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Abstract: Shoulder pain represents the most frequently reported musculoskeletal disorder, often
leading to significant functional impairment and pain, impacting quality of life. Home-based rehabil-
itation programs offer a more accessible and convenient solution for an effective shoulder disorder
treatment, addressing logistical and financial constraints associated with traditional physiotherapy.
The aim of this systematic review is to report the monitoring devices currently proposed and tested
for shoulder rehabilitation in home settings. The research question was formulated using the PICO
approach, and the PRISMA guidelines were applied to ensure a transparent methodology for the
systematic review process. A comprehensive search of PubMed and Scopus was conducted, and
the results were included from 2014 up to 2023. Three different tools (i.e., the Rob 2 version of the
Cochrane risk-of-bias tool, the Joanna Briggs Institute (JBI) Critical Appraisal tool, and the ROBINS-I
tool) were used to assess the risk of bias. Fifteen studies were included as they fulfilled the inclu-
sion criteria. The results showed that wearable systems represent a promising solution as remote
monitoring technologies, offering quantitative and clinically meaningful insights into the progress
of individuals within a rehabilitation pathway. Recent trends indicate a growing use of low-cost,
non-intrusive visual tracking devices, such as camera-based monitoring systems, within the domain
of tele-rehabilitation. The integration of home-based monitoring devices alongside traditional reha-
bilitation methods is acquiring significant attention, offering broader access to high-quality care, and
potentially reducing healthcare costs associated with in-person therapy.

Keywords: shoulder; rotator cuff; home-based rehabilitation; exercises; monitoring devices; orthopedics

1. Introduction

The shoulder joint is essential to activities of daily living (ADLs), facilitating funda-
mental needs like eating, dressing, and personal hygiene [1]. Shoulder pain represents
the most frequently reported musculoskeletal disorder [2–4], entailing discomfort, limited
range of motion (ROM), and decreased functional abilities, all of which significantly affect
the quality of life [5]. Rotator cuff tendinitis, impingement syndrome, rotator cuff lesions,
and adhesive capsulitis constitute the primary etiologies [1,6,7]. Despite the numerous
advantages they offer, traditional rehabilitation programs have limitations for many pa-
tients, specifically in terms of accessibility, cost, and time commitment [8,9]. Recognized
as an alternative or complementary approach to conventional rehabilitation programs,
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home-based rehabilitation empowers patients by promoting autonomy and facilitating
their recovery, enabling them to regain the ability to perform ADLs [6]. The potential
advantages of tele-rehabilitation systems are for both patients and healthcare organiza-
tions, including reduced travel time, cost savings, and enhanced patients’ accessibility [10].
Additionally, they can ensure continuous care, and enable health professionals to oversee
the advancement of multiple patients simultaneously. The repetitive and tedious nature
of prolonged at-home rehabilitation exercises can diminish patient adherence, negatively
impacting functional recovery outcomes [11,12]. The success of home-based rehabilitation
relies on patient engagement, adherence to the exercise regimen, and precise execution
of exercises [1,13,14]. High-quality home-based rehabilitation requires technologies and
methods for effective patient monitoring.

Recent advancements in remote monitoring technologies, particularly in the domain
of e-health, have enabled the transition of various devices from clinical to a home setting.
These devices are now designed to be more compact, smaller, ergonomic, and user-friendly,
to be managed by non-health professionals as well [6]. Nowadays, different technolo-
gies have emerged to support home-based physical rehabilitation, including robotic ex-
oskeletons, wearable systems, and contactless systems [15–17]. These devices facilitate
remote monitoring, focusing on different primary outcomes such as assessing physical
activity levels, balance and/or gait, biomechanical performance (ROM), or functional
capabilities [18,19]. The integration of artificial intelligence (AI) into home-based shoul-
der rehabilitation systems has been transformative [5,20–22]. AI enhances these systems
through real-time detection of compensatory movements and precise data analysis, en-
abling tailored treatment plans [23,24]. This advancement allows healthcare professionals
to customize rehabilitation programs based on individual patient needs, revolutionizing
patient care [6,25–27]. However, most of the systems designed for shoulder rehabilitation
in home settings are typically assessed exclusively in laboratory or in-clinic environments.
The execution of physiotherapy exercises may exhibit greater variability in the at-home
environment, introducing additional challenges for an accurate evaluation.

With the purpose of delineating advancements and available options in this field, the
aim of this systematic review is to report the monitoring devices currently proposed and
tested for shoulder rehabilitation in home settings.

2. Materials and Methods
2.1. Research Question

The research question was formulated following the PICO framework: Population
(P), Intervention (I), Comparator (C), and Outcome (O). In adults with shoulder injuries
undergoing rehabilitation at home (P), this systematic review aims to assess whether the
implementation of remote monitoring technologies (I), compared to traditional shoulder
rehabilitation methods without remote monitoring or AI support (C), results in improved
outcomes, including range of motion, pain reduction, and patient satisfaction (O).

2.2. Search Strategy

Articles were selected from two different databases, namely, PubMed and Scopus.
The search strategy included free text terms and Mesh (Medical Subject Headings) terms
combined with logical Boolean operators (AND, OR). In each database, the keywords and
their synonyms were classified into four groups: medical application; technology and
kinematic/physiological data; artificial intelligence; body segment (see Table 1). All studies
published from 2014 up to 2023 were considered.
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Table 1. Search parameters in the databases.

Groups Search Parameters

Medical application

“rehabilitation” OR “physiotherapy” OR “physiotherapy exercise *” OR
“physical therapy” OR “rehabilitation exercise *” OR “telerehabilitation” OR
“tele-rehabilitation” OR “tele rehabilitation” OR “tele-monitoring” OR “remote
monitoring” OR “patient monitoring” OR “home-based”

Technology and kinematic/physiological data

“smartwatch” OR “motion tracking system *” OR “motion capture” OR
“mocap” OR “contactless” OR “markerless” OR “camera-based” OR “camera *”
OR “depth camera” OR “RGB-D” OR “RGBD” OR “RGB” OR “video” OR
“video-based” OR “Kinect” OR “marker-less” OR “markerless” OR “wearable”
OR “wearable sensor” OR “inertial sensor” OR “inertial measurement unit”
OR “IMU” OR “MIMU” OR “accelerometer” OR “acceleration” OR
“gyroscope” OR “IMU-based” OR “electromyography” OR “EMG” OR
“surface electromyography” OR “surface electromyogram” OR “sEMG” OR
“body-worn sensor” OR “skeletonization” OR “stress” OR “heart rate
variability *” OR “hrv”

Artificial intelligence

“classification” OR “recognition” OR “pattern recognition” OR “unsupervised”
OR “supervised” OR “deep learning” OR “spectrogram” OR “neural network”
OR “artificial neural network” OR “ANN” OR “machine learning” OR “ML”
OR “AI” OR “artificial intelligence” OR “Convolutional Neural Network” OR
“CNN” OR “transformer” OR “classifier” OR “YOLO” OR “decision tree” OR
“DT” OR “random forest” OR “RF” OR “k-nearest neighbors” OR “kNN” OR
“k-NN” OR “Naive Bayes” OR “NB” OR “support vector machine” OR “SVM”
OR “support vector machine classifier” OR “SVC”

Body segment

“shoulder” OR “rotator-cuff” OR “rotator-cuff” OR “shoulder pain” OR
“shoulder injur *” OR “shoulder surgery” OR “rotator cuff injury” OR “frozen
shoulder” OR “shoulder impingement” OR “upper extremity” OR “adhesive
capsulitis” OR “dislocation” OR “Tendinitis” OR “Bursitis” OR “Fractures” OR
“Arthritis” OR “Arthrosis”

(*) was used in the databases at the root of the word to find multiple endings.

2.3. Eligibility Criteria

This systematic review included studies that met the following inclusion criteria:
articles written in English language; investigation of shoulder rehabilitation exercises;
studies focusing on the shoulder joint; availability of full text in open access.

