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Abstract: Posture analysis is important in musculoskeletal disorder prevention but relies on subjective
assessment. This study investigates the applicability and reliability of a machine learning (ML) pose
estimation model for the human posture assessment, while also exploring the underlying structure
of the data through principal component and cluster analyses. A cohort of 200 healthy individuals
with a mean age of 24.4 ± 4.2 years was photographed from the frontal, dorsal, and lateral views.
We used Student’s t-test and Cohen’s effect size (d) to identify gender-specific postural differences
and used the Intraclass Correlation Coefficient (ICC) to assess the reliability of this method. Our
findings demonstrate distinct sex differences in shoulder adduction angle (men: 16.1◦ ± 1.9◦, women:
14.1◦ ± 1.5◦, d = 1.14) and hip adduction angle (men: 9.9◦ ± 2.2◦, women: 6.7◦ ± 1.5◦, d = 1.67),
with no significant differences in horizontal inclinations. ICC analysis, with the highest value of
0.95, confirms the reliability of the approach. Principal component and clustering analyses revealed
potential new patterns in postural analysis such as significant differences in shoulder–hip distance,
highlighting the potential of unsupervised ML for objective posture analysis, offering a promising
non-invasive method for rapid, reliable screening in physical therapy, ergonomics, and sports.

Keywords: biomechanics; machine learning; posture analysis; reliability; principal component
analysis; cluster analysis; musculoskeletal disorders; ergonomics; kinesiology

1. Introduction

The structure and function of the body provide the potential for achieving and main-
taining an appropriate posture; however, the persistence of poor postural habits can lead to
discomfort, pain, or disability [1]. Many methods are available to evaluate posture, each
of them with strengths and weaknesses [2]. Optoelectronic motion capture systems are
considered the gold standard for human movement analysis [3], although they are expen-
sive and commonly limited to laboratory environments. On the other hand, smartphone
applications are low-cost and portable [4,5], but their reliability may be lower [2].

Artificial Intelligence (AI), particularly machine learning (ML), has revolutionized
healthcare data analysis [6], supporting the diagnosis of various conditions like gait dis-
orders [7], Parkinson’s disease [8], stroke [9], and osteoarthritis [10]. Traditional human
motion analysis methods are rapidly evolving due to advancements in ML and computer
vision. For example, previous studies have explored ML models for identifying postural
abnormalities in Parkinson’s disease patients using Microsoft Kinect data [11]. The devel-
opment of sophisticated pose estimation models has revolutionized anatomical landmark
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extraction from images and videos, enabling a new era of ML-driven movement analysis.
However, applying ML human pose estimation models specifically for posture assessment
remains a relatively unexplored area [12]. Traditional posture assessment methods often
suffer from subjectivity and low reliability due to visual inspection [13]. This inconsistency
underscores the need for an objective, AI-driven method that minimizes clinician bias,
which is crucial given the role of posture in musculoskeletal disorder prevention [14]. This
presents a significant opportunity for innovative research in this field [12]. Recently, many
digital alternatives have emerged as accessible methods for human pose estimation, such
as MediaPipe [15], OpenPose [16], MoveNet [17], and PoseNet [18]. Their strength lies in
the possibility of performing objective and reproducible analyses with a simple video or
photo achieved in any environment [19,20]. Such methods are being employed in different
scenarios. For example, while traditional ergonomic risk assessment often relies on human
observation, recent ML-based methods have demonstrated the value of analyzing a worker’s
musculoskeletal load based on relative body part positions, highlighting their applicability
in work-related scenarios [21]. Additionally, previous research has compared the effective-
ness of OpenPose for gait analysis directly with marker-based motion capture systems. This
study concluded that the ML approach outperformed traditional methods, demonstrating
its potential as a cost-efficient alternative for video analysis in out-of-laboratory environ-
ments [22]. Furthermore, studies using OpenPose have shown promising results in applying
a deep learning pipeline to differentiate neurological gait patterns between Parkinson’s
disease and multiple sclerosis [23]. The development of in-home gait monitoring tools could
be a valuable resource for both diagnosis and clinician support in telemedicine systems.

