity peak during the second turn, in radians/seconds (rad/s); standing
jerk as the rate of acceleration change during the sit to standing transition, in g/s; and
sitting jerk as the rate of acceleration change during the standing to sit transition in g/s.

All procedures were performed automatically by the analysis routine, and a visual
inspection was conducted by the researchers to detect any identification errors in the
events. In case of event identification errors, visual identification was carried out by
trained researchers.

2.6. Statistical Analysis

The statistical analysis was conducted using GraphPad PRISM 9 software. All vari-
ables were evaluated by the Shapiro–Wilk test for normality to determine the following
inferential tests. Variables were considered normally distributed if p ≥ 0.05. For Experiment
A, we compared the total duration of the test measured by stopwatch and smartphone
measurements using a paired t-test (t). We also calculated Pearson’s product moment
correlation (r) between both measurements, and we interpreted the result of the linear
correlation as perfect (r ≥ 0.9), almost perfect (0.7 ≥ r < 0.9), high (0.5 ≥ r < 0.7), moderate
(0.3 ≥ r < 0.5), and weak (r < 0.3) [21]. Furthermore, a Bland–Altman test was performed to
calculate the bias and 95% limits of agreement [22]. For both Experiments, to compare the
measurements obtained in the three repetitions of the iTUG test, we conducted one-way
ANOVA for repeated measures, followed by Tukey’s post hoc test, if necessary. The reliabil-
ity between measurements was evaluated using the intraclass correlation coefficient (ICC)
for variables with normal distribution which was classified as excellent (ICC ≥ 0.75), high
(0.74 ≥ ICC ≥ 0.4), and poor (ICC ≤ 0.39) [23] and Kendall’s coefficient of concordance
for variables with non-normal distribution and we interpreted as excellent agreement
(W ≥ 0.8), substantial agreement (0.6 ≤ W < 0.8), moderate agreement (0.4 ≤ W < 0.6), fair
agreement (0.2 ≤ W < 0.4), and slight agreement (0 ≤ W < 0.2) [24]. Kendall’s coefficient
of concordance is utilized when dealing with variables that do not adhere to a normal
distribution, whereas the intraclass correlation coefficient is applied for variables that
exhibit a normal distribution. All statistical treatments were considered significant when
p < 0.05. For those variables which was calculated significant ICC, we additionally calcu-
lated the standard error of measurement (SEM) and minimum detectable change (MDC)
using the formula:

SEM = SDpooled ×
√

1 − ICC (2)

SDpooled represents the pooled standard deviation. The MDC was calculated at a 90%
level using the formula:

MDC90 = SEM ×
√

2 × 1.64 (3)

3. Results

The routine written in MATLAB correctly identified the majority of repetitions (86 out
of 90 records), with only four records requiring manual identification. This represents a
success rate of 95.6% in the automatic identification of records and refers to the accurate
identification and interpretation of the events depicted and explained in Figure 3 by the
MATLAB script developed for the study. In other words, when the script correctly detected
the specified events according to the predetermined criteria and definitions outlined in the
research methodology, it was considered “correct”. This means that the script successfully
identified the events of interest without errors or discrepancies, aligning with the expected
outcomes and criteria established for the study.
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3.1. Results of Experiment A: Comparison between Stopwatch and Smartphone Measurements

The duration of the test measured by the stopwatch and smartphone followed a
normal distribution (p = 0.88, p = 0.11, respectively). Their comparison did not show
significant differences (stopwatch mean test duration = 10.46 ± 1.35 s; smartphone mean
test duration = 10.93 ± 1.36 s; t[58] = 1.315; p = 0.19), while the correlation between them was
perfect (r = 0.93, p < 0.0001). The Bland–Altman analysis showed the agreement between
devices with bias = –0.46, lower agreement limit = –1.457, upper agreement limit = 0.5348.