Articles were excluded if at least one of the following criteria was met: inaccessible
articles; papers published or presented at conference; reviews, books, and editorials; shoul-
der joint not included in the analysis; use of prosthesis, orthoses, exoskeleton, or robotic
devices; patients with neurological pathologies (e.g., cerebral palsy, dystonia, hemiparesis,
stroke); patients with neurodegenerative pathologies (e.g., Parkinson disease); patients
with severe or moderate upper limb hemiparesis; patients who suffer from hemiplegia
(complete paralysis) or hemiparesis (partial weakness) condition or paralysis; amputees’
patients; wheelchair users; studies with nonhuman subjects; studies exclusively involving
healthy participants.

2.4. Study Selection Process

After removal of duplicates, all articles were evaluated through a first screening of title
and abstract by one reviewer (M.S.). Then, the full-text evaluation of the selected papers was
conducted by three independent reviewers (M.S., G.N., and M.G.P.). In cases of disagree-
ment, the final consensus was reached after discussion with a fourth reviewer (M.V.C.).

A PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
flowchart was used to track the number of articles that were excluded or included at each
phase. For designing the PRISMA, the guidelines of Liberati et al. [28] were followed (see
Figure 1).
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Figure 1. PRISMA flowchart.

2.5. Data Items

Data extraction was executed on the 15 selected articles. General study characteristics
were extracted on the basis of the following checklist: first author, year of publication;
study design; level of evidence; input variable; output variable; sample size; mean age;
percentage of female patients; shoulder disease; typology of the monitoring system used;
number, brand, placement, and wearability of the sensors; tasks executed in the assessment
protocol (number and typology); recognition of the movements; joint detection; joint angle
estimation; other target variables analyzed (also physiological parameters); AI model used;
system performances.

2.6. Data Analysis

The data from the included studies were schematized and analyzed through a combi-
nation of quantitative and qualitative approaches, providing a comprehensive overview of
the home devices for shoulder rehabilitation.

2.7. Quantitative Synthesis

The quantitative data across the studies were analyzed to evaluate the efficacy and
precision of AI and/or machine learning (ML) methods integrated within the rehabilitation
devices. Performance metrics, including Area Under the ROC Curve (AUROC), accuracy,
sensitivity, and specificity, were gathered for each study. Given the diversity in study
designs and outcomes, a meta-analysis was not conducted. Instead, a narrative synthesis
was used, where the data were described using frequencies and averages, and the efficacy
patterns were summarized through descriptive statistics. The AUROC emerged as a critical
measure, with values above 0.7 viewed as acceptable [21], and those surpassing 0.9 seen as
exemplary in terms of the models’ discriminative capacities.
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2.8. Qualitative Synthesis

The qualitative data were examined through thematic analysis, focusing on the ob-
jectives of the studies, the shoulder conditions treated, the rehabilitation exercises imple-
mented, and the AI models applied.

2.9. Integration of Findings

The integration of qualitative themes with quantitative performance indicators high-
lighted an advancement in the sophistication of home rehabilitation devices. The AI/ML
methods used for the recognition and correction of movement demonstrated reliable perfor-
mance in controlled environments. Nevertheless, the variability in the methodological quality
of the studies and the metrics reported highlighted the necessity for established standardized
outcome measures to better compare and synthesize future research outcomes.

2.10. Risk of Biased Assessment

To assess the risk of bias in the included studies, three different tools were employed:
the Rob 2 version of the Cochrane risk-of-bias tool for randomized control trials [29]; the
Joanna Briggs Institute (JBI) Critical Appraisal tool for case series; and the ROBINS-I tool
for non-randomized studies [30]. The RoB 2 tool is comprehensive, and structured into
five key domains through which bias might be introduced into trial results (Figure 2). The
JBI tool is a critical instrument for the evaluation of the methodological quality of studies,
sorted into ten domains (Figure 3). ROBINS-I is a tool developed to assess the risk of bias
in the results of non-randomized studies, using 7 domains (Figure 4). Two reviewers (G.N.
and M.G.P.) worked independently to assess the risk of bias.
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3. Results
3.1. Study Selection

A total of 463 articles were identified by the initial search, and 28 additional stud-
ies were identified through other sources. After the removal of duplicates, 481 articles
were included in the analysis; out of these, 376 articles were excluded through the first
title/abstract screening. Therefore, only 105 studies were considered for the full-text as-
sessment, out of which only 15 studies fulfilled the inclusion criteria. Among the reasons
for excluding articles, 46 were related to neurological pathology, 21 did not investigate the
home environment, 10 articles involved patients without shoulder pain, 12 were excluded
due to the use of exoskeleton or robotic devices, and 9 were inaccessible studies or did not
involve shoulder joint (see Figure 1).

3.2. Study Characteristics

A total of 1453 patients were identified from the 15 studies included. Only 10 studies
reported the percentage of female patients, adding up to 202 female patients, which ac-
counts for 41.81% of the total population. The overall average age of the patients was 45.41
years ± 4.6 years old, with only 10 out of 15 articles providing this study characteristic
(see Table 2). Regarding the variables reported, the most common input variables were
as follows: Task executed (15 articles), Shoulder disease (15 articles), Monitoring system
(14 articles), Age (12 articles), and Sex (10 articles). The most common output variable
provided by the studies was the ROM (six articles) (see Table 3). The included studies
recruited patients with various shoulder disorders. Specifically, eight studies enrolled
patients being treated for rotator cuff (RC) pathology [21,31–37]; one study included pa-
tients with osteoarthritis and inflammatory conditions [34]; two studies involved patients
with adhesive capsulitis [38,39]; and one study focused on patients diagnosed with type 2
subacromial impingement syndrome (SAIS) [40]. The remaining studies did not specify the
shoulder disease.

Table 2. Study Characteristics.

First Author, Year Study Design Level of
Evidence Sample Size Mean Age (SD) Female Patients % Shoulder

Disease
Antón, 2015 [41] Case series IV 15 66 - -

Bavan, 2019 [31] Case series IV 20 58.7 60% RC

Boyer, 2023 [21] Case series IV 42 45 (13) 64.30% RC

Burns, 2020 [33] Cohort study (case series) IV 140 - - RC

Burns, 2021 [32] Prospective cohort study
(case series) II 42 45 (13) 64% RC

Chalmers, 2023 [34] Randomized clinical trial I HEP group: 46
PT group: 43

HEP group: 71.5
(7.9)

PT group: 69.1
(7.5)

HEP group: 63%
PT group: 54%

Osteoarthritis,
inflammatory
conditions, or

RCTA
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Table 2. Cont.

First Author, Year Study Design Level of
Evidence Sample Size Mean Age (SD) Female Patients % Shoulder

Disease

Türkmen, 2019 [35] Randomized Controlled
Trial I 30 50.60 (8.54) 33% RC

Chen, 2020 [38] Prospective Control trial
(case control) II 24

MSR group:
53 (6.2)

HEP group:
56.1 (13.3)

MSR group: 42.9%
HEP group: 28.6% AC

Gutiérrez-Espinoza,
2020 [36] Randomized Control Trial I 118 - - RC

Hua, 2020 [42] Case series IV 50 21.9 (4.0) 40% -

Keene, 2020 [37] Randomized Control Trial I 708 - - RC

Lin, 2015 [39] Case series IV 13 - - AC

Martel, 2018 [43] Randomized Control Trial I 48

HEP group:
74.9 (7.1)

YMCA group:
72.9 (6.7)

Control Group:
72.7 (6.5)

HEP group: 75%
YMCA group:
63%Control
Group: 75%

-

Pekyavas, 2017 [40] Randomized Control
Trial-Therapeutic study I 30

HEP group:
40.6 (11.7)
Wii group:
40.33 (13.2)

HEP group: 86.7%
Wii group: 93.3% SAIS (type 2)

Steiner, 2020 [2] Prospective comparative
study (case control) II 84 - - -

HEP = Home-Exercise Program; PT = Physical Therapy; YMCA = supervised group community-based exercise
program; SD = Standard Deviation; AC = Adhesive Capsulitis; RC = Rotator cuff; RCTA = Rotator Cuff Tear
Arthropathy; SAIS = Subacromial Impingement Syndrome; (-) = data not available.