MediaPipe Pose is a powerful ML algorithm from the Google research team, de-
signed to accurately track human body poses. It estimates 33 landmarks across the body
from 2D photos or videos, enabling detailed motion tracking by determining their 3D
positions [24,25]. To ensure the accuracy of its 3D pose estimations, MediaPipe uses ground
truth data obtained through a statistical 3D human body model (GHUM), built using a
large dataset of human shapes and motions [26]. This model is then fitted to 2D pose data
and further refined with real-world 3D keypoint coordinates. During this process, the
shape and pose variables of the GHUM are optimized to align with image evidence for
maximum precision. The validity of the MediaPipe joint inference tracking technique has
been thoroughly investigated. Lafayette et al. [27] conducted a quantitative evaluation of its
angular estimation capabilities by comparing it to a gold-standard Qualisys motion capture
system [28]. They found an excellent absolute relative clinical error and a strong correlation
with Qualisys, with mean Pearson’s coefficients of 0.80 and 0.91 for lower and upper limb
movements. Further validation studies on MediaPipe performance come from its ability
to categorize exercise postures with 100% precision [29] and detect human movements in
non-standard videos with over 90% accuracy [30].

Principal component analysis (PCA) is a powerful dimensionality reduction technique
widely used in machine learning and movement analysis [31,32]. It offers a non-reductionist
approach to biomechanics, minimizing investigator bias and enriching the understanding
of body part interactions [32,33]. Clustering analysis is another valuable method for discov-
ering new patterns in multidimensional data by organizing them into clusters based on
similarities [34]. It has applications in biomechanics, including gait analysis [35], movement
kinematics [36], and injury prevention [37]. The rationale for using ML algorithms like PCA
and cluster analysis in posture assessment lies in their ability to analyze high-dimensional
data, revealing patterns and relationships that might be overlooked by traditional methods.

The significant potential of these ML approaches makes their transition into clinical
settings crucial, especially considering the limited number of studies that have attempted
this to date [19,38]. Therefore, the aim of the current study is two-fold. First, it aims to
demonstrate the applicability and reliability of an ML approach for analyzing posture, with
the goal of providing normative data on healthy men and women. Subsequently, it aims to
offer new insights into posture by applying PCA and clustering methods to the data. This
dual approach aims to enhance the depth of posture analysis in the clinical context.
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2. Materials and Methods

For this cross-sectional study, a total of 250 volunteers were initially recruited at the
Research Center on Motor Activities (CRAM) of the University of Catania, Italy, from March
2023 to June 2023. After applying exclusion criteria for musculoskeletal and neurological
pathologies, or musculoskeletal trauma within the past six months, 200 healthy participants,
consisting of 84 men and 116 women, were included, aged between 18 and 30 years (mean
age 24.4 ± 4.2 years). Participants were requested to wear minimal clothing, such as shorts
and a t-shirt for men, or a sports bra and shorts for women. The required sample size was
calculated using G*Power. To ensure adequate statistical power and account for potential
data loss, we aimed for a slightly larger sample size from 176 to 200 participants.

Photos were collected while the participants adopted the anatomical zero position [39];
this involved standing upright, facing forward, with arms resting at their sides, hands facing
the body, and forearms midway between supination and pronation. The feet were aligned,
spaced 10 cm apart, and positioned at a 20◦ total out-toeing angle. They were asked to stand
still 1.5 m distant from a smartphone with a 50 MP 1/1.56′′ sensor camera mounted on a tripod
while collecting the photos. Each measurement was collected in the morning, from 9 a.m. to
12 a.m. To ensure the reliability of the study, a subgroup of 90 participants underwent the
same procedure after one week. This study received approval from the Scientific Committee
of the University of Catania’s Research Center on Motor Activities (Protocol n.: CRAM-035-
2023, 15 March 2023), and was conducted in accordance with the Declaration of Helsinki.
Participants signed written informed consent forms to agree to participate in the study.

