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Abstract: The calculation of land surface temperatures (LSTs) via low-altitude thermal infrared
remote (TIR) sensing images at a block scale is gaining attention. However, the accurate calculation
of LSTs requires a precise determination of the range of various underlying surfaces in the TIR
images, and existing approaches face challenges in effectively segmenting the underlying surfaces in
the TIR images. To address this challenge, this study proposes a deep learning (DL) methodology
to complete the instance segmentation and quantification of underlying surfaces through the low-
altitude TIR image dataset. Mask region-based convolutional neural networks were utilized for
pixel-level classification and segmentation with an image dataset of 1350 annotated TIR images of an
urban rail transit hub with a complex distribution of underlying surfaces. Subsequently, the hyper-
parameters and architecture were optimized for the precise classification of the underlying surfaces.
The algorithms were validated using 150 new TIR images, and four evaluation indictors demonstrated
that the optimized algorithm outperformed the other algorithms. High-quality segmented masks of
the underlying surfaces were generated, and the area of each instance was obtained by counting the
true-positive pixels with values of 1. This research promotes the accurate calculation of LSTs based
on the low-altitude TIR sensing images.

Keywords: low-altitude TIR sensing image; urban rail transit hub; instance segmentation; deep
learning; underlying surface

1. Introduction

With rapid urbanization, natural underlying surfaces have been changed tremendously
by the construction of artificial surfaces such as asphalt and concrete pavements. In
particular, rail transit plays a profound role in urbanization, especially under the transit-
oriented development (TOD) model [1]. Urban rail transit hubs (URTHs), which are
crucial nodes in the urban rail transit network, dramatically change the land type and land
cover [2]. Moreover, the thermophysical properties of the artificial underlying surfaces
changed the thermal environment significantly [3–6]. Consequently, energy budgeting
has been altered, and the land surface temperatures (LSTs) of the built environment have
been elevated [7], which contributes to the heat island effect [8] and various environmental
issues [9–12].

Interest in the study of metropolitan thermal landscapes has increased rapidly, espe-
cially at the scale of city blocks, commonly regarded as the bedrock of cities, which present
microcosmic interactions that cumulatively determine broader urban dynamics. A major
focal point within this field of study is the quantitative inversion of LSTs [13], which has
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been highlighted by numerous scholars for its implications in revealing the differences
in surface temperature across urban terrains [13,14]. The applications of LSTs in various
purposes emphasizes the importance of the quantitative inversion of LSTs, such as moni-
toring the natural calamities [15], assessing the balance of urban-ecological systems [16],
and evaluating the patterns of landscape [17] and the urban heat island phenomena [18].

Understanding the temporal and spatial distribution characteristics of LSTs is benefi-
cial for improving our understanding of micro-urban thermal dynamics. Various algorithms
have been proposed to retrieve LSTs using a Landsat thermal-infrared dataset [19], ther-
mal band data of the Landsat Thematic Mapper [20,21], and high-resolution radiometer
data [22–24]. These algorithms have been proven to be extremely effective. In addition, the
estimation of LSTs using low-altitude thermal infrared remote (TIR) sensing images has
become more popular recently because of the flourishing development of unmanned aerial
vehicle (UAV) techniques. For instance, the authors previously proposed a practical and
feasible method for estimating LSTs at the block scale using near-ground meteorological
data and low-altitude TIR sensing images acquired using UAV [25]. Although the proposed
method is proficient at obtaining the LSTs of individual points on the underlying surface, it
cannot estimate LSTs for distinct types of underlying surfaces within the context of complex
underlying surfaces. To address this limitation, it is crucial to recognize and segment the
various types of underlying surfaces accurately before estimating LSTs. In practice, TIR
sensing images extend through a variety of regions covered by different types of underlying
surfaces. And it is challenging to recognize and segment these various types of underlying
surfaces in the images because of the influence of distractors having characteristics similar
to those of the underlying surfaces. Therefore, it is highly necessary to develop approaches
capable of achieving the accurate recognition and segmentation of underlying surfaces to be
able to estimate LSTs for specific surface types precisely, which in turn will help researchers
develop a comprehensive understanding of the urban micro thermal environment.

Deep learning (DL) has attracted significant attention because of its capabilities in
object recognition and segmentation. The back-propagation algorithm for DL proposed
by LeCun et al. [26] enables the automatic discovery of intricate structures in large im-
age datasets. The convolutional neural network (CNN), a DL algorithm, is specifically
designed to process images that are represented as multiple arrays [27,28]. Numerous
applications of CNNs in the tasks of object detection and segmentation of various kinds of
applications have proved to be effective and reliable [27,29–36]. Moreover, one of the key
breakthroughs in this field was a mask region-based convolutional neural network (Mask
R-CNN) algorithm [37] for processing the task of object instance segmentation. The instance
segmentation comprises two major tasks, i.e., the detection and semantic segmentation
of objects. The Mask R-CNN algorithm detects the objects in various kinds of images
efficiently and simultaneously generates the segmentation masks with high quality for
each instance. Applications of the Mask R-CNN algorithm for processing images have led
to significant advancements, particularly in the fields of AI monitoring and environment
exploration [38]. Additionally, the Mask R-CNN algorithm has been employed to delineate
and classify ice-wedge polygons, helping researchers understand polar landscapes [39].
Furthermore, the applications in ship detection [40,41], infrared image processing tasks for
power equipment [42], and the instance segmentation of moisture marks in shield tunnel
linings [43,44] have been proved available.