Table 3. Input and Output variables.

First Author, Year Input Variable Output Variable
Antón, 2015 [41] Age; shoulder disease; rehabilitation duration Movement recognition performance

Bavan, 2019 [31] Sex; age; arm dominance Movement recognition performance

Boyer, 2023 [21] Sex; age; rotator cuff tear thickness Movement recognition performance

Burns, 2020 [33]

Age; BMI; arm dominance; symptoms
duration; mechanism of injury; rotator cuff tear
thickness; operative procedures; comorbidities;

smoking; alcohol; opioid and cannabinoid
intake; physical activity level; education;

marital status; job demands; socioeconomic
status; social support; patient self-efficacy

Adherence

Burns, 2021 [32]
Sex; age; BMI; Baseline pain level; physical

activity level; job demands; education;
socioeconomical status; patient self-efficacy

Adherence; Dose-response between
physiotherapy activity and recovery;
Movement recognition performance

Chalmers, 2023 [34] Sex; age; affected arm; hand dominance; BMI;
work status; comorbidities; ethnicity; smoking ROM; patient-reported outcomes.

Türkmen, 2019 [35] Sex; age; affected arm Movement recognition performance

Chen, 2020 [38] Sex; age; education Adherence; Movement recognition
performance

Gutiérrez-Espinoza, 2020 [36]
Age; BMI; dominant shoulder; duration of

symptoms; socioeconomical status; occupation;
education; previous treatment

Functional improvement; pain relief; ROM
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Table 3. Cont.

First Author, Year Input Variable Output Variable

Hua, 2020 [42] Sex; age; BMI; History of upper extremity
injury; physical abilities; health condition Movement recognition performance

Keene, 2020 [37] Age; rotator cuff disorder Functional improvement; pain relief; adherence

Lin, 2015 [39] Shoulder disease Movement recognition performance

Martel, 2018 [43] Sex; age; BMI Functional capacities, cognitive function,
health status, adherence, and acceptability

Pekyavas, 2017 [40] Sex; age; diagnosis of type 2 SAIS and
scapular dyskinesis

Efficacy of home exercise program and virtual
reality exergaming; shoulder pain

Steiner, 2020 [2] Age; shoulder complaints; ability to perform
exercises without health risk; BMI Efficacy

BMI = Body Mass Index; ML = Machine Learning; ROM: Range of motion.

The selected articles presented the following levels of evidence: five level IV case
series [21,31,39,41,42]; one level IV cohort study [33]; one level II prospective comparative
study [2]; one level II prospective control trial [38]; one level II prospective cohort study [32];
and six level I randomized control trials [34–37,40,43].

3.3. Monitoring System

Regarding the sensory technology employed in the studies, eight articles used wearable
sensors [21,31–33,36,38,39,42], and six opted for camera-based systems [2,34,35,40,41,43].
The most used sensors in home-settings were inertial measurement units (IMUs), which inte-
grate accelerometers and gyroscopes [21,38,39]. The integration of magnetometers in these
units results in magnetic and inertial measurement units (M-IMUs), which were employed
in four studies [31–33,42]. The quantity of sensors employed in the previously mentioned
studies range from a single sensor [21,31–33] to configurations involving two [39], three [38]
and up to four sensors [42]. In four studies, sensor units were provided and then placed
on the subjects using elastic straps [38,39,42] or an arm sleeve [31]; while in three studies,
IMU or MIMU units integrated into smartwatches were employed [21,32,33]. Except for
the studies employing inertial sensors integrated into smartwatches, thereby positioned
on the wrist, common placement of sensor units included the upper arm [31,38,39,42] and
the wrist [38,39]. Other anatomical sites were the sternum [38], and the forearm, hand, and
the lateral aspect of the torso [42]. The methodologies employed for data transmission
exhibited variability. Certain studies transmitted sensor data wirelessly via Bluetooth to
mobile phones [31,38], while others chose to store the data internally before uploading
them to cloud storage for subsequent analysis [32,33]. The wearable device developed by
Chen et al. [38] included not only IMU sensors, but also a mobile app called Patient App
used by the patients, and a mobile app called Doctor App used by qualified health care pro-
fessionals for monitoring patients’ progress. Hua et al. connected each sensor to a battery
and a Raspberry Pi, centered on the front of the abdomen, serving as a computing platform
capable of receiving, storing, processing, and potentially analyzing the sensor data [42].
Gutiérrez-Espinoza et al. [36] conducted a single-blinded randomized controlled trial to
investigate an exercise program based on electromyography (EMG) sensors. EMG, using
a percentage of maximal voluntary isometric contraction, was employed as a pragmatic
tool to guide postoperative rehabilitation progression by sorting activation levels as low,
moderate, high, and very high.

The effectiveness of using the previously mentioned wearable sensors may depend on
how patients wear them. Recent trends indicate the growing use of low-cost non-intrusive
visual tracking devices, such as camera-based monitoring systems, in tele-rehabilitation
systems [22,35,38,40]. Three studies recorded patients’ movements using the Kinect sys-
tem [2,41,43]. The use of a single camera offers the advantage of a straightforward setup,
as it only requires connecting the camera to a device or installing the program on the
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television [40,43]. In comparison with wearable devices that require physical placement
on the subject, camera-based solutions offer a more convenient and user-friendly solution.
Türkmen et al. [35] proved the effectiveness of a video-based rehabilitation program in
improving shoulder ROM, alleviating pain, enhancing functionality, and improving quality
of life.

The development of a tele-rehabilitation system requires the integration and develop-
ment of a graphical user interface, which enables users to receive exercise instructions [2]
and observe two avatars, one demonstrating the correct execution of exercises and one
reflecting the user’s actual execution, enabling them to discern any differences and facil-
itating movement correction [2,41,43]. Based on their execution, users receive real-time
visual and acoustic feedback [2,41,43]. Additionally, the interface provides information
about the performance improvement and the ongoing therapy session [2,43]. Therapists,
on the other hand, can define new customized exercises for the users based on their per-
formance [41]. The software allows the personalized adaptation of exercises and games,
with the ability to adjust parameters such as speed, duration, precision, range of motion,
number of repetitions, and difficulty levels [43].

In the realm of rehabilitation, virtual reality (VR) systems have been increasingly
employed to further involve patients in their therapy [40,43]. Pekyavas et al. demonstrated
the effectiveness of a VR exergaming program, such as the Nintendo Wii, as a valuable
approach for patients undergoing rehabilitation.

3.4. Artificial Intelligence

The application of artificial intelligence (AI) and machine learning (ML) models in
rehabilitation has become increasingly important for different purposes, such as classifi-
cation, prediction, and the development of personalized treatment plans, as well as the
enhancement of diagnostic accuracy [44–48]. These not only enhance treatment effective-
ness but also facilitate more efficient and cost-effective care. One of the primary features
of the system entails the incorporation of algorithms for recognizing patient movements,
leveraging data gathered by the monitoring system [49]. Antón et al. [41] employed the
Kinect system, incorporating an AI model, to enhance activity recognition. This system di-
rectly obtains the skeletal structure, encompassing 20 distinct joints. The initial detection of
the body’s skeletal joints is pivotal in accurately detecting and analyzing joint movements,
thereby enabling a comprehensive assessment of the quality of exercises performed by the
patients. Built-in cameras, such as those in smartphones and tablets, along with AI, are
now significantly revolutionizing human pose detection.