2.1. Pose Estimation

A total of 33 anatomical landmarks were predicted using MediaPipe Pose with a
BlazePose and MobileNetv2 Convolutional Neural Network architecture [40]. This model
detects human bodies, analyzes images, produces heatmaps and offsets, and identifies body
landmarks, as shown in Figure 1. Body orientation is determined automatically by identifying
the hip midpoint and the angle of the shoulder–hip line. To obtain 3D projections of each
anatomical landmark, we extracted their x, y, and z coordinates; then, we calculated joint
angles between body segments using the circular mean of data from frontal and dorsal photos
to improve accuracy. Further, we determined vertical and horizontal inclinations of vectors
between landmarks. Body vector lengths were calculated as distances between landmarks,
e.g., shoulder–elbow, using pixel distance (pd) as measurement unit. The lateral photo was
used for neck and trunk inclinations. For detailed calculation methods, refer to Table A1.
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2.2. Data Analysis

The data underwent three layers of analysis. We used Python for building our algo-
rithm model and R Project for Statistical Computing (Vienna, Austria) for the statistical
analyses. The Shapiro–Wilk test verified the normality of the data, while Student’s t-test
and Mann–Whitney U test identified any significant differences between men and women,
considering results with a p-value < 0.05 to be significant. Cohen’s d measured the effect
size between the two groups. Pearson’s correlation coefficient (r) assessed the associa-
tion between height and postural variables, considering relevant only the results with
p-value < 0.05 and r > 0.45. Then, we used the Intraclass Correlation Coefficient (ICC) (3,k)
to assess the reliability of this method, along with the Standard Error of Measurement
(SEM) and Minimal Detectable Change (MDC).

2.3. Principal Component and Clustering Analyses Methods

We conducted multivariate statistical techniques to examine whether the results could
highlight other specific patterns within the sample. Given the presence of 23 variables
(see Table A1 for full details), PCA was utilized to reduce dimensionality by transforming
correlated variables into uncorrelated principal components, maximizing the explained
variance with each component. After conducting PCA, we applied the clustering algo-
rithms, k-means, mean-shift, Ward’s method, complete linkage, and average linkage, to
identify natural groupings within the data. The rationale for employing a variety of meth-
ods was to ensure a comprehensive exploration of the dataset to determine the strengths
of each technique and observe different patterns and relationships within the data. The
silhouette score was used to assess the quality of the clustering algorithms.

3. Results

The acquired postural parameters, representing the circular mean of 3D landmarks
from frontal and dorsal photos (Table 1, Figure 2), showed significant differences between
men and women. Significant anthropometric differences were observed between men and
women for age (p < 0.05), height (p < 0.001), and weight (p < 0.001). Men had a mean age of
25.9 ± 5.2 years, a mean body weight of 68.2 ± 10.8 kg, and a mean height of 175 ± 6.4 cm.
Women had a mean age of 24.1 ± 4.8 years, a mean body weight of 54.4 ± 3.9 kg, and
a mean height of 163 ± 6.1 cm. Notable differences were found in shoulder adduction,
elbow extension, hip adduction/extension, and ankle flexion, but not knee flexion or
varus/valgus angles. The greatest effect size was observed for hip adduction d = 1.67, and
the smallest for knee extension d = 0.01. The greatest effect size for vertical inclinations
was in trunk forward inclination (d = 0.66), with no significant difference in leg inclination.
No significant differences or large effect sizes were observed in horizontal inclinations.
Finally, all vectors showed statistical significance with a large effect size. The shoulder–hip
difference demonstrated a valuable effect size of d = 1.44. Concerning the correlation
analysis, we observed a significant association between height and posture specifically for
the following variables: torso vector (r = 0.60, p < 0.001), total arm vector (r = 0.496, p < 0.001),
total leg vector (r = 0.530, p < 0.001), and shoulder–hip difference (r = 0.473, p < 0.001).

Table 1. Results of the postural analysis using ML algorithms with sex differences and test–retest reliability.

Postural Parameters Mean ± SD Sig. Effect Size (d) ICC SEM MDCMen Women

Bo
dy

jo
in

ts
(◦

) Shoulder adduction angle 16.1 ± 1.9 14.1 ± 1.5 <0.001 *** 1.14 0.94 0.22 0.61
Elbow extension angle 7.6 ± 3.6 4.4 ± 2.1 <0.001 *** 1.07 0.93 0.60 1.67
Hip adduction angle 9.9 ± 2.2 6.7 ± 1.5 <0.001 *** 1.67 0.95 0.16 0.45
Hip extension angle 3.4 ± 2.3 2.5 ± 1.7 0.005 ** 0.50 0.78 0.81 2.25
Knee varus/valgus angle 2.6 ± 1.0 2.2 ± 0.9 0.027 * 0.39 0.93 0.17 0.44
Knee extension angle 2.7 ± 1.7 2.7 ± 1.8 0.906 0.01 0.84 0.68 1.89
Ankle flexion angle 68.6 ± 5.3 72.9 ± 4.9 <0.001 *** −0.85 0.85 0.67 1.85
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Table 1. Cont.