However, the application of the deep CNN framework in object detection and seg-
mentation in the low-altitude TIR sensing images of underlying surface has seldom been
reported because of the complex distribution of underlying surfaces. In the realm of TIR
sensing, where complex backgrounds exist and obtaining accurate surface area informa-
tion poses challenges, there has been a limited application of deep CNNs. Additionally,
obtaining accurate geometric area information for different underlying surfaces in the
low-altitude TIR sensing images is still a challenge. As mentioned previously, the Mask
R-CNN algorithm has already shown prowess in various fields of image instance segmen-
tation. Therefore, this study sought to extend its capabilities to segment the low-altitude



Sensors 2024, 24, 2937 3 of 21

TIR sensing images to mitigate the effect of complex backgrounds on the segmentation of
underlying surfaces and their area computation.

The goal was to introduce an instance segmentation framework to solve the aforemen-
tioned obstacles in the calculation of LSTs of each type of the underlying surface in the
context of complex underlying surfaces. To achieve this goal, a Mask R-CNN algorithm
was introduced and optimized to meet the demands of the unique application environment,
that is, the URTH. We first established an image dataset comprising 1500 low-altitude TIR
sensing images depicting markings on the underlying surfaces. The low-altitude TIR sens-
ing image dataset contained different types of underlying surface marks and was annotated
using the LabelMe tool (Version 4.5.13). Once the image dataset was meticulously prepared,
the optimization of the Mask R-CNN algorithm was performed through three crucial
processes, namely, the extraction of features, the generation of region proposals, and the
identification of underlying surface marks. To evaluate the performance of both the original
and the structurally optimized Mask R-CNN algorithms, comprehensive metrics, namely,
the mean average precision (mAP) [37], F1 score [45], intersection over union (IoU) [27],
and inference time, were used with 150 new testing TIR images. The structural-optimized
MASK R-CNN algorithm identifies the types of the underlying surfaces and extracts the
areas of the underlying surfaces in the low-altitude TIR sensing images more effectively
and accurately. These identification and area data can provide a foundation for further
precise calculation, distribution, and analysis of the LSTs based on the low-altitude TIR
sensing images.

2. TIR Sensing Image Dataset of the Underlying Surfaces at an Urban Rail Transit Hub

Using DL to complete the task of instance segmentation of the underlying surface of a
low-altitude TIR sensing image relies on the quantity of well-labelled and annotated image
data as well as the computation power. The problem of acquiring an extensive amount
of well-labelled image data has been resolved through the continuous advancement of
labelling techniques. However, the limited availability of a well-annotated and openly
accessible dataset that includes detailed information about the markings on the underlying
surfaces of URTHs is currently worth noting. Therefore, obtaining a sufficient number of
low-altitude TIR images that contain underlying surface marks is of utmost importance to
the instance segmentation of the underlying surfaces of URTHs.

2.1. Description of the Urban Rail Transit Hub

Specific criteria must be satisfied to collect low-altitude TIR sensing image data from
URTHs. These criteria include the multiple types of underlying surfaces at a station,
noticeable differences in the regions of these underlying surfaces, and the distribution
of these underlying surfaces being relatively complex, which meets the requirements of
our research work. Additionally, as one of the research cooperation units, the Guangzhou
Metro Group can provide the permits for the UAV flights. The Qingsheng (QS) station,
a hub station of Guangzhou Metro Line 4, aligns perfectly with these requirements for
obtaining low-altitude TIR sensing images. Thus, the QS station, located on Qingsha Road,
Nansha District, Guangzhou, a megacity in South China, was chosen for the imaging task,
as depicted in Figure 1a [46].

The QS hub station serves a central function in the transportation network of the
Guangzhou Metro. Serving as both an elevated station and a transfer point, the QS hub
station connects the Guangzhou Metro Line 4 and the future Line 18 with Guangzhou, Shen-
zhen, and the Hong Kong high-speed railway line, as illustrated in Figure 1b. Additionally,
to accommodate different passenger flows and directions, the station was equipped with
four distinct entrances and exits (Figure 1b).
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Figure 1. Overview of the QS hub station: (a) location of the QS hub station and (b) layout diagram 
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Shenzhen, and the Hong Kong high-speed railway line, as illustrated in Figure 1b. Addi-
tionally, to accommodate different passenger flows and directions, the station was 
equipped with four distinct entrances and exits (Figure 1b). 

Architecturally, the station is designed with two two-story structures (Figure 2) to 
ensure that it can accommodate a significant number of passengers and streamline their 
movement. The QS hub station exhibits a diverse range of underlying surfaces with a no-
tably intricate distribution, as depicted in Figure 3. As shown in Figure 3, the QS hub sta-
tion has 11 types of underlying surfaces, including various types of specific underlying 
surfaces in the urban rail transit area. In addition, there are significant differences in the 
area of various types of the underlying surfaces, which pose significant challenges for the 
task of instance segmentation in the low-altitude TIR images. The types of underlying 
surfaces at the QS hub station are listed in Table 1. 

 
Figure 2. Photographs of the layout of the QS hub station: the two buildings and related facilities. 

Figure 1. Overview of the QS hub station: (a) location of the QS hub station and (b) layout diagram
and surroundings of the QS hub station.