Following data acquisition, a ML algorithm was developed to undertake tasks such
as classification, prediction, and treatment planning [50]. Traditionally, ML algorithms
consists in two steps, i.e., feature extraction and pattern classification [21,31,42]. The
segmentation of signals is necessary for the subsequent extraction of features. Differing
from conventional fixed-size sliding window techniques [21,32,33], Bavan et al. [31] defines
the boundaries of each movement by identifying time points where the velocity was closest
to zero (see Table 4). This approach ensures the detection of out-of-distribution (OOD)
data, i.e., eliminating non-exercise data [21]. Subsequently, from the acquired segmented
signals, various features are computed, including mean, standard deviation, variance,
kurtosis, range, and root mean square [21,31]. Alternatively, Hua et al. used the flattened
structure of the data or the ROM as features sets [42]. For classification of exercises, the
most commonly employed supervised ML models include the decision tree (DT) [31], the
support vector machine (SVM) [31,42], the k-nearest neighbor (k-NN), and the random
forest (RF) [21,31,42].
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Table 4. Artificial Intelligence Model.

First Author, Year AI Model Metrics Cross-Validation Technique

Antón, 2015 [41] DTW CM; Accuracy

Bavan, 2019 [31]

DT
SVM
k-NN

RF

CM; Accuracy; Sensitivity; Precision;
Specificity 10 folds CV; LOSOV

Boyer, 2023 [21]
k-NN
FCN
RF

Accuracy; Sensitivity; Specificity;
AUROC; F1 score 5 folds CV

Burns, 2020 [33] CRNN Accuracy; Precision; Sensitivity;
F1 score -

Burns, 2021 [32] FCN Accuracy; Sensitivity; Specificity;
AUROC; F1 score -

Chalmers, 2023 [34] - - -

Türkmen, 2019 [35] - - -

Chen, 2020 [38] - - -

Gutiérrez-Espinoza,
2020 [36] - - -

Hua, 2020 [42]

RF (300 trees)
LinearSVC

k-NN
MLP

CM; Accuracy; Precision; Sensitivity;
F1 score; Speed; Support -

Keene, 2020 [37] - - -

Lin, 2015 [39] BPNN Accuracy -

Martel, 2018 [43] - - -

Pekyavas, 2017 [40] - - -

Steiner, 2020 [2] - - -

DTW = Dynamic Time Warping; DT = Decision tree; SVM = Support Vector Machine; SVC = Support Vector
Classification; k-NN = k-Nearest Neighbor; RF = Random Forest; CRNN = Convolutional Recurrent Neural
Network; FCN = Fully Convolutional Neural Network; MLP = Multilayer Perceptron; BPNN = Back Propagation
Neural Network; CM = Confusion Matrix; AUROC = Area Under the Receiver Operating Characteristic; CV =
Cross-Validation; LOSOV = Leave-One-Out Cross-Validation; (-) = data not available.

In recent years, deep learning (DL) techniques have shown outstanding performance
in pattern recognition applications [21,51]. DL methods have been reported for the clas-
sification of various shoulder exercises, using either time series signals acquired from
sensor data [21,32,33,39,42] or images captured by cameras. A neural network (NN) with a
single hidden layer was implemented by Lin et al. [39]. Specifically, the NN consists of five
neurons in the hidden layer, and six neurons in the output layer. The training algorithm
employed in this NN architecture was the Back Propagation (Back Propagation Neural
Network, BPNN), involving the iterative adjustment of the weights to minimize the error
between the predicted and actual outputs. The implementation of multiple hidden layers
resulted in the MultiLayer Perceptron (MLP) used by [42]. The combination of Convo-
lutional Neural Networks (CNNs) and Recurrent Neural Networks (RNN) determines
the Convolutional Recurrent Neural Network (CRNN) used in [33]. Incorporated into
the Smart Physiotherapy Activity Recognition System (SPARS), the CRNN model takes
the fixed-length windows of sensor data as input and is able to classify physiotherapy
exercises and evaluate adherence to rehabilitation programs conducted at home. Two
studies implemented the Fully Convolutional Neural Network (FCN) classifier to detect
and classify physiotherapy exercises from the collected data [21,32]. The raw data acquired
were processed using an overlapping sliding window segmentation with a ten-second
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window length to yield fixed-length input to the FCN classifier. The FCN model core
proposed by [32] consists of 1D convolutional layers with rectified linear unit (ReLU) ac-
tivation and batch normalization. Burns et al. implement the FCN classifier both for the
binary classification task of differentiating physiotherapy activities from rest and activities
of daily living (such as walking, working at a computer, etc.), as well as for the multiclass
problem of discriminating between individual types of physiotherapy exercises [31]. A
different approach was employed by [41] implementing the Dynamic Time Warping (DTW)
algorithm as an exercise recognition method. Generally, the DTW algorithm assesses the
similarity between two temporal time series. Specifically, Antón et al. adopted a variant of
the DTW algorithm to compute the distances among trajectories for each limb to assess the
correctness of the exercises’ execution. This involved a comparison between the trajectory
path executed by the user with the corresponding stored trajectory [41].

To ensure robust model performance and achieve generalization to unseen data, the
cross-validation method was employed during the training of ML models, providing a
systematic approach to evaluate their predictive capabilities across diverse subsets of the
dataset [21,31,39]. Different numbers of folds, usually 5 [21] or 10 [31], were used. Bavan
et al. also implemented the Leave-one-subject-out validation (LOSOV) method to evaluate
an algorithm’s performance [31]. For both traditional ML and DL approaches, model
performance was evaluated using different metrics. Confusion matrices (CM) provide
a tabular representation of classifiers’ performance [31,41,42]. Different metrics can be
derived from the CM and used to assess the classification performances of the models,
including accuracy [21,31–33,41,42], F1-score [21,32,33,42], precision or positive predictive
value [21,31–33,42], sensitivity or recall or true-positive rate [21,31–33,42], specificity or
true-negative rate [21,31,32]. Hua et al. also used speed and support, defined as the number
of trials predicted for each label, to assess classifier performances [42]. Moreover, the
Receiver Operating Characteristic (ROC) curve provides a graphical representation of the
classification performance by illustrating the relationship between the false-positive rate
and the sensitivity. It has been demonstrated that the area under the ROC curve (AUROC)
is an excellent indicator of the classification performance because it visualizes classifier
performance as a curve rather than a single scalar number, which conveys more information
than many scoring measures [21,32].

3.5. Exercises Protocol

In the context of home-based rehabilitation exercises, there is a significant variability
in the set of shoulder rehabilitation exercises for the patients (see Table 5).

Table 5. Monitoring systems and Exercise protocol.

Task Executed Recognition of
MovementFirst Author, Year

Monitoring
System

(Type and Brand)

Number,
Placement, and

Wearability
of Sensors

Shoulder
Rehabilitation Exercise

Number,
Repetitions, Protocol

Antón, 2015 [41] Camera (Microsoft
Kinect system) -

Shoulder abduction; Hands to
mouth; Shoulder extension;
Shoulder flexion; Hands to

head; Shoulder rotation

N = 6
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First Au-

thor, Year 

Monitoring 

System 

(Type and 

Brand)  

Number, Place-

ment, and Weara-

bility of Sensors 

Task Executed  
Recognition of 

Movement  

Shoulder Rehabilitation 

Exercise 
Number, Repetitions, Protocol  

Antón, 

2015 [41] 

Camera (Mi-

crosoft Ki-

nect system) 

- 

Shoulder abduction; 

Hands to mouth; Shoulder 

extension; Shoulder 

N = 6 ✓ 

Bavan, 2019 [31] M-IMU
(MetaMotion R)

N = 1;
Upper arm (above

elbow);
Arm sleeve.

Shoulder abduction; Shoulder
flexion; Wall slide; Wall press;

Shoulder rotation

N = 5;
Rept = 10
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Task Executed  
Recognition of 

Movement  

Shoulder Rehabilitation 

Exercise 
Number, Repetitions, Protocol  

Antón, 

2015 [41] 

Camera (Mi-

crosoft Ki-

nect system) 

- 

Shoulder abduction; 

Hands to mouth; Shoulder 

extension; Shoulder 

N = 6 ✓ 

Boyer, 2023 [21] IMU

N = 1;
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Smartwatches
(Huawei Watch 2

smartwatches)

8 motions: Flexion; Abduction;
ER; IR; Row; Elbow extension;
Pull-down; Press-up6 simple
motions: Elevation; Rotation;

Row; Elbow flexion; Pull-down;
Press-up

N = 18
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System 
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Task Executed  
Recognition of 

Movement  

Shoulder Rehabilitation 
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Antón, 

2015 [41] 
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crosoft Ki-

nect system) 
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Table 5. Cont.