Postural Parameters Mean ± SD Sig. Effect Size (d) ICC SEM MDCMen Women

H
or

iz
on

ta
l

in
cl

in
at

io
ns

(◦
) Ear line 2.0 ± 1.5 2.0 ± 1.2 0.550 0.02 0.79 0.49 1.38

Shoulder line 1.2 ± 0.7 1.2 ± 0.9 0.740 −0.01 0.73 0.48 1.33
Elbow line 1.2 ± 0.9 1.3 ± 0.9 0.530 −0.12 0.85 0.33 0.93
Wrist line 1.3 ± 0.9 1.5 ± 0.9 0.408 −0.13 0.83 0.34 0.95
Hip line 1.2 ± 0.8 1.5 ± 1.0 0.071 −0.34 0.84 0.36 1.01
Knee line 2.2 ± 1.3 2.1 ± 1.4 0.692 0.04 0.67 0.83 2.30
Ankle line 1.9 ± 1.4 2.0 ± 1.3 0.581 −0.08 0.80 0.67 1.87

Ve
rt

ic
al

in
cl

in
at

io
ns

(◦
) Neck inclination 13.6 ± 3.2 15.4 ± 3.3 <0.001 *** −0.55 0.93 0.89 2.47

Trunk forward inclination 2.3 ± 1.4 1.5 ± 1.1 <0.001 *** 0.66 0.77 0.43 1.20

Body imbalance 0.9 ± 0.4 1.3 ± 0.6 <0.001 *** −0.64 0.90 0.12 0.35

Leg inclination 1.8 ± 0.6 1.8 ± 0.6 0.547 −0.09 0.80 0.23 0.64

Ve
ct

or
s

le
ng

th
(p

d) Shoulder–hip difference 83.8 ± 14.9 63.4 ± 13.3 <0.001 *** 1.44
Torso vector 292.3 ± 26.3 244.7 ± 29.5 <0.001 *** 1.71
Total arm vector 297.5 ± 33.4 257.3 ± 32.9 <0.001 *** 1.21
Total leg vector 388.7 ± 32.4 358.2 ± 32.4 <0.001 *** 0.94

SD = Standard deviation, pd = pixel distance. Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001. Cohen’s d:
>0.50 = medium effect size, >0.80 = large effect size. ICC = intraclass correlation coefficient (3,k). SEM = standard
error of the mean. MDC = minimum detectable change.
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Figure 2. Angle results of the machine learning posture analysis with detailed comparison of body
joint angles and horizontal inclinations for men and women, as indicated by mean values ± standard
deviations. (ADD: adduction, EXT: extension, VAR/VAL: varus/valgus, FLX: flexion).

3.1. Test–Retest Reliability

The ICC (3,k) was used to assess the reliability of measurements when repeated on the
same sample after a week. Table 1 shows excellent reliability across all measurements, with
ICC (3,k) values ranging from 0.67 to 0.95.

3.2. Principal Component Analysis and Clustering Methods

We fed the data into the PCA algorithm and identified four components. To ensure the
representation of 90% of the data variance, we focused on the first two main components,
which had variance ratio values of 0.815 and 0.093. Both the elbow method and the silhouette
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analysis suggested the presence of two cluster groups (CG1, CG2). The majority of clustering
algorithms produced similar silhouette scores (approximately 0.55) and cluster divisions.
However, the mean-shift method yielded the highest score (0.568), and we therefore adopted
its cluster divisions for further analyses, as shown in Figure 3. Inferential statistics were
used to analyze the data divided by the mean-shift method (Table 2). The cluster analysis
highlighted a significant difference in body vector lengths, particularly in the shoulder–hip
difference: CG1 = 57.5 ± 7.0 pd while CG2 = 86.6 ± 10.7 pd, with a large effect size of d = 3.21.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 16 
 

 

particularly in the shoulder–hip difference: CG1 = 57.5 ± 7.0 pd while CG2 = 86.6 ± 10.7 pd, 
with a large effect size of d = 3.21. 