3.2. Results of Experiment A: Intra-Devicereliability of the Inertial Measurements

Table 3 shows the descriptive statistics regarding the three repetitions performed by
the individuals as well as their comparison. No variable had significant differences across
the sessions (p > 0.05).

Table 3. Descriptive statistics and comparison of the iTUG variables across the sessions (experiment
A). The values are represented by median (interquartile range) or mean ± standard deviation regard-
ing the data distribution adjustment to the gaussian fit. p-value refers to one-way ANOVA result.

Variable Session #1 Session #2 Session #3 p-Value

Test duration (s) 10.71 (1.73) 10.15 (1.87) 10.24 (1.87) 0.47
Sit to stand duration (s) 0.98 (0.02) 0.8 (0.02) 0.98 (0.02) 0.61

Go walk duration (s) 4.33 (0.51) 4.26 (0.64) 4.14 (0.64) 0.46
Return walk duration (s) 3.78 (0.95) 3.66 (1.08) 3.55 (1.15) 0.92
Stand to sit duration (s) 1.46 (0.37) 1.32 (0.43) 1.4 (0.57) 0.07

Sit to stand acceleration peak (g) 0.57 ± 0.11 0.57 ± 0.11 0.58 ± 0.11 0.51
Stand to sit acceleration peak (g) 0.54 (0.17) 0.52 (0.09) 0.54 (0.15) 0.8

Angular velocity peak in first turn
(rad/s) 3.54 ± 0.81 3.64 ± 0.9 3.57 ± 0.86 0.42

Angular velocity peak in second
turn (rad/s) 3.83 ± 0.7 3.9 ± 0.73 3.94 ± 0.86 0.57

Standing jerk (g/s) 0.58 ± 0.13 0.59 ± 0.12 0.59 ± 0.11 0.91
Sitting jerk (g/s) 0.38 (0.15) 0.4 (0.16) 0.39 (0.17) 0.45

Table 4 shows the results of the intra-device reliability evaluation for all iTUG variables.
We found 9 out of 11 variables with significant intra-device reliability. Four variables had
excellent reliability (test duration, stand to sit acceleration peak, return walk duration,
angular velocity peak in first turn) and five variables had moderate to high reliability
(go walk duration, sit to stand acceleration peak, angular velocity peak in second turn,
standing jerk).

Table 4. Intra-device reliability (experiment A) of the iTUG variables. For normally distributed
variables, we report the intraclass correlation coefficient (ICC); otherwise, Kendall’s W agreement
is reported.

Variable Reliability 95% CI p-Value SEM MDC

Test duration (s) W = 0.89 0.78–0.93 <0.0001 - -
Sit to stand duration (s) W = 0.2 –0.56–0.4 0.96 - -

Go walk duration (s) W = 0.79 0.57–0.85 <0.001 - -
Return walk duration (s) W = 0.82 0.66–0.87 <0.001 - -
Stand to sit duration (s) W = 0.42 –0.1–0.55 0.15 - -

Sit to stand acceleration peak (g) ICC = 0.73 0.57–0.85 <0.0001 0.29 0.81
Stand to sit acceleration peak (g) W = 0.85 0.71–0.89 <0.001 - -

Angular velocity peak in first turn (rad/s) ICC = 0.86 0.76–0.93 <0.0001 0.59 1.64
Angular velocity peak in second turn

(rad/s) ICC = 0.73 0.57–0.85 <0.0001 0.77 2.14

Standing jerk (g/s) ICC = 0.59 0.39–0.76 <0.0001 0.37 1.03
Sitting jerk (g/s) W = 0.58 0.18–0.71 0.008 - -

W: Kendall’s W agreement; ICC: intraclass correlation; CI: confidence interval.
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3.3. Experiment B Results: Inter-Device Reliability of the Inertial Measurements

Table 5 shows the descriptive statistics regarding the three repetitions performed
by the individuals with different smartphone devices. Nine out of eleven variables had
no significant differences across the sessions (p > 0.05). Post -hoc revealed that Angular
velocity peak at first turn was smaller in Samsung device compared to Motorola device
(p < 0.05), and angular velocity peak at second turn was smaller in Xiaomi device compared
to Motorola device (p < 0.05).

