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Abstract: As power sources for Internet-of-Things sensors, thermoelectric generators must exhibit
compactness, flexibility, and low manufacturing costs. Stretchable and flexible painted thermoelectric
generators were fabricated on Japanese paper using inks with dispersed p- and n-type single-walled
carbon nanotubes (SWCNTs). The p- and n-type SWCNT inks were dispersed using the anionic
surfactant of sodium dodecylbenzene sulfonate and the cationic surfactant of dimethyldioctadecy-
lammonium chloride, respectively. The bundle diameters of the p- and n-type SWCNT layers painted
on Japanese paper differed significantly; however, the crystallinities of both types of layers were
almost the same. The thermoelectric properties of both types of layers exhibited mostly the same
values at 30 ◦C; however, the properties, particularly the electrical conductivity, of the n-type layer
increased linearly, and of the p-type layer decreased as the temperature increased. The p- and n-type
SWCNT inks were used to paint striped patterns on Japanese paper. By folding at the boundaries
of the patterns, painted generators can shrink and expand, even on curved surfaces. The painted
generator (length: 145 mm, height: 13 mm) exhibited an output voltage of 10.4 mV and a maximum
power of 0.21 µW with a temperature difference of 64 K at 120 ◦C on the hot side.

Keywords: single-walled carbon nanotubes; Japanese paper; painted thermoelectric generators; ink

1. Introduction

Solution-based manufacturing processes, including inkjet printing, screen printing,
vacuum filtering, and drop casting, are essential for many types of functional thin-film
devices because they enable the development of low-cost, scalable, and vacuum-free
manufacturing processes [1–10]. Major functional thin-film devices that use solution-based
manufacturing processes include photovoltaic cells, sensors, transistors, and thermoelectric
devices. In particular, perovskite photovoltaic cells fabricated via several solution-based
manufacturing processes have been the most successful examples in recent years [11–15].
The emergence of perovskite photovoltaic cells has caused significant changes in the solar-
cell industry, which was previously dominated by silicon.

Other functional thin-film devices can potentially make significant advances in society.
One such device is a thermoelectric generator, which converts thermal energy into elec-
tricity [16–20]. Conventional thin-film thermoelectric generators are typically fabricated
using inorganic materials such as bismuth telluride-based alloys through dry processes
such as sputtering, vacuum evaporation, and chemical vapor deposition [21–26]. In recent
years, the development of lightweight and flexible thermoelectric generators as indepen-
dent power sources for Internet-of-Things (IoT) sensors, such as wearable devices and
wireless sensor nodes, has advanced rapidly [27–34]. The use of thermoelectric generators
as a power source for IoT sensors obviates the necessity to replace sensor batteries and