 
Figure 3. Representation of data distribution from the application of the clustering algorithms 
within the space of the first two principal components. 

Table 2. Results of the postural analysis with ML algorithms based on the mean-shift clustering. 

 
Postural Parameters Mean ± SD Sig. Effect Size 

(d) 
 CG1 CG2   

Bo
dy

 Jo
in

ts
 (°

) 

Shoulder adduction angle  14.7 ± 1.6 15.1 ± 2.2 0.112 0.24 
Elbow extension angle  4.8 ± 2.6 6.3 ± 3.4 0.001 ** 0.50 
Hip adduction angle  6.5 ± 1.6 9.4 ± 2.2 <0.001 *** 1.53 
Hip extension angle  2.5 ± 1.6 3.2 ± 2.4 0.035 * 0.36 
Knee varus/valgus angle  2.3 ± 0.9 2.5 ± 1.0 0.258 0.19 
Knee extension angle  73.1 ± 4.7 69.2 ± 5.5 0.146 −0.24 
Ankle flexion angle  14.7 ± 1.6 15.1 ± 2.2 <0.001 *** −0.78 

H
or

iz
on

ta
l i

nc
lin

a-
tio

ns
 (°

) 

Ear line  2.0 ± 1.2 2.0 ± 1.4 0.89 −0.02 
Shoulder line  1.3 ± 0.9 1.1 ± 0.7 0.032 * −0.34 
Elbow line  1.3 ± 1.0 1.2 ± 0.8 0.591 −0.08 
Wrist line  1.4 ± 0.9 1.4 ± 0.9 0.958 −0.01 
Hip line  1.7 ± 1.0 1.1 ± 0.8 <0.001 *** −0.64 
Knee line  2.2 ± 1.4 2.1 ± 1.4 0.418 −0.12 
Ankle line  2.0 ± 1.4 2.0 ± 1.4 0.822 0.04 

V
er

tic
al

 in
-

cl
in

at
io

ns
 Neck inclination  15.5 ± 3.1 14.0 ± 3.4 0.006 ** −0.46 

Trunk forward inclination  1.5 ± 1.1 2.0 ± 1.4 0.007 ** 0.42 
Body imbalance  1.3 ± 0.6 1.0 ± 0.4 0.004 ** −0.51 
Leg inclination  1.9 ± 0.6 1.7 ± 0.6 0.034 * −0.31 

Figure 3. Representation of data distribution from the application of the clustering algorithms within
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Table 2. Results of the postural analysis with ML algorithms based on the mean-shift clustering.

Postural Parameters Mean ± SD Sig. Effect Size (d)CG1 CG2

Bo
dy

Jo
in

ts
(◦

) Shoulder adduction angle 14.7 ± 1.6 15.1 ± 2.2 0.112 0.24
Elbow extension angle 4.8 ± 2.6 6.3 ± 3.4 0.001 ** 0.50
Hip adduction angle 6.5 ± 1.6 9.4 ± 2.2 <0.001 *** 1.53
Hip extension angle 2.5 ± 1.6 3.2 ± 2.4 0.035 * 0.36
Knee varus/valgus angle 2.3 ± 0.9 2.5 ± 1.0 0.258 0.19
Knee extension angle 73.1 ± 4.7 69.2 ± 5.5 0.146 −0.24
Ankle flexion angle 14.7 ± 1.6 15.1 ± 2.2 <0.001 *** −0.78

H
or

iz
on

ta
l

in
cl

in
at

io
ns

(◦
) Ear line 2.0 ± 1.2 2.0 ± 1.4 0.89 −0.02

Shoulder line 1.3 ± 0.9 1.1 ± 0.7 0.032 * −0.34
Elbow line 1.3 ± 1.0 1.2 ± 0.8 0.591 −0.08
Wrist line 1.4 ± 0.9 1.4 ± 0.9 0.958 −0.01
Hip line 1.7 ± 1.0 1.1 ± 0.8 <0.001 *** −0.64
Knee line 2.2 ± 1.4 2.1 ± 1.4 0.418 −0.12
Ankle line 2.0 ± 1.4 2.0 ± 1.4 0.822 0.04