Architecturally, the station is designed with two two-story structures (Figure 2) to
ensure that it can accommodate a significant number of passengers and streamline their
movement. The QS hub station exhibits a diverse range of underlying surfaces with a
notably intricate distribution, as depicted in Figure 3. As shown in Figure 3, the QS hub
station has 11 types of underlying surfaces, including various types of specific underlying
surfaces in the urban rail transit area. In addition, there are significant differences in the
area of various types of the underlying surfaces, which pose significant challenges for the
task of instance segmentation in the low-altitude TIR images. The types of underlying
surfaces at the QS hub station are listed in Table 1.
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Table 1. Statistics on types of the underlying surfaces at QS station.

Number Type of Underlying Surface

1 Roof
2 Lawn
3 Dutch brick pavement
4 Concrete
5 Asphalt pavement
6 Roof cover
7 Back beam
8 Reaction plate
9 Escape cover plate

10 Glass
11 Track slab

2.2. Acquisition of the Low-Altitude TIR Sensing Images

A low-altitude TIR sensing system, illustrated in Figure 4 [25], was employed to
acquire the low-altitude TIR sensing images of the underlying surfaces at the QS hub station.
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Figure 4. UAV platform and low-altitude TIR imaging sensors.

The low-altitude TIR sensing system consisted of a TIR pictorial device along with
an RGB camera, integrated onto a DJI Matrice 200 unmanned aerial vehicle (UAV). The
parameters of the TIR sensing system, according to Wu et al. (2022) [25].

Several crucial factors were considered to ensure comprehensive coverage of the low-
altitude TIR sensing images captured using the TIR sensor, and a specific flight setup was
designed to ensure compliance with the standards stipulated in GB/T 39612–2020 of the
Ministry of Natural Resources of China [47]. Utilizing the FOV (field of view) of the TIR
camera’s wide-angle lens, parameters such as a 75% offset distance and overlapping rates
for both the flight routes and belt were established. This meticulous planning ensured
optimal data capture. Furthermore, the UAV was operated at the low altitude of 150 m at a
speed of 10 m/s, thereby guaranteeing the required spatiotemporal resolution. By consid-
ering these factors, we ensured comprehensive coverage of the TIR images while meeting
the requirements of the standard. This work is significantly important for applications in
the geographical information and resource management fields.

The passage included 15 flight routes, encompassing a total of 30 flight points. These
routes varied in length, with the longest measuring 585 m and the shortest measuring
398 m. The spacing between routes was 27.5 m (Figure 5). The combined distance of all
flight routes was 7927 m. Visual representations of the flight points are illustrated in the
point-cloud diagram in Figure 6.



Sensors 2024, 24, 2937 6 of 21

Sensors 2024, 24, x FOR PEER REVIEW 6 of 21 
 

 

camera’s wide-angle lens, parameters such as a 75% offset distance and overlapping rates 
for both the flight routes and belt were established. This meticulous planning ensured 
optimal data capture. Furthermore, the UAV was operated at the low altitude of 150 m at 
a speed of 10 m/s, thereby guaranteeing the required spatiotemporal resolution. By con-
sidering these factors, we ensured comprehensive coverage of the TIR images while meet-
ing the requirements of the standard. This work is significantly important for applications 
in the geographical information and resource management fields. 

The passage included 15 flight routes, encompassing a total of 30 flight points. These 
routes varied in length, with the longest measuring 585 m and the shortest measuring 398 
m. The spacing between routes was 27.5 m (Figure 5). The combined distance of all flight 
routes was 7927 m. Visual representations of the flight points are illustrated in the point-
cloud diagram in Figure 6. 

  
Figure 5. Aerial path plan of the low-altitude image system. 

 
Figure 6. Map of the point cloud (Blue dots represent the TIR sensing images; Green dots repre-
sent the RGB images; Red dots indicate the image quality are poor.). 

The UAV followed a predetermined flight plan after being launched from the starting 
point, as shown in Figure 5. It ascended vertically to reach the predetermined altitude and 
then proceeded to cruise automatically based on preset instructions from the ground con-
troller, as shown in Figure 4. Upon completing the scheduled route, the UAV returned to 
its take-off point. 

Furthermore, to attain a high spatiotemporal resolution of the TIR sensing image data 
and ensure the capture of an adequate number of images during each flight, we config-
ured an automatic shooting time interval of 3 s. Each flight had an approximate duration 
of 20 min, which provided comprehensive coverage of the designated area. Flight 

Figure 5. Aerial path plan of the low-altitude image system.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 21 
 

 

camera’s wide-angle lens, parameters such as a 75% offset distance and overlapping rates 
for both the flight routes and belt were established. This meticulous planning ensured 
optimal data capture. Furthermore, the UAV was operated at the low altitude of 150 m at 
a speed of 10 m/s, thereby guaranteeing the required spatiotemporal resolution. By con-
sidering these factors, we ensured comprehensive coverage of the TIR images while meet-
ing the requirements of the standard. This work is significantly important for applications 
in the geographical information and resource management fields. 

The passage included 15 flight routes, encompassing a total of 30 flight points. These 
routes varied in length, with the longest measuring 585 m and the shortest measuring 398 
m. The spacing between routes was 27.5 m (Figure 5). The combined distance of all flight 
routes was 7927 m. Visual representations of the flight points are illustrated in the point-
cloud diagram in Figure 6. 

  
Figure 5. Aerial path plan of the low-altitude image system. 

 
Figure 6. Map of the point cloud (Blue dots represent the TIR sensing images; Green dots repre-
sent the RGB images; Red dots indicate the image quality are poor.). 