Task Executed Recognition of
MovementFirst Author, Year

Monitoring
System

(Type and Brand)

Number,
Placement, and

Wearability
of Sensors

Shoulder
Rehabilitation Exercise

Number,
Repetitions, Protocol

Burns, 2020 [33] M-IMU

N = 1;
Wrist;

Smartwatches
(Huawei Watch 2

smartwatches)

- -
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bility of Sensors 

Task Executed  
Recognition of 

Movement  

Shoulder Rehabilitation 

Exercise 
Number, Repetitions, Protocol  

Antón, 

2015 [41] 
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crosoft Ki-

nect system) 
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Hands to mouth; Shoulder 
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Burns, 2021 [32] M-IMU

N = 1;
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Smartwatches
(Huawei Watch 2

smartwatches)

9 motion types: Flexion; ER; IR;
Press-up; Pull-down; Row;
Abduction; Elbow flexion;

Extension

N = 19;
P = Patients were
asked to complete

their assigned
exercises each day
that they were not

attending in-person
physiotherapy.
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systematic approach to evaluate their predictive capabilities across diverse subsets of the 

dataset [21,31,39]. Different numbers of folds, usually 5 [21] or 10 [31], were used. Bavan 

et al. also implemented the Leave-one-subject-out validation (LOSOV) method to evaluate 

an algorithm’s performance [31]. For both traditional ML and DL approaches, model per-

formance was evaluated using different metrics. Confusion matrices (CM) provide a tab-

ular representation of classifiers’ performance [31,41,42]. Different metrics can be derived 

from the CM and used to assess the classification performances of the models, including 

accuracy [21,31–33,41,42], F1-score [21,32,33,42], precision or positive predictive value 

[21,31–33,42], sensitivity or recall or true-positive rate [21,31–33,42], specificity or true-

negative rate [21,31,32]. Hua et al. also used speed and support, defined as the number of 

trials predicted for each label, to assess classifier performances [42]. Moreover, the Re-

ceiver Operating Characteristic (ROC) curve provides a graphical representation of the 

classification performance by illustrating the relationship between the false-positive rate 

and the sensitivity. It has been demonstrated that the area under the ROC curve (AUROC) 

is an excellent indicator of the classification performance because it visualizes classifier 

performance as a curve rather than a single scalar number, which conveys more infor-

mation than many scoring measures [21,32]. 

3.5. Exercises Protocol 

In the context of home-based rehabilitation exercises, there is a significant variability 

in the set of shoulder rehabilitation exercises for the patients (see Table 5). 

Table 5. Monitoring systems and Exercise protocol. 

First Au-

thor, Year 

Monitoring 

System 

(Type and 

Brand)  

Number, Place-

ment, and Weara-

bility of Sensors 

Task Executed  
Recognition of 

Movement  

Shoulder Rehabilitation 

Exercise 
Number, Repetitions, Protocol  

Antón, 

2015 [41] 

Camera (Mi-

crosoft Ki-

nect system) 

- 

Shoulder abduction; 

Hands to mouth; Shoulder 

extension; Shoulder 

N = 6 ✓ 

Chalmers, 2023 [34] Camera -

Active abduction; Active
forward elevation; Active

Internal rotation in adduction;
Active External rotation in

adduction

N = 4 -

Türkmen, 2019 [35] Camera -

Examples: Shoulder flexion
with a stick; Scapular retraction;

External rotation; Scapular
adduction

P = Every day 3
sessions of

10 repetitions
each session

-

Chen, 2020 [38]
IMU (BoostFix,

COMPAL
Electronics Inc).

N = 3;
Sternum, upper
arm, and dorsal

wrist.
Elastic straps

Shoulder Pendulum Exercise;
Forward wall walking stretch;
Lateral wall walking stretch;

Cane stretch for shoulder
flexion; Cane stretch for

shoulder abduction; Cane
stretch for shoulder external

rotation; Cane stretch for
shoulder internal rotation; Cane
stretch for shoulder extension.

N = 8
P = Daily, 10 times
each exercise, hold

for 10 sec
each exercise

-

Gutiérrez-Espinoza,
2020 [36] EMG -

Isometric Scapular Depression;
Isometric Scapular orientation;

External Rotation; Passive
Flexion

- -

Hua, 2020 [42] M-IMU (Adafruit
BNO055)

N = 4;
Torso, upper arm,

forearm, and hand;
Elastic straps

Standing row; External rotation
with arm abducted 90◦;

External rotation; Bicep curl;
Forearm pronation/supination;

Wrist curl; Lateral arm raise;
Front arm raise; Horizontal

Abduction

N = 9.
Rept = 10
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[32] consists of 1D convolutional layers with rectified linear unit (ReLU) activation and 
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approach was employed by [41] implementing the Dynamic Time Warping (DTW) algo-
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DTW algorithm to compute the distances among trajectories for each limb to assess the 
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et al. also implemented the Leave-one-subject-out validation (LOSOV) method to evaluate 
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formance was evaluated using different metrics. Confusion matrices (CM) provide a tab-

ular representation of classifiers’ performance [31,41,42]. Different metrics can be derived 

from the CM and used to assess the classification performances of the models, including 

accuracy [21,31–33,41,42], F1-score [21,32,33,42], precision or positive predictive value 

[21,31–33,42], sensitivity or recall or true-positive rate [21,31–33,42], specificity or true-

negative rate [21,31,32]. Hua et al. also used speed and support, defined as the number of 

trials predicted for each label, to assess classifier performances [42]. Moreover, the Re-

ceiver Operating Characteristic (ROC) curve provides a graphical representation of the 

classification performance by illustrating the relationship between the false-positive rate 

and the sensitivity. It has been demonstrated that the area under the ROC curve (AUROC) 

is an excellent indicator of the classification performance because it visualizes classifier 

performance as a curve rather than a single scalar number, which conveys more infor-

mation than many scoring measures [21,32]. 

3.5. Exercises Protocol 

In the context of home-based rehabilitation exercises, there is a significant variability 

in the set of shoulder rehabilitation exercises for the patients (see Table 5). 

Table 5. Monitoring systems and Exercise protocol. 

First Au-

thor, Year 

Monitoring 

System 

(Type and 

Brand)  

Number, Place-

ment, and Weara-

bility of Sensors 

Task Executed  
Recognition of 

Movement  

Shoulder Rehabilitation 

Exercise 
Number, Repetitions, Protocol  

Antón, 

2015 [41] 

Camera (Mi-

crosoft Ki-

nect system) 

- 

Shoulder abduction; 

Hands to mouth; Shoulder 

extension; Shoulder 

N = 6 ✓ 

Keene, 2020 [37] - - External rotation; Flexion;
Abduction of the Shoulder N = 22 -

Lin, 2015 [39] IMU

N = 2;
Upper arm, and

wrist;
Elastic straps

Scapula exercise; Codman’s
pendulum exercise; Finger

wall-climbing exercise;
Back-shoulder circling exercise;
Towel exercise; Spiral rotation

exercise in four steps

N = 6
Rept = 60 s
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[21,31–33,42], sensitivity or recall or true-positive rate [21,31–33,42], specificity or true-
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trials predicted for each label, to assess classifier performances [42]. Moreover, the Re-

ceiver Operating Characteristic (ROC) curve provides a graphical representation of the 

classification performance by illustrating the relationship between the false-positive rate 

and the sensitivity. It has been demonstrated that the area under the ROC curve (AUROC) 

is an excellent indicator of the classification performance because it visualizes classifier 

performance as a curve rather than a single scalar number, which conveys more infor-

mation than many scoring measures [21,32]. 