Ve
rt

ic
al

in
cl

in
at

io
ns

(◦
) Neck inclination 15.5 ± 3.1 14.0 ± 3.4 0.006 ** −0.46

Trunk forward inclination 1.5 ± 1.1 2.0 ± 1.4 0.007 ** 0.42

Body imbalance 1.3 ± 0.6 1.0 ± 0.4 0.004 ** −0.51

Leg inclination 1.9 ± 0.6 1.7 ± 0.6 0.034 * −0.31

Ve
ct

or
le

ng
th

(p
d) Shoulder–hip difference 57.5 ± 7.0 86.6 ± 10.7 <0.001 *** 3.21

Torso vector 233.4 ± 16.2 295.9 ± 21.6 <0.001 *** 3.28
Total arm vector 241.2 ± 14.1 307.7 ± 23.4 <0.001 *** 3.44
Total leg vector 342.6 ± 19.4 400.3 ± 22.2 <0.001 *** 2.77

CG1 = clustering group 1; CG2 = clustering group 2. SD = standard deviation, pd = pixel distance. Significance
levels: * p < 0.05, ** p < 0.01, *** p < 0.001. Cohen’s d: >0.50 = medium effect size, >0.80 = large effect size.
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4. Discussion

Postural assessment plays a fundamental role in clinical [41], sport [42], and ergonomic
evaluation [43]. This study investigated using ML to enhance postural analysis, established
normative posture data for healthy men and women, and explored interesting posture
patterns using PCA and cluster analysis. Our findings offer insights into the reliability of
ML-driven posture analysis and its potential to reveal previously unidentified relationships
within postural data.

We expected a significant difference in joint angles and no significant difference in
horizontal and vertical inclinations. While postural asymmetries are prevalent in vari-
ous conditions such as low back pain [44], stroke [45], cerebral palsy [46], Parkinson’s
disease [47], and scoliosis [48], we recognized that our sample, comprised of healthy par-
ticipants, would not show substantial asymmetry. These observations differ from our
previous work on posture assessment using rasterstereography, where we assessed only
the trunk [49]. This difference suggests that the ML approach may be more sensitive in
detecting subtle imbalances in healthy individuals. The body angles varied by sex, with a
pronounced effect size observed for the shoulder adduction, elbow extension, hip adduc-
tion/extension and ankle flexion. In contrast, the knee varus/valgus, hip extension, and
neck and trunk inclinations, while statistically significant, exhibited a medium effect size.
Men demonstrated higher values of shoulder adduction and elbow extension. However,
since these angles influence each other, it is challenging to identify the exact reason for this
sex difference. For the neck, a more pronounced inclination was observed in women. This
difference, with a medium effect size (d = −0.55), could be related to the varied behavior
of the neck during daily activities. For example, Tierney et al. [50], found that women
have lower neck isometric strength, neck girth, and head mass compared to men when re-
sponding to an external force. This subtle difference might influence neck posture, possibly
resulting in a generally more forward head position for women.

While some studies have validated already the accuracy of ML algorithms in iden-
tifying joint center locations with a precision of 30 mm or less [51,52], the use of ML in
assessing human posture is a growing field with limited studies to date. Moreira et al. [53]
recently published an article employing a PoseNet API-based method to assess human
posture in a sample of 20 adults. Unlike our study, they only calculated the tilt, i.e., hori-
zontal inclination of five anatomical landmarks. They observed a horizontal head tilt of
3.77◦ ± 2.92, shoulder tilt of 2.18◦ ± 1.56, hip tilt of 1.58◦ ± 0.86, ankle tilt of 1.67◦ ± 0.98,
right knee tilt of 163.93◦ ± 4.03, and left knee tilt of 165.94◦ ± 3.56. Comparing these results
with ours, we noted discrepancies for the head, shoulders, and knee tilts. Notably, their
definition of “knee tilt” corresponds to the valgus/varus position of the knee. However,
their reported values of approximately 14–16◦ (obtained by subtracting their results from
the flat angle of 180◦) seem questionable, as other studies have indicated that a knee angle
of −3◦ or +3◦ is indicative of a valgus or varus knee, respectively [54,55]. Despite their
higher values, the validity of their results is uncertain due to the heterogeneous nature
of their sample, ranging from 12 to 66 years old. Our findings for the knee varus/valgus
angle align with the neutral range. The lack of similar studies using ML methods for
posture analysis makes direct comparisons with existing research challenging. While we
found some similarities with two studies using a mobile application, detailed comparisons
are difficult [4,56]. These apps rely on specific positions of the body landmarks, whereas
human pose estimation algorithms are based on 3D joint center locations [57].