The UAV followed a predetermined flight plan after being launched from the starting 
point, as shown in Figure 5. It ascended vertically to reach the predetermined altitude and 
then proceeded to cruise automatically based on preset instructions from the ground con-
troller, as shown in Figure 4. Upon completing the scheduled route, the UAV returned to 
its take-off point. 

Furthermore, to attain a high spatiotemporal resolution of the TIR sensing image data 
and ensure the capture of an adequate number of images during each flight, we config-
ured an automatic shooting time interval of 3 s. Each flight had an approximate duration 
of 20 min, which provided comprehensive coverage of the designated area. Flight 

Figure 6. Map of the point cloud (Blue dots represent the TIR sensing images; Green dots represent
the RGB images; Red dots indicate the image quality are poor.).

The UAV followed a predetermined flight plan after being launched from the starting
point, as shown in Figure 5. It ascended vertically to reach the predetermined altitude
and then proceeded to cruise automatically based on preset instructions from the ground
controller, as shown in Figure 4. Upon completing the scheduled route, the UAV returned
to its take-off point.

Furthermore, to attain a high spatiotemporal resolution of the TIR sensing image data
and ensure the capture of an adequate number of images during each flight, we configured
an automatic shooting time interval of 3 s. Each flight had an approximate duration of
20 min, which provided comprehensive coverage of the designated area. Flight operations
commenced in June 2019 and continued until March 2021. However, due to the impact
of the COVID-19 pandemic, the flight activities were temporarily suspended during this
period. Throughout the duration of the flights, fine and stable weather conditions were
required to ensure the optimal data collection. A total of 964 low-altitude TIR images was
obtained, as documented in Table 2.
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Table 2. Flight dates and corresponding number of the low-altitude TIR sensing images.

Date

June
2019

October
2020

November
2020

December
2020

March
2021

15th 16th 3rd 28th 22nd 23rd 23rd 24th

Number of
the TIR

sensing images
40 68 176 286 126 93 93 82

2.3. Establishment of Low-Altitude TIR Sensing Image Dataset

The low-altitude TIR sensing images obtained during the flights were initially stored
at a resolution of 640 × 512 pixels on the flash memory card of each flight. To ensure the
reliability and accuracy of the TIR sensing image data, a stitching process was performed
to obtain images with a higher resolution of 910 × 512 pixels. These stitched TIR sensing
images were then cropped to a resolution of 720 × 512 pixels, and images containing marks
of the underlying surfaces were selected for further analysis. To align the image size with
the dimensions of the markings on the underlying surfaces, we further cropped the selected
images into two scales with the distinct resolutions of 640 × 512 and 720 × 512 pixels,
respectively.

Subsequently, all the chosen TIR sensing images were annotated using LabelMe. The
markings on the underlying surfaces were manually annotated by creating polygons to
delineate their boundaries, as illustrated in Figure 7. Once the polygons had been drawn,
labels were assigned in the dialogue and recorded in the corresponding JSON file.
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After completing the annotation process, a detailed file capturing the coordinates of
various markings was created. To ensure the compatibility with popular machine learning
tools, the file was then transformed into the format which is similar to the Microsoft COCO
dataset [48] utilizing Python 3.6 for the transformation. The low-altitude TIR sensing
image dataset consisted of 1500 images and their corresponding JSON files, which stored
the geometric information of the underlying surface marks. A portion of the annotated
low-altitude TIR sensing images is shown in Figure 8.
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The dataset of the low-altitude TIR sensing images was separated into three distinct
parts for the training, validation, and testing. In accordance with the methodology outlined
by Shahin et al. (2004) [49], 90% of the dataset, which comprised 1350 images, was ran-
domly selected for calibration purposes, leaving the remaining 10% of the dataset, which
comprised 150 images, for testing.

The calibration data were subsequently split, with 80% (1080 images) allocated for
training the algorithm and the remaining 20% (270 images) reserved for the validation to
assess the performance of the algorithms. To augment the dataset of the images, the two
algorithms automatically employed vertical flipping for both the datasets of training and
validation, as optimized in Figure 9.
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2.4. Unique Characteristics of the Underlying Surfaces of the URTH

The distinctive characteristics of the markings on the underlying surfaces of the urban
rail transit hub, including aspects such as color, texture, and boundary information, are
pivotal for effective object detection and recognition. These attributes differentiate the
markings on the underlying surfaces of the urban rail transit hub from those on other
types of underlying surfaces. The digital number (DN) values in the low-altitude TIR
sensing images represent the darkness of the underlying surfaces. The different types of
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underlying surfaces exhibit distinct DN values, enabling their differentiation. The texture
of the underlying surfaces is another significant indicator useful for distinguishing different
surfaces in TIR sensing images. Variations in texture characteristics between different
surfaces are significant and aid identification. Furthermore, the area occupied by the
different underlying surfaces also differs significantly, which provides an additional cue
for detecting and recognizing different marks in the low-altitude TIR sensing images. The
significant feature disparities in the underlying surfaces within the URTH, as highlighted
in the low-altitude TIR sensing images, present unique features. To address this, the
Mask R-CNN algorithm was introduced, enabling the accurate detection and recognition
of the objects in this specific environment and ensuring enhanced operational efficiency
and accuracy.