3.5. Exercises Protocol 

In the context of home-based rehabilitation exercises, there is a significant variability 
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Table 5. Monitoring systems and Exercise protocol. 

First Au-

thor, Year 

Monitoring 

System 

(Type and 

Brand)  

Number, Place-

ment, and Weara-

bility of Sensors 

Task Executed  
Recognition of 

Movement  

Shoulder Rehabilitation 

Exercise 
Number, Repetitions, Protocol  

Antón, 

2015 [41] 

Camera (Mi-

crosoft Ki-

nect system) 

- 

Shoulder abduction; 

Hands to mouth; Shoulder 

extension; Shoulder 

N = 6 ✓ 

Martel, 2018 [43] Camera (Microsoft
Kinect system) -

Butt kicks, high knees, lateral
launches, side steps;squats; leg

extension; lateral shifting;
balance; shoulder

abduction/adduction;
horizontal flexion and extension

P = Each exercise
session lasted 55 min

and included
different exercises
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trials predicted for each label, to assess classifier performances [42]. Moreover, the Re-
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classification performance by illustrating the relationship between the false-positive rate 

and the sensitivity. It has been demonstrated that the area under the ROC curve (AUROC) 

is an excellent indicator of the classification performance because it visualizes classifier 

performance as a curve rather than a single scalar number, which conveys more infor-

mation than many scoring measures [21,32]. 

3.5. Exercises Protocol 

In the context of home-based rehabilitation exercises, there is a significant variability 

in the set of shoulder rehabilitation exercises for the patients (see Table 5). 

Table 5. Monitoring systems and Exercise protocol. 

First Au-

thor, Year 

Monitoring 

System 

(Type and 

Brand)  

Number, Place-

ment, and Weara-

bility of Sensors 

Task Executed  
Recognition of 

Movement  

Shoulder Rehabilitation 

Exercise 
Number, Repetitions, Protocol  

Antón, 

2015 [41] 

Camera (Mi-

crosoft Ki-

nect system) 

- 

Shoulder abduction; 

Hands to mouth; Shoulder 

extension; Shoulder 

N = 6 ✓ 
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Table 5. Cont.

Task Executed Recognition of
MovementFirst Author, Year

Monitoring
System

(Type and Brand)

Number,
Placement, and

Wearability
of Sensors

Shoulder
Rehabilitation Exercise

Number,
Repetitions, Protocol

Pekyavas, 2017 [40] Nintendo Wii -

Posterior, anterior, and inferior
capsule stretching; pectoral
muscle stretching; serratus

anterior muscle strengthening;
bilateral shoulder elevation,

and scapular mobility exercises.
Bilateral shoulder elevation,

boxing, bowling, and
tennis games.

P = exercise program
for 6 weeks, 2 days a

week, and 45 min
per day
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resulted in the MultiLayer Perceptron (MLP) used by [42]. The combination of Convolu-

tional Neural Networks (CNNs) and Recurrent Neural Networks (RNN) determines the 

Convolutional Recurrent Neural Network (CRNN) used in [33]. Incorporated into the 

Smart Physiotherapy Activity Recognition System (SPARS), the CRNN model takes the 

fixed-length windows of sensor data as input and is able to classify physiotherapy exer-

cises and evaluate adherence to rehabilitation programs conducted at home. Two studies 

implemented the Fully Convolutional Neural Network (FCN) classifier to detect and clas-

sify physiotherapy exercises from the collected data [21,32]. The raw data acquired were 
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dataset [21,31,39]. Different numbers of folds, usually 5 [21] or 10 [31], were used. Bavan 

et al. also implemented the Leave-one-subject-out validation (LOSOV) method to evaluate 

an algorithm’s performance [31]. For both traditional ML and DL approaches, model per-

formance was evaluated using different metrics. Confusion matrices (CM) provide a tab-

ular representation of classifiers’ performance [31,41,42]. Different metrics can be derived 
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accuracy [21,31–33,41,42], F1-score [21,32,33,42], precision or positive predictive value 

[21,31–33,42], sensitivity or recall or true-positive rate [21,31–33,42], specificity or true-

negative rate [21,31,32]. Hua et al. also used speed and support, defined as the number of 

trials predicted for each label, to assess classifier performances [42]. Moreover, the Re-

ceiver Operating Characteristic (ROC) curve provides a graphical representation of the 

classification performance by illustrating the relationship between the false-positive rate 

and the sensitivity. It has been demonstrated that the area under the ROC curve (AUROC) 

is an excellent indicator of the classification performance because it visualizes classifier 

performance as a curve rather than a single scalar number, which conveys more infor-

mation than many scoring measures [21,32]. 

3.5. Exercises Protocol 

In the context of home-based rehabilitation exercises, there is a significant variability 

in the set of shoulder rehabilitation exercises for the patients (see Table 5). 

Table 5. Monitoring systems and Exercise protocol. 

First Au-

thor, Year 

Monitoring 

System 

(Type and 

Brand)  

Number, Place-

ment, and Weara-

bility of Sensors 

Task Executed  
Recognition of 

Movement  

Shoulder Rehabilitation 

Exercise 
Number, Repetitions, Protocol  

Antón, 

2015 [41] 

Camera (Mi-

crosoft Ki-

nect system) 

- 

Shoulder abduction; 

Hands to mouth; Shoulder 

extension; Shoulder 

N = 6 ✓ 

Steiner, 2020 [2] Camera (Microsoft
Kinect system) -

Examples: Shoulder
abduction/adduction;

Shoulder flexion/extension;
Shoulder external/internal
rotation; Shoulder external

rotation/internal rotation at
90◦ abduction.

N = 10
Rept = 5 days a week,
30 min per exercise,
6 months of training

in total
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resulted in the MultiLayer Perceptron (MLP) used by [42]. The combination of Convolu-

tional Neural Networks (CNNs) and Recurrent Neural Networks (RNN) determines the 

Convolutional Recurrent Neural Network (CRNN) used in [33]. Incorporated into the 

Smart Physiotherapy Activity Recognition System (SPARS), the CRNN model takes the 

fixed-length windows of sensor data as input and is able to classify physiotherapy exer-

cises and evaluate adherence to rehabilitation programs conducted at home. Two studies 

implemented the Fully Convolutional Neural Network (FCN) classifier to detect and clas-

sify physiotherapy exercises from the collected data [21,32]. The raw data acquired were 

processed using an overlapping sliding window segmentation with a ten-second window 
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correctness of the exercises’ execution. This involved a comparison between the trajectory 
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systematic approach to evaluate their predictive capabilities across diverse subsets of the 

dataset [21,31,39]. Different numbers of folds, usually 5 [21] or 10 [31], were used. Bavan 

et al. also implemented the Leave-one-subject-out validation (LOSOV) method to evaluate 

an algorithm’s performance [31]. For both traditional ML and DL approaches, model per-

formance was evaluated using different metrics. Confusion matrices (CM) provide a tab-

ular representation of classifiers’ performance [31,41,42]. Different metrics can be derived 

from the CM and used to assess the classification performances of the models, including 

accuracy [21,31–33,41,42], F1-score [21,32,33,42], precision or positive predictive value 

[21,31–33,42], sensitivity or recall or true-positive rate [21,31–33,42], specificity or true-

negative rate [21,31,32]. Hua et al. also used speed and support, defined as the number of 

trials predicted for each label, to assess classifier performances [42]. Moreover, the Re-

ceiver Operating Characteristic (ROC) curve provides a graphical representation of the 

classification performance by illustrating the relationship between the false-positive rate 

and the sensitivity. It has been demonstrated that the area under the ROC curve (AUROC) 

is an excellent indicator of the classification performance because it visualizes classifier 

performance as a curve rather than a single scalar number, which conveys more infor-

mation than many scoring measures [21,32]. 

3.5. Exercises Protocol 

In the context of home-based rehabilitation exercises, there is a significant variability 

in the set of shoulder rehabilitation exercises for the patients (see Table 5). 

Table 5. Monitoring systems and Exercise protocol. 