Table 5. Descriptive statistics and comparison of the iTUG variables among devices (experiment B).
The values are represented by media (interquartile range) or mean ± standard deviation regarding
the data distribution adjustment to the gaussian fit. p-value refers to one-way ANOVA result.

Variable Samsung Xiaomi Motorola p-Value

Test duration (s) 11.82 ± 0.94 11.83 ± 0.96 11.75 ± 1.03 0.93
Sit to stand duration (s) 1 (0.02) 1 (0.16) 1 (0.02) 0.23

Go walk duration (s) 4.41 ± 0.48 4.3 ± 0.62 4.17 ± 0.53 0.18
Return walk duration (s) 3.86 (1.06) 3.79 (1.01) 4.06 (1.18) 0.5
Stand to sit duration (s) 1.52 (0.56) 1.75 (0.67) 1.41 (0.52) 0.1

Sit to stand acceleration peak (g) 0.52 (0.17) 0.5 (0.17) 0.49 (0.18) 0.61
Stand to sit acceleration peak (g) 0.51 ± 0.15 0.54 ± 0.15 0.52 ± 0.13 0.68

Angular velocity peak in first turn
(rad/s) 2.46 (0.53) 2.46 (0.31) 2.63 (0.36) 0.01

Angular velocity peak in second
turn (rad/s) 2.92 (0.66) 2.85 (0.16) 2.92 (0.78) 0.032

Standing jerk (g/s) 0.52 (0.17) 0.47 (0.22) 0.46 (0.14) 0.79
Sitting jerk (g/s) 0.34 ± 0.14 0.31 ± 0.12 0.37 ± 0.13 0.46

Table 6 shows the results of the reliability evaluation among devices for all iTUG
variables. We found 9 out of 11 variables with significant reliability, which had moderate-
to-high correlation or agreement.

Table 6. Inter device reliability (experiment B) of the iTUG variables. For normally distributed
variables, we report the intraclass correlation coefficient (ICC); otherwise, Kendall’s W agreement
is reported.

Variable Reliability 95% CI p-Value SEM MDC

Test duration (s) ICC = 0.56 0.25–0.81 0.0001 1.1 3.04
Sit to stand duration (s) W = 0.6 0.23–0.72 0.03 - -

Go walk duration (s) ICC = 0.55 0.26–0.8 0.0001 0.83 2.29
Return walk duration (s) W = 0.83 0.69–0.87 0.001 - -
Stand to sit duration (s) W = 0.35 –0.26–0.5 0.41 - -

Sit to stand acceleration peak (g) W = 0.6 0.22–0.71 0.03 - -
Stand to sit acceleration peak (g) ICC = 0.56 0.25–0.8 0.0001 0.42 0.17

Angular velocity peak in first turn
(rad/s) W = 0.75 0.54–0.78 0.005 - -

Angular velocity peak in second turn
(rad/s) W = 0.74 0.52–0.8 0.005 - -

Standing jerk (g/s) W = 0.71 0.46–0.78 0.008 - -
Sitting jerk (g/s) ICC = 0.02 –0.23–0.4 0.42 - -

W: Kendall’s W concordance; ICC: intraclass correlation; CI: confidence interval.

4. Discussion

The present study investigated the intra and inter-device reliabilities of features ex-
tracted from iTUG with the hypothesis that the sensors in mobile devices produce similar
outcomes. Our results partially confirmed this hypothesis, as we found that most of the
iTUG parameters exhibited significant intra and inter-device reliability. The study yielded
several key findings regarding the performance and reliability of inertial measurements in
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the context of the Timed Up and Go (iTUG) test, as well as the comparison between stop-
watch and smartphone measurements. Firstly, the MATLAB routine demonstrated a high
success rate of 95.6% in automatically identifying trial records, with only a small percentage
requiring manual intervention. In Experiment A, the comparison between stopwatch and
smartphone measurements revealed no significant differences in test duration, with both
methods displaying a normal distribution and a strong correlation. Bland–Altman analy-
sis confirmed agreement between devices. Additionally, intra-device reliability analysis
showed no significant differences in iTUG variables across sessions, with most variables
demonstrating significant intra-device reliability. Notably, nine out of eleven variables
exhibited significant reliability, with four variables showing excellent reliability and five
displaying moderate to high reliability.