The Mask R-CNN algorithm stands out as a pivotal innovation in the realm of com-
puter vision. Exceptionally skilled at pinpointing and distinguishing various marks within
images, Mask R-CNN accesses the essence of images consisting of arrays of pixel values.
The convolutional layers within the algorithm harness this intrinsic nature to achieve
remarkable precision. By analyzing the DN values of neighboring pixels, these layers are
adept at discerning the boundaries and edges of marks. This level of spatial accuracy is
remarkable in itself; however, the algorithm does even more. The subsequent convolu-
tional layers go beyond mere boundaries; they extend into patterns and motifs. They can
identify the precise configurations of edges and even discern the subtle textural features
of the marks, allowing Mask R-CNN to provide an unparalleled intricate understanding
of the underlying surfaces. This multi-layered approach empowers it to excel in tasks
ranging from image segmentation to object detection and scene comprehension, making it
a versatile and invaluable tool in the realm of computer vision.

The subsequent convolutional layers within the Mask R-CNN algorithm are tasked
with assembling the patterns identified into more comprehensive compositions that cor-
respond to distinct sections of the markings on the underlying surfaces. This process
enhances the ability to capture intricate details about the markings and ultimately aids in
achieving accurate recognition. By learning from the dataset through a self-teaching proce-
dure, the Mask R-CNN algorithm effectively extracts and interprets the distinctive features
of the underlying surface marks. The feature learning enables the algorithm to describe a
raw image in terms of the specific parts related to the marks on the underlying surfaces.
Once the Mask R-CNN algorithm has learned the features, it is capable of recognizing and
segmenting the marks of the underlying surfaces from the background of a low-altitude
TIR sensing image. The segmentation is achieved even in the presence of distractors, such
as other underlying surfaces that may exist outside the URTH.

The core concept of the Mask R-CNN is its capacity to learn and extract deep features
from data autonomously, particularly in the context of low-altitude TIR sensing images.
This enables the model to delineate underlying surface marks accurately, even when they
are surrounded by distracting elements, such as regions outside urban rail transit hubs. In
essence, the strength of the Mask R-CNN lies in its ability to discern and segment critical
surface features amid complex backgrounds.

3. Framework for the Instance Segmentation of the Low-Altitude TIR Sensing Images

To identify markings on the underlying surfaces accurately and simultaneously create
high-quality segmentation masks within low-altitude TIR sensing images, a structure
optimized Mask R-CNN algorithm was proposed. The original algorithm [37] combines
a Faster R-CNN according to Ren et al. (2017) [50] to perform the classifications and
regression tasks of bounding-box with an FCN branch for predicting the segmental masks,
as depicted in Figure 10.
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Figure 10. Framework details of the original Mask R-CNN algorithm.

The original algorithm progresses through three main stages: (1) the extractions of
the features at different depths of the underlying surface marks of an input image with a
backbone architecture; (2) the generations of the proposals of underlying surface marks with
a region proposal network, i.e., RPN; and (3) the classification, recognition of bounding-box,
and prediction of the masks of underlying surfaces through a head architecture, as depicted
in Figure 10.

3.1. Backbone Architecture of the Feature Extraction of Underlying Surface Marks

Typically, the backbone architecture employs a deep CNN to calculate the feature
hierarchies of the underlying surface marks within TIR sensing images layer by layer
iteratively. However, the CNN’s feature hierarchy calculates feature maps with different
depths and large semantic gaps between the different levels of the feature maps, which
is a result of the distinct depths of the convolutional layers. Higher resolution feature
maps, capturing fine-grained details, include low-level features; whereas, feature maps
with a lower resolution, representing more abstract information, contain high-level features.
Recent investigations concerning the recognition of marks [32,34,51] have utilized the
CNNs to generate a single coarser-resolution feature map with high level, where the marks
are predicted, as shown in Figure 11a.
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Nevertheless, this practice cannot benefit from the potential advantages associated
with integrating higher-resolution feature maps within the feature hierarchy. The omission
becomes particularly problematic in the recognition of small objects. Because of the pooling
operations applied by CNNs to the ultimate layer, a potential peril of forfeiting crucial low-
level features exists. This, in turn, renders the task of precisely detecting and discriminating
smaller objects on the underlying surfaces notably arduous. Therefore, to recognize small
marks of the underlying surfaces effectively, it is extremely important to maintain the
higher-resolution feature maps that possess information of low-level features because this
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practice enables a more comprehensive representation and understanding of the intricate
details related to small objects or marks.

Feature pyramid networks (FPNs), which was proposed by Lin et al. (2017) [52],
provide an effective remedy for addressing the difficulties encountered in computer vision,
particularly within the context of applying the Mask R-CNN algorithm to low-altitude TIR
sensing imagery.

FPNs leverage the inherent pyramidal structure of a CNN’s feature hierarchy to
maintain strong semantics across all scales, while also effectively providing representational
power, computational efficiency, and acceptable memory consumption. Therefore, based
on the algorithm, FPNs serve as the backbone architecture, enabling the extractions of
essential features from the underlying surface marks in low-altitude TIR images. The FPN
accomplishes feature fusion through a top-down method and lateral connections which
connects the high-resolution but semantically weak features with the low-resolution but
semantically strong features (Figure 11b). Overall, leveraging the FPN as the backbone
architecture of the algorithm facilitates the processing of the hierarchical features presented
in the feature pyramid structure, thereby offering an effective solution to the challenges in
computer vision applications, especially in the domain of low-altitude TIR sensing.