First Au-

thor, Year 

Monitoring 

System 

(Type and 

Brand)  

Number, Place-

ment, and Weara-

bility of Sensors 

Task Executed  
Recognition of 

Movement  

Shoulder Rehabilitation 

Exercise 
Number, Repetitions, Protocol  

Antón, 

2015 [41] 

Camera (Mi-

crosoft Ki-

nect system) 

- 

Shoulder abduction; 

Hands to mouth; Shoulder 

extension; Shoulder 

N = 6 ✓ 

IMU = Inertial Measurement Unit; M-IMU = Magneto and Inertial Measurement Unit; EMG = Electromyography;

ER = External Rotation; IR = Internal Rotation; N = number of exercises; Rept = repetitions; P = protocol; (
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resulted in the MultiLayer Perceptron (MLP) used by [42]. The combination of Convolu-

tional Neural Networks (CNNs) and Recurrent Neural Networks (RNN) determines the 

Convolutional Recurrent Neural Network (CRNN) used in [33]. Incorporated into the 
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ceiver Operating Characteristic (ROC) curve provides a graphical representation of the 

classification performance by illustrating the relationship between the false-positive rate 

and the sensitivity. It has been demonstrated that the area under the ROC curve (AUROC) 

is an excellent indicator of the classification performance because it visualizes classifier 

performance as a curve rather than a single scalar number, which conveys more infor-

mation than many scoring measures [21,32]. 

3.5. Exercises Protocol 

In the context of home-based rehabilitation exercises, there is a significant variability 

in the set of shoulder rehabilitation exercises for the patients (see Table 5). 

Table 5. Monitoring systems and Exercise protocol. 

First Au-

thor, Year 

Monitoring 

System 

(Type and 

Brand)  

Number, Place-

ment, and Weara-

bility of Sensors 

Task Executed  
Recognition of 

Movement  

Shoulder Rehabilitation 

Exercise 
Number, Repetitions, Protocol  

Antón, 

2015 [41] 

Camera (Mi-

crosoft Ki-

nect system) 

- 

Shoulder abduction; 

Hands to mouth; Shoulder 

extension; Shoulder 

N = 6 ✓ ) =
implemented in the study; (-) = data not available.

The variability in the assigned protocol encompasses different domains, including the
monitored exercises, the number of repetitions, as well as the number of sessions. Some
protocols incorporated strengthening and stretching exercises to enhance the patient’s
muscle strength and flexibility, and prevent stiffness [35,43]. The most used exercise, in the
majority of studies, involved the flexion/extension movement in the sagittal plane [2,21,31,
32,34–38,40–43], followed by abduction/adduction movement in the frontal plane [2,21,31,
32,34,35,37,38,41–43], and the lateral/medial rotation [2,21,31,32,34–38,41,42]. The task of
elevating the upper limb in the scapular plane was evaluated by three studies [32,35,39].
Other exercises aimed at addressing issues related to scapular mobility and stability include
isometric scapular depression [36], scapular retraction [2,35], and scapular elevation [2].
Three studies also comprised external rotation with the arm abducted at 90◦ and horizontal
abduction [2,32,42].

Additional shoulder rehabilitation exercises that were used in the selected studies
included arm circumduction movement, wall slide [2,31], wall press [21,31,32], finger
wall-climbing exercise [39], resisted row [21,32,42], pendulum exercise [38,39], resisted lat
pull-down [21,32], push up [21,32,35], towel exercise [39], spiral rotation exercise in four
steps [39], and back-shoulder circling exercise [39]. Pekyavas et al. also incorporated games
such as boxing, bowing, and tennis [40]. Tasks related to ADLs were also evaluated, such as
hand-to-mouth and hand-to-head [41] or hand-to-pocket [2]. Most exercises were carried
out with the patient standing, while some exercises were also conducted in a seated [32] or
a lying position [32,35].

3.6. Parameters Monitored during Exercises

The primary objective of the shoulder rehabilitation programs is to restore shoulder
functionality, regain ROM, and enable most, if not all, of the ADLs. Studies primarily
assessed shoulder ROM to evaluate rehabilitation progress and improvements in mobility
and functional abilities. Starting from the three-dimensional (3D) coordinates of the 20 hu-
man joints, Antón et al. calculated the angle between the joints, and the angles between
two limbs connected by a joint [41]. Particularly, they calculated the angles by the different
parts of the body projected in the frontal plane (XY) and in the lateral plane (XZ). The raw
data from each sensor were converted into orientation data, represented in either quater-
nion [31,38,42] or Euler Angles [31,42] representations, in order to acquire information
regarding the 3D motion of the shoulder structure. Other studies monitored ROM at dis-
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tinct follow-ups, providing insights into the progression of recovery over time [2,33,34,36].
Usually, these evaluations were conducted at baseline (preoperatively) [33–36,38], after
6 weeks [34–36], after 3 months [34,38], after 12 weeks [36], after 12 months [33], after
24 months [34]. Given the complexity of shoulder movements, shoulder ROM is typically
computed for flexion and extension, adduction and abduction, and internal and external
rotation [2,35,38].

Additional parameters not related to the shoulder joint, encompassing both physio-
logical and biomechanical aspects, can be measured to gain a comprehensive insight into
the patient’s response to rehabilitation exercises. Burns et al. collected both inertial data
and heart rate data during physiotherapy exercise, but they did not use this physiological
data as input to the AI model for a more comprehensive assessment of the patients’ perfor-
mance [33]. The success of a rehabilitation program also depends on the daily behavior of
the subjects. Gutiérrez-Espinoza et al., using the Xiaomi MI Band 3 Smart Bracelet, gath-
ered data on daily movement behavior (DMB), encompassing information about physical
activity (steps per day), sedentary behaviors, and sleep duration [36].

Moreover, validated clinical outcome measures were collected through questionnaires,
facilitating the assessment of relevant metrics at baseline [2,32–36,38,40,43], after 4 weeks [32],
6 weeks [34–36,40], 1 month [38,40], 2 months [38], 8 weeks [32,37], 3 months [2,34,38],
6 months [2,37], 12 weeks [32,36,43], 12 months [33,37], and 24 months [34] of the rehabilita-
tion program. The Visual Analog Scale (VAS) was employed to quantify pain levels (felt at
rest, during activity, and at night) [34–36,38,40] and the level of function [34]. For the VAS
scale, subjects indicated their perceived pain/function levels on a scale ranging from 0 (no
pain or normal function) to 10 (worst pain or impaired function). Another scale used for
pain assessment was the Numeric Pain Rating Scale (NPRS) [32,33].

Gutiérrez-Espinoza et al. evaluated shoulder function using the Constant–Murley
questionnaire, which includes sub-scales addressing various dimensions such as pain, activ-
ities of daily living, and physical examination components related to active and muscular
strength measures [36]. Three studies assessed pain and disability associated with shoulder
pathology using the Shoulder Pain and Disability Index (SPADI) questionnaire [2,37,40].
To evaluate patients’ functional status, the Disabilities of the Arm, Shoulder and Hand
(DASH) questionnaire [32,33,35,36,38], and the American Shoulder and Elbow Surgeons
Standardized Shoulder Assessment Form (ASES) shoulder evaluation form [34] were used.
The Western Ontario Osteoarthritis Score (WOOS) is a patient-reported outcome measure
specifically designed specifically for assessing outcomes related to shoulder osteoarthri-
tis [34]. The health-related quality of life (HRQoL) was assessed using the Short Form
12 (SF-12) [35] or the EQ-5D-5L (EuroQol-5 Dimensions, 5 Levels) score [37]. The Global
Rating of Change (GROC) scale was used to gauge the overall levels of patients’ satis-
faction [35]. This assessment was performed with a five-point Likert scale, where high
scores are positively correlated with satisfaction. This scale provides a way for subjects
to express their own perception of performance after the treatment. Other questionnaires
were provided to patients covering other dimensions [2,33,37,43].