Notably, nine out of eleven variables exhibited significant reliability, with four vari-
ables showing excellent reliability, and five displaying moderate to high reliability. In
Experiment B, inter-device reliability analysis indicated no significant differences for the
majority of variables across sessions, although some discrepancies were observed between
specific smartphone models in angular velocity peak at the first and second turn. Overall,
the study underscores the potential of inertial measurements for reliable and accurate as-
sessment in mobility-related tests, with implications for both research and clinical practice.

The present study demonstrated the accuracy of the iTUG tool for automatically
measuring the test completion time, as there was an excellent correlation between the
measurements obtained by a human using a stopwatch and those obtained with smart-
phones. These findings align with the previous literature, although they have used portable
accelerometers and not smartphones, demonstrating consistent results across various sub-
ject groups, including healthy control, individuals with Parkinson’s disease [25], and the
elderly [26]. These previous studies also observed excellent correlations in these diverse
cohorts, indicating the reliability and validity of our study outcomes. This consistency
across different populations strengthens the robustness of our findings and underscores
the potential applicability of our research in broader contexts.

Regarding applicability, the test was conducted on thirty subjects without repetition
and without data loss from the sensors during the assessments. The routine written in
MATLAB correctly identified the majority of repetitions (86 out of 90 records), with only
four records requiring manual identification. This represents a success rate of 95.6% in the
automatic identification of records. Thus, it can be inferred that the use of smartphone
inertial sensors recorded by the Momentum application can be performed by other indi-
viduals without any loss in the quality of the collected data. Moreover, this applicability
adds to the future possibility of self-application of the iTUG. This applicability confirms
what has already been demonstrated in previous studies involving the use of smartphone
inertial sensors, which have shown the application of the device in the evaluation of ad-
ditional TUG parameters [7–9,13–16,27,28]. In this study, we explored the significance of
calculating the norm (magnitude) of acceleration and angular velocity data series in three
axes, shedding light on its importance in motion analysis. Our findings underscore the
utility of this approach, as it provides a scalar representation of the overall magnitude
of motion, simplifying analysis and interpretation. Moreover, the norm offers a practical
means of reducing the dimensionality of data, facilitating comparisons across different
contexts while remaining invariant to sensor orientation. Despite these advantages, it is
noteworthy that few studies have delved into the analysis of the norm, highlighting a
gap in the existing literature [27]. Our study stands out as the first to rigorously examine
the replicability of the norm, thereby contributing a novel perspective to the field. By
addressing this underexplored aspect, we have expanded our understanding of motion
analysis and provided valuable insights that pave the way for future research endeavors in
this area.

In the intra-device evaluation, the parameters exhibited no significant differences
across attempts, with nine of them demonstrating replicability. The substantial proportion
of replicable parameters underscores the reliability of the trials. However, it remains
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unclear why the variables ‘Sit to Stand Duration’ and ‘Stand to Sit Duration’ did not exhibit
significant replicability. In particular, these two variables, characterized by their short
duration, may be susceptible to influences arising from the participant’s immobility at
the test’s initiation and conclusion. The automatic detection of test onset and completion
times is derived from gyroscope signals, and minor fluctuations related to trunk movement
during these instances can introduce noise, potentially affecting the precision of detection.
Given the brevity of these variables, slight variations in detecting the test’s start and end
may have contributed to their increased variability across the three attempts.