Figure 12 shows the architecture of an FPN. To construct the feature pyramid, a
conv5_x layer undergoes a transformation through a 1 × 1 convolutional layer, resulting
in the creation of the coarsest-resolution feature map. The initial map captures the most
semantically significant features related to the underlying surface marks. Subsequently,
a two-fold spatial resolution up-sampling is performed, followed by a merging with
lower-resolution maps through element-wise addition. The iterative progression continues,
yielding finer-resolution feature maps at varying levels and ultimately culminating in the
generation of a series of feature maps, which were denoted as P2 to P5. Each of these feature
maps is equipped with a 3 × 3 convolutional layer for further up-sampling. Importantly,
these feature maps serve as critical tools for independently conducting predictions related
to the underlying surface marks at different levels, enhancing the efficiency and accuracy
of various computer vision tasks, as exemplified in Figure 12.
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3.2. Generation of the Region Proposals for Underlying Surface Marks with an RPN

Object detection holds a crucial position within the expansive domain of computer
vision. Object detection networks predominantly rely on the regional proposal algorithms
to hypothesize the coordinates of objects. These algorithms suggest potential locations
where objects might be present in an image. However, one major drawback is the inten-
sive computation required for these proposals, which significantly hinders the network’s
efficiency in terms of runtime. In response to this challenge, researchers introduced region
proposal networks (RPNs) to address the problem of region proposal computation by
sharing extracted features with previously mentioned backbone architecture, which makes
the process nearly cost-free. The sub-network employs a dense 3 × 3 sliding window that
traverses a feature map produced by the backbone to conduct dual tasks: object or non-
object binary classification, and the bounding-box regression. Notably, for each position
of the sliding window, the RPN predicts a variety of anchor scales based on the given
aspect ratios. The classification and regression tasks are realized by a 3 × 3 convolutional
layer, following two 1 × 1 sibling convolutions for the classification and regression, as
exemplified in Figure 13.
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Notably, at each location of the sliding window, anchors with three scales (1:2, 1:1, and
2:1) and three aspect ratios (1:2, 1:1, and 2:1) are predicted simultaneously, as shown in
Figure 13 (blue dashed box). The anchors not only serve as a reference for classification and
regression but also enable the RPN to produce refined region proposals. These proposals
are then meticulously processed in the subsequent stages of the object detection system,
ensuring the accurate and efficient identification of objects.

In the analysis of low-altitude TIR sensing images, the FPN plays a pivotal role in
extracting the nuances of the underlying surface marks. The generations of the feature maps
at four distinct scales, namely the P2 to P5 (Figure 12), guarantee a comprehensive and
intricate representation. Moreover, incorporating three anchors with distinct aspect ratios
at each level culminates in a comprehensive set of 12 anchors throughout the pyramid, as
shown in Figure 13 (orange dashed box).

During the initial training phase, each FPN level yields 2000 proposals. However, these
proposals frequently overlap, leading to redundancies. To address the redundancy problem,
the non-maximum suppression (NMS) according to Ren et al. (2017) [51], which filters
proposals based on the classification scores, is employed. Subsequently, the procedure fine-
tunes the proposals, retaining only the foremost 256 proposals with the highest rankings to
be subsequently employed for the functions following the branches of the tasks, i.e., the
classification, bounding-box regression, and segmentation.
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3.3. Underlying Surface Mark Identification with the Head Architecture

The visual representation in Figure 14 indicates the intricate architecture of the
structure-optimized algorithm, which is an advanced model tailored to image processing
tasks. Three pivotal components are central to its functionality: the backbone structure,
known as the FPN, the RPN, and the all-encompassing head architecture. Serving as the
initial gateway, the FPN ingests the complete image through a series of convolutional
and max-pooling operations and generates feature maps spanning multiple scales. These
feature maps become the foundation upon which the RPN crafts proposals, pinpointing
potential surface marks within the image. Of these myriad proposals, a selected top 256,
based on the distinguishing scores, are ushered into the region of interest (RoI) align
layer according to He et al. (2017) [37]. Here, each proposal is transformed into a precise
feature vector, which subsequently navigates through the head architecture undergoing
classification and bounding-box regression. Notably, in a parallel operation, an innovative
mask branch diligently crafts segmentation masks of impeccable quality for every RoI.
The seamless fusion of the backbone, RPN, and head architecture, equipped with separate
branches of the tasks, i.e., the classification, bounding-box regression, and segmentation,
endows the optimized Mask R-CNN with the capability to excel in the precise detection
and segmentation of surface marks, revealing the subtle details within the input images.
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The structure of the Mask R-CNN algorithm was further developed by adding a branch
of a regional algorithm, which can calculate the area of a certain type of underlying surface.
Specifically, the regional algorithm is placed next to the FCN head branch (Figure 14), and
it can assign a value of 1 to pixels of the underlying surface regions that are segmented
by the FCN head branch. Therefore, the geometric area of the underlying surface can be
obtained by counting the number of the pixels with value of 1. And, the FCN head branch
can obtain the roof region through judging whether a certain pixel was the type of the roof
or other types of underlying surface, as shown in Figure 14. Then, the regional algorithm is
activated to compute the geometric area of the roof by counting the number of the pixels of
the obtained roof region. In addition, from a statistical analysis perspective, the calculation
of the area of a certain type of underlying surface also facilitates analysis of the average
LSTs of the various kinds of the underlying surface.