In order to assess the reliability of this method, we tested a sample of participants twice
and evaluated the ICC (3,k). We found substantial-to-excellent agreement for both hori-
zontal and vertical inclinations, while measures of the body joints demonstrated excellent
agreement. The reliability of MediaPipe has previously been explored in other studies. For
example, Ota et al. [58] assessed the reliability using a motion capture system during bilat-
eral squat movements and found ICC scores ranging between 0.92 and 0.96. Saiki et al. [38]
conducted two studies on the reliability of their method in patients with knee osteoarthritis.
They initially demonstrated excellent test–retest reliability (ICC (1, 1) = 1.000) and substan-
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tial agreement with radiography (ICC (2, 1) = 0.915) for measuring the hip–knee–ankle
angle. A subsequent study on knee range of motion after total knee arthroplasty fur-
ther showed high ICC values for knee extension and flexion (ICC = 1.000 for both). Their
findings were consistent with both X-ray and goniometry measurements (ICC range:
0.963–0.994) [59]. Also, Latreche et al. [60] confirmed the valid results of MediaPipe for
specific rehabilitation movements. They reported ICC values of 0.96, 0.99, 0.99, and 0.99 for
shoulder abduction, adduction, extension, and flexion movements, respectively. Further-
more, Hii et al. [61] compared the gait analysis accomplished with MediaPipe and Vicon
cameras, finding good-to-excellent ICC agreement in all temporal gait parameters except
for double support time, which exhibited an ICC > 0.50.

In this study, we analyzed the length of body vectors. While limited in reflecting
real-world measurements, they offer insight into underlying anatomical variations. The
magnitude of the correlation coefficients (ranging from 0.473 to 0.60) indicates a moderately
strong relationship between height and posture variables. This positive correlation signifies
that as height increases, there tends to be a corresponding change in the length of body
vectors. As expected, we observed a less pronounced than anticipated shoulder–hip
difference between sexes (men: 83.8 ± 14.9 pd; women: 63.4 ± 13.3 pd), aligning with
well-established sex differences in body lengths [62]. When we performed cluster analyses,
we expected it to primarily differentiate participants based on their sex. However, we found
a marked distinction in body vector lengths between the two groups formed by the analysis
(CG1 and CG2), and this distinction was independent of the sex of participants. Both groups
contained a mix of men and women, demonstrating the ability of the cluster analysis
to identify a pattern of posture variation beyond the traditional sex-based anatomical
differences. This distinction was much more pronounced than the subtle differences
observed for body angles and inclinations within the cluster analysis. Notably, the arm and
torso lengths differed between groups: 233.4 ± 16.2 pd (CG1) vs. 295.9 ± 21.6 pd (CG2),
with an effect size of 3.28; and 241.2 ± 14.1 pd (CG1) vs. 307.7 ± 23.4 pd (CG2), with an
effect size of 3.44. The most prominent difference influencing PCA was the shoulder–hip
differential: 57.5 ± 7.0 pd (CG1) vs. 86.6 ± 10.7 pd (CG2), with an effect size of 3.21. This
difference highlights two distinct postural types similar to the somatotype classification.
Olds et al. [63] utilized 3D anthropometry with 301 adults to identify body shape clusters,
aligning their findings with traditional somatotype classifications [64], i.e., endomorphic:
larger widths, shorter limbs; ectomorphic: longer limbs, narrower hips. Our study followed
a different approach, employing an unsupervised ML method to discern two distinct
postural categories. However, these categories appear to echo the somatotype trends: CG1
includes individuals with shorter body segments and similar shoulder and hip widths; CG2
includes individuals with longer body segments with notably wider shoulders compared
to hips.