Adherence to the home-based rehabilitation program is crucial for maximizing treat-
ment efficacy. Consistent engagement with the rehabilitation exercises enhance the likeli-
hood of achieving therapeutic goals and improving overall functional outcomes. Adherence
diaries, in which patients record their independent exercises, represent the most employed
measure to assess adherence to home-based rehabilitation [33,37]. Two studies assessed
adherence to the home-based program by computing the exercise completion rate, which
represents the proportion of completed exercise sessions out of the total prescribed ses-
sion [38,43]. Instead, Burns et al. provided the two-item Pain Self-Efficacy Questionnaire
(patient self-efficacy) and the Patient Expectation Questionnaire score to explore potential
predictors of physiotherapy adherence [32]. With respect to the acceptability of exercises,
Martel et al. documented the perceived level of difficulty (PLD) and personal level of
enjoyment (PLE) using a four-level analog scale at the conclusion of each session in the
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participant logbook [43]. This evaluation was performed using the Physical Activity Enjoy-
ment Scale.

3.7. Quality Assessment

Regarding the risk-of-bias assessment in randomized trials, the studies conducted by
Chalmers et al. [34] and Gutierrez et al. [36] demonstrated a low risk of bias. The remaining
studies revealed certain concerns in specific domains, such as deviations from the intended
intervention and the absence of outcome data [37,43]. In the case of non-randomized
studies, the risk of bias ranged from low to moderate, with concerns regarding the selection
of participants, deviations from intended interventions, and the prevalence of missing
data [2,38]. Among these studies, the case series conducted by Bavan et al. stood out for
having a low risk of bias [31]. The case series studies, which predominantly suggested a
low risk of bias, were characterized by several unclear judgments, potentially indicating the
need for more detailed information or further clarification [21,32,33,39,41,42]. The quality
assessment suggested that, although many studies included in the systematic review exhibit
high quality, there are specific areas where the risk of bias is elevated. These aspects should
be considered when interpreting the results of the review.

4. Discussion

Traditional rehabilitation methods require regular visits to physiotherapy centers,
entailing both cost and logistic challenges for many patients. The emerging field of remote
patient monitoring shows promising advantages for enhancing patient outcomes in ortho-
pedic care. The current trend is to leverage technology to enable efficient and effective
treatment outside traditional clinical settings. Advances in technology and the latest AI
models have facilitated the widespread adoption of home-based devices, providing an
accessible and cost-effective platform for rehabilitation services.

This systematic review has provided insights into the evolving landscapes of systems
designed for the remote monitoring of shoulder rehabilitation sessions conducted at home.
The selection of the monitoring devices should prioritize usability and patient comfort.
Wearable motion sensors, such as IMUs or M-IMUs, offer a non-intrusive solution for
continuous monitoring of shoulder movements during rehabilitation exercises [16,25–30,32].
These devices are small, lightweight, non-invasive electronic devices, enabling real-time
feedback and data collection, empowering patients to track their progress and adherence to
prescribed exercises. These devices offer a non-intrusive and accessible means to capture
motion data, allowing detailed assessments of exercise performance. The effectiveness
of using these wearable sensors may depend on how patients wear them, highlighting
the importance of proper positioning and adherence to wearing protocols for accurate
data collection.

Camera-based monitoring systems, such as the Kinect system, have emerged as alterna-
tive solutions with the potential of offering a more user-friendly experience [2,17,24,31,34,35].
RGB and RGB-D cameras are the most prevalent types of cameras employed in such sys-
tems. However, these sensors are associated with certain limitations. For instance, the
visibility of subjects is inherently dependent on the presence of adequate lighting condi-
tions. In the realm of rehabilitation, virtual reality (VR) systems have been increasingly
employed to further involve patients in their therapy [34,35]. The incorporation of serious
games, challenges, and rewards into home-based rehabilitation programs offers an engag-
ing and motivating platform for individuals undergoing therapy. This integration not only
promotes active participation, but also facilitates progress tracking, holding the potential to
transform therapy into a more enjoyable and interactive experience, ultimately enhancing
patient engagement and treatment outcomes [16,25–28,30].

The heterogeneity among studies is not only related to the type of monitoring systems
and AI models but also extends to the executed shoulder exercises and the monitored
parameters. The primary objective of rehabilitation programs is to restore shoulder func-
tionality, regain the range of motion (ROM), and enable most activities of daily living
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(ADLs). Consequently, a predominant focus in most studies involved the assessment of
shoulder ROM, providing valuable metrics to evaluate improvements in shoulder mobility
and the potential restoration of functional capabilities for everyday activities.

However, challenges and considerations arise in the usage of these monitoring systems.
Factors such as patient adherence, detection of compensatory movements, and pain levels,
should be addressed in the design and implementation of these technologies. Currently, the
usage of a diary or questionnaires is commonly employed to evaluate adherence to home-
based rehabilitation. In traditional rehabilitation sessions, therapists evaluate the patient’s
performance during exercises and make necessary adjustments to optimize rehabilitation
outcomes. This is more challenging in the home-based context. When assessing the
execution of an exercise, various physiological parameters should be measured, including
the respiratory frequency, or breathing rate, the heart rate, the body temperature, and
others. This contributes to a holistic assessment of the patient’s overall condition. This is
particularly important in evaluating the level of effort exerted during exercises or the level
of pain, as traditional rehabilitation processes rely on therapist judgment, which may not
be directly applicable in a remote setting. Out of all the studies analyzed in this review,
only one study monitored heart rate, and another one monitored DMB.

Limitations

This systematic review, while comprehensive in its approach, encountered various
limitations. Firstly, the heterogeneity of the included studies poses a challenge. The
variations in monitoring systems, artificial intelligence models, rehabilitation exercises, and
monitored parameters hindered the ability to synthesize and compare results uniformly.
This diversity, although reflective of the field’s richness, limits the ability to formulate
generalized conclusions, suggesting the need for future research to use more rigorous
methodological standards.

The technological aspect of remote monitoring raised concerns about user-friendliness,
data privacy, and security. These factors play a crucial role in the widespread adoption and
success of home-based rehabilitation programs but are not thoroughly addressed in the
current literature.

These limitations should be carefully considered when interpreting the results of this
review and in the design of future studies in this domain.

5. Conclusions

In conclusion, this review supports the integration of home-based monitoring devices
alongside traditional rehabilitation methods, particularly crucial for patients with limited
access to clinic-based therapy. This approach has the potential to facilitate a broader access
to high-quality care and potentially reduce healthcare costs associated with in-person
therapy. In designing and developing home-based monitoring devices, different key
considerations must be addressed to ensure their effectiveness and widespread adoption.
These systems must accurately measure and track patient progress, as well as provide
reliable feedback and guidance to support the rehabilitation process. Scalability is also
crucial to accommodate the specific needs of different individual users. Designing systems
that are scalable allows for future updates and integration with emerging technologies,
ensuring long-term relevance and utility. User experience is another critical aspect to be
considered in the design of a home-based rehabilitation system. Ensuring ease of use,
accessibility, and a positive overall user experience is crucial for widespread adoption,
and creating an intuitive and user-friendly interface ensures easy engagement during
rehabilitation sessions. Finally, potential ethical considerations need to be considered in
the design and development of home-based rehabilitation systems. These concerns may
include issues such as data privacy and security, informed consent, and the potential
for misuse or abuse of these technologies. To address these concerns, measures such as
implementing secure data storage and transmission protocols, establishing clear informed
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consent procedures, and incorporating safeguards against misuse or abuse should be
integrated into the design of these systems [37].

While promising, these findings should be interpreted considering the methodological
limitations and biases present in the available literature [38]. For future research, there
is a clear need for standardization in the evaluation of remote rehabilitation devices to
facilitate comparability across studies. Longitudinal research is also necessary to assess the
long-term efficacy and safety of these technologies [39]. Additionally, cost-effectiveness
analyses would be beneficial to justify their inclusion in healthcare systems [40]. It is
incumbent, upon future research, to build on these findings, address the identified gaps,
and corroborate the long-term benefits of these innovative healthcare solutions.
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