3.4. Training the Mask R-CNN Algorithms

Training the two Mask R-CNN algorithms for the instance segmentation of the marks
of the underlying surface within the low-altitude TIR sensing images, practices were carried
out adopting a computer equipped with an Intel Core i7-10700F central processing unit



Sensors 2024, 24, 2937 14 of 21

(CPU), two NVIDIA GeForce RTX 3060 graphics processing units (GPUs), and 64 GB of
random access memory (RAM), each with 16 GB of graphics memory. The two algorithms
were actualized based on Tensor Flow-GPU = 2.4.0, a software system developed by Google
Brain. The environment of the software framework was implemented using Python 3.8,
Anaconda 3.0, CUDA 11.0, and the corresponding cuDNN (version 8.0.5).

For the two Mask R-CNN algorithms, an input raw image underwent resizing, ensur-
ing that its shorter side measured 512 pixels in length. To train both algorithms on the two
GPUs, synchronous stochastic gradient descent (SGD) proposed by Le Cun et al. (1998) [26]
was utilized. Each mini batch processed two raw TIR images per GPU and the 256 RoIs
of each image. Momentum and initial weight decay were configured at 0.9 and 1 × 10−4,
respectively. Other hyper-parameters, including the batch size, weight decay, decay rate,
etc, were, respectively, set to 2, 1 × 10−4, and 0.9. Simultaneously, the learning rate was
initially set to 1 × 10−4 for the incipient 5 × 104 iterations, then reduced to 1×10−5 for the
subsequent 2 × 104 iterations. Additionally, it was decreased by a factor of 10 at 40,000
iterations. For training, the 256 RoIs of each image were utilized. For testing, 1000 RoIs per
image were utilized.

During the process of training the Mask R-CNN algorithm, the loss function was
monitored to assess the progress of the training. The initial loss was a considerable 7.568,
but the loss experienced a swift decline to 2.439 within the first 50 iterations. After an
extensive 50,000 iterations, it reached a minuscule 0.036, as shown in Figure 15. As a result,
the optimal weights were acquired and saved, which means that trained algorithms had
been obtained. The parameters were subjected to trial-and-error analysis through experi-
mentation to achieve the desired performance for accurately segmenting the underlying
surface marks.
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3.5. Quantification of the Marks of the Underlying Surface

The source code of the original Mask R-CNN algorithm was added to calculate the
areas of the marks of the various types of underlying surfaces at the QS URTH station. The
lawn in Figure 16 was adopted as an instance to illustrate the quantification process of the
marks of the underlying surfaces. At the first step, the branch of an FCN of the trained
structural-optimized algorithm generates a closed polygon for the different underlying
surface marks in the raw image. Then, the pixels within the polygon are assigned a value
of 1, and the remaining pixels are assigned a value of 0. Thus, a binary image is generated
before generating an image with the following underlying surface markings. In the final
step, the geometric area of the underlying surface mark is computed by counting the total
number of the pixels with the value of 1 in the generated binary image (Figure 16).
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4. Case Evaluation

To evaluate the performance of the two Mask R-CNN algorithms according to the
results of the instance segmentation of the underlying surface within the low-altitude
TIR sensing images, a dataset comprising 150 new images was utilized. Furthermore,
the performance of the structure-optimized algorithm was compared with that of the
original algorithm using the four quantitative evaluation metrics (mAP, F1 score, IoU, and
inference time).

4.1. Recognition Results

Based on the information provided, 150 images were input into both trained algo-
rithms. The output of the algorithms would be a set of predicted masks for each image,
indicating the regions where the underlying surface marks are present. Figure 17 displays
a portion of the segmental results obtained from the new testing images.
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The figures on the left side of Figure 17b,c obtained by the original Mask R-CNN
algorithm have two problems: (1) For smaller targets in the figure, such as the track
slab, back beam, and asphalt coating, the prediction results obtained through preliminary
training are difficult to detect or cannot be detected; (2) larger underlying targets can be
detected accurately, but their mask edges have wavy curves or are irregular, making it
difficult to align them accurately with the contour of the underlying surface for roof and
roof cover.

In comparison with the original Mask R-CNN algorithm presented by He et al.
(2017) [37], the structure-optimized Mask R-CNN algorithm demonstrated improved perfor-
mance by providing more pronounced and reliable information of the underlying surface
masks, as shown in the figures on the right side of Figure 17b,c. The Mask R-CNN algo-
rithms evidently furnished lucid information about the underlying surface marks. However,
in contrast to the original algorithm [37], the structure-optimized algorithm outperformed
because of its heightened clarity and dependability in conveying the underlying surface
mask information.

4.2. Evaluation of the Algorithms for Instance Segmentation

A more comprehensive analysis and comparison employing quantitative evaluation
metrics would serve to substantiate the superiority of the structural optimization Mask
R-CNN algorithm related to the original version. Three metrics, namely the mAP, F1
score, and IoU were utilized to assess the performance of the two Mask R-CNN algorithms
and the other instance segmentation approach, namely the Path Aggregation Network
(PANet) [53].