This data-driven approach offers a novel perspective on postural assessment. Our
findings highlight the potential of ML models to provide fast, reliable posture analysis. In
clinical scenarios, this could enhance the understanding of anatomical variations, support
personalized interventions in physical therapy and ergonomics, potentially aid preventive
screening, and help define the boundaries between correctable and pathological posture.
Furthermore, it could help coaches evaluate the effectiveness of athletic movements [65],
optimize training, and prevent posture-related injuries [66,67]. Requiring minimal clothing
removal, this ML-based method reduces subjectivity in traditional postural analysis and
could guide physiotherapy, remote rehabilitation, and pathology management [68,69].
Additionally, the use of PCA and clustering suggests that posture classification may be
possible regardless of sex. While cluster analysis provides valuable insights into sport
tactics [70], its application to athletes’ posture data may represent an innovative approach.
This could help identify physiological characteristics closely linked to specific sports,
revealing how aspects of the human body directly impact athletic performance.

This research presents certain limitations. First, our analysis focused on a homogenous
sample. While we found significant differences, a more diverse population with a wider age
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range (e.g., 40–70) could yield more robust findings and highlight age-specific conditions,
as well as highlighting any age-specific postural differences. Second, requiring a specific
posture for the photos might potentially obscure certain postural alterations. Future
research should encompass a broader demographic to highlight more generalizable postural
conditions, as well as the analysis of dynamic postures. Furthermore, this approach should
be tested in the context of specific musculoskeletal disorders, e.g., lower back pain, and
other orthopedic or neurological conditions.

5. Conclusions

This study introduces a novel ML approach with significant clinical potential for
postural analysis, offering distinct classification and reduced subjectivity. This efficient,
non-invasive method could enhance personalized treatment in physical therapy and er-
gonomics. Our research confirms its applicability and reliability in assessing healthy adult
posture, providing normative data. We identified highly reliable postural parameters
and highlighted sex-related differences. Importantly, cluster analysis revealed postural
characteristics independent of sex, such as limb length and shoulder–hip width differences.
These findings suggest potential new opportunities for ML-driven posture classification.
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Appendix A

Table A1. Explanation of how each postural parameter is calculated based on the keypoints.

Postural Parameter Function Calculation

Body joints (◦)

Shoulder abduction/
adduction angle Angle between the hip, shoulder and elbow keypoints +.

Elbow flexion/
extension angle Angle between the shoulder, elbow and wrist keypoints +.

Hipabduction/
adduction angle Angle between the shoulder, hip and knee keypoints +.

Kneevarus/valgus angle Angle between the hip, knee and ankle keypoints +.

Hip flexion/extension angle Angle between the shoulder, hip and knee keypoints ++.

Knee flexion/
extension angle Angle between the hip, knee and ankle keypoints ++.
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Table A1. Cont.

Postural Parameter Function Calculation

Ankle flexion/
extension angle Angle between the knee, ankle and foot index keypoints ++.

Horizontal inclinations (◦)

Ears line Angle between an horizontal vector passing for one keypoint and
a vector connecting the two ears keypoints +.

Shoulders line Angle between an horizontal vector passing for one keypoint and
a vector connecting the two shoulders keypoints +.

Elbows line Angle between an horizontal vector passing for one keypoint and
a vector connecting the two elbows keypoints +.

Wrists line Angle between an horizontal vector passing for one keypoint and
a vector connecting the two wrists keypoints +.

Hips line Angle between an horizontal vector passing for one keypoint and
a vector connecting the two hips keypoints +.

Knees line Angle between an horizontal vector passing for one keypoint and
a vector connecting the two knees keypoints +.

Ankles line Angle between an horizontal vector passing for one keypoint and
a vector connecting the two ankles keypoints +.

Vertical inclinations (◦)

Neck inclination
Angle between a vertical vector passing for the shoulders
midpoint and a vector connecting the shoulders and ears
midpoints ++.

Trunk forward inclination Angle between a vertical vector passing for the hips midpoint and
a vector connecting the hip and shoulder midpoints ++.

Body imbalance Angle between a vertical vector passing for the hips midpoint and
a vector connecting the hip and shoulder midpoints +.

Leg inclination Angle between a vertical vector passing for one keypoint and a
vector connecting the hip and knee keypoints ++.

Vectors length (pds)

Shoulders-hips difference Difference between the vector connecting the two shoulders and
the two hips keypoints +.

Torso vector Length of the vector connecting the hip and shoulder keypoints +.

Total arm vector Sum of the upper and lower arm vectors.

Total leg vector Sum of the thigh and shank vectors.
pd = pixel distance, + front and back photos, ++ lateral photos.
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