In the context of automatic detection, the term “algorithm” refers to a set of predefined
rules or instructions implemented within a given script to perform specific tasks related to
event detection or data processing. The algorithms for detecting phases in the Timed Up and
Go (TUG) test vary in the literature. For example, Silva & Sousa (2016) [10] manually and
automatically segmented the phases, with the former being carried out through comparison
with a video recording and the latter based on the integral of the gyroscope signal to
identify turning points, defining transitions between sitting and standing postures when
consecutive differences of 3 degrees in the angle signal occurred. In our study, we used the
angular velocity signals from the gyroscope to define the start and end of the test, as well
as the peaks in the accelerometer signal to identify posture transitions, reducing the risk of
an unreliable analysis through image observation. In th study by Coni et al. (2015) [11],
similar to ours, the accelerometer and gyroscope were used, and although the identification
of turns was described based on the angular velocity signal, similar to what was used
in the present study, it was not specified which signals were used to define the start and
end of the test. Ishikawa et al. (2019) [16] also identified test phases based on gyroscope
signals, such as the time taken to rise from the chair at the beginning of the test; however,
the obtained variables, unlike in our study, were only related to the time of each phase.

In the inter-device comparisons, it was observed that the maximum angular velocity at
both turning moments exhibited higher values on the Motorola device compared to one of
the other devices. Although not the focus of this study, the literature suggests evidence that
the sensor’s weight may impact measurement sensitivity [28]. Two parameters (i.e., ‘Stand
to Sit Duration’ and ‘Sitting Jerk’) showed no significant inter-device reliability. ‘Stand to
Sit Duration’ continues to lack significant replicability, potentially influencing the absence
of replicability in the ‘Sitting Jerk’ parameter.

Previous studies have also investigated the reliability of smartphone sensors, such
as Mellone et al. (2012) [6], where reliability ranged from fair to excellent in almost all
parameters, both intra- and inter-rater evaluations. Their results, like ours, showed that the
total duration of the test is a variable with excellent reliability, and the rise jerk is a variable
with moderate to high reliability. In the study by Galán-Merchant et al. (2014) [7], reliability
among older adults was tested, and the findings indicate excellent reproducibility in accel-
eration magnitude and displacements along the vertical, mediolateral, and anteroposterior
axes. Nevertheless, the study’s sample size was limited to just five participants. While
the test phases followed established protocols from prior publications, the analysis solely
focused on variables associated with acceleration in the motion axes, such as peak values
and acceleration magnitude. Furthermore, unlike our study, the investigation conducted
an extended version of the test, encompassing a 10 m walking distance, and positioned the
smartphone towards the sternum. Other authors [7,8] also tested the reliability of smart-
phone inertial sensors and obtained excellent reliability results for all variables. However,
only time variables for each stage of the test were compared.

In acknowledging the limitations of our study, it is important to note that while the
smartphone-based measurements employed in the iTUG experiment provided valuable
insights, the validity of our method could be significantly enhanced by a comparative
analysis with data obtained from an inertial measurement unit (IMU). Furthermore, the
study’s limitations encompass the lack of validation between smartphone inertial sensors
and kinematics, especially regarding variables beyond the TUG execution time. Addition-
ally, certain variables exhibited limited replicability, indicating potential areas for refining
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the test protocol or analysis methods. Moreover, forthcoming research could leverage
alternative smartphones to assess data reliability employing diverse tools. Furthermore,
we recognize the study’s limited generalizability to other age groups and advocate for
exploring its effects across broader age ranges.

This research confirmed the validity, applicability, and reliability of smartphones in
measuring additional parameters to the Timed Up and Go test, demonstrating the possi-
bility of using low-cost devices for evaluating important variables related to individuals’
mobility and balance. The use of these sensors in conjunction with the Momentum applica-
tion allows for accurate and automated identification of events and calculation of variables,
enabling the assessment of additional parameters and the potential for self-application.
These results contribute to the growing body of evidence supporting the use of smartphone
sensors as a low-cost and feasible option for clinical assessments in various contexts.
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