To compute these metrics, the following events were defined in the image segmenta-
tion. Correctly identifying an underlying surface mark pixel was determined to be a true
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positive (TP). Conversely, a correctly identified background pixel was a true negative (TN).
However, mistakes can occur. If a background pixel was incorrectly labelled as an underly-
ing surface mark pixel, it was a false positive (FP). Similarly, missing an underlying surface
mark and marking it as background resulted in a false negative (FN). These classifications
were pivotal for calculating the accuracy metrics. The calculations of the aforementioned
metrics were listed as the following formulas:

mAP TP+TN
TP+TN+FP+FN , (1)

Precision TP
TP+FP , (2)

Recall TP
TP+FN , (3)

F1 score 2
1/Precision+1/Recall , (4)

IoU TP
TP+FP+FN . (5)

These metrics enable a quantitative assessment of the performance of the algorithms
and provide insights into their accuracy, precision, and ability to perform image segmenta-
tion. For the comparison of the performance of the proposed Mask R-CNN model with
other developed instance segmentation approaches, the PANet and the original Mask R-
CNN model were also trained using the same training dataset. The changes in the accuracy
of these models were presented in Figure 18. Figure 18 shows that both the PANet and
Mask-R-CNN models converged after 25,000 iterations.
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According to the values of the metrics listed in Table 3, the performance of the struc-
tural optimization algorithm surpasses that of the original algorithm for underlying surface-
mark instance segmentation in low-altitude TIR sensing images of URTHs. The perfor-
mance of the proposed model was also compared with those of the original model and
the PANet model, as presented in Table 3. The proposed Mask R-CNN model achieved an
overall accuracy of 81.5%, which was higher than those of the original model (62.6%) and
the PANet model (77.8%). Similarly, the F1 score of the new method, which is crucial for
understanding the balance between precision and recall, was 0.752, significantly surpassing
the value of 0.552 for the original method, and 0.637 for the PANet model. The IoU, one of
the most telling metrics, further illustrates the superiority of the proposed method, which
achieved a remarkable value of 0.896 in contrast to the value of 0.625 of the original method,
and 0.814 of the PANet model. These results underscore the advancements made by the
new method, which will enable more accurate and efficient segmentation in this specific
application.
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Table 3. Metrics of algorithms for segmentation of underlying surface marks.

Algorithm mAP F1 Score IoU

PANet 77.8% 0.637 0.814
Original model 62.6% 0.552 0.625
Proposed model 81.5% 0.752 0.896

4.3. Inference Time

Table 4 presents the inference times for the three models, considering the detection
of bounding boxes, mask detection, and adding the masks to the raw image. The overall
inference time holds significant importance, particularly when dealing with a substantial
volume of low-altitude TIR sensing images depicting underlying surfaces.

Table 4. Inference times of the algorithms for the segmentation of the underlying surface marks.

Algorithm Inference Time (s Per Image)

PANet 0.473
Original model 1.305

Optimized model 0.216

The structure-optimized Mask R-CNN algorithm represents a substantial advance-
ment in the domain of image segmentation, particularly for low-altitude TIR sensing images
within urban rail transit hubs. It outperforms the original model and the PANet model in
both speed and accuracy. Notably, the proposed model achieves a remarkable reduction in
inference time (0.216 s per image) while simultaneously improving key accuracy metric
compared with the original model (1.305 s per image) and the PANet model (0.473 s per
image). The mAP, F1 score, and IoU, crucial for precise segmentation, are all substantially
enhanced, being higher than those achieved by the original model and the PANet model.
Herein, the ResNet-101 was used as the backbone architecture for the PANet model and
the proposed model. The results obtained using PANet were almost close to those of the
proposed model, although PANet had added bottom-up path augmentation, adaptive
feature pooling, and fully connected fusion tricks to improve the instance segmentation
performance. The proposed model was the model trained from scratch without using
ImageNet pre-training weights. The segmentation results obtained using the proposed
model, especially the mask mAP, were not better than those of PANet model. It can be
concluded the ImageNet pre-training weights contribute to the improvement of instance
segmentation results. These testing metrics and the contrastive analysis indicated that the
obtained proposed model had a good performance for the task of instance segmentation
of the underlying surface in low-altitude TIR sensing images. This compelling combina-
tion of superior accuracy and rapid processing makes the structure-optimized model an
outstanding choice for the task of segmenting underlying surface marks in URTHs.

5. Conclusions

This paper describes a method for the instance segmentation of the underlying surface
marks in low-altitude TIR sensing images. The process involves two major steps: (1) the
creation of the instance segmentation dataset of the low-altitude TIR sensing images of the
underlying surfaces and (2) the modification and training of the Mask R-CNN algorithm.
To create a low-altitude TIR sensing image dataset, the low-altitude TIR sensing images
were acquired via a low-altitude TIR sensing system. Then, annotations were drawn using
LabelMe. Subsequently, the corresponding annotation file was transformed into a COCO
dataset format using the Python language. With the dataset, the Mask R-CNN algorithm
was structure optimized and trained to recognize the underlying surface marks. The
hyperparameters suitable for specific problems were determined through case evaluation.
The algorithm was then trained on the created low-altitude TIR sensing image dataset until
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the algorithm’s loss function reached convergence, indicating the readiness for practical
applications.

For a comparative evaluation of the original Mask R-CNN algorithm, the PANet
algorithm, and the structure-optimized algorithm of this study, 150 testing images were
utilized. The structure-optimized Mask R-CNN demonstrated a relatively low inference
time while achieving superior performance according to the mAP, F1 score, and IoU in
comparison to those of the frequently used algorithms. The structure-optimized Mask
R-CNN demonstrated enhanced precision and efficiency in identifying the underlying
surface marks in the low-altitude TIR sensing images of an URTH. It is worth highlighting
that the results previously discussed were obtained from a training and validation dataset
encompassing a total of 1500 images. To enhance the accuracy and robustness of the
method further, additional images of the other URTHs should be acquired using the low-
altitude TIR sensing system. By enlarging the database, the algorithm’s performance
may be improved further. Such precise classification of underlying surfaces in the TIR
images promotes further advancement in the accurate calculation of the LSTs based on the
low-altitude TIR remote sensing images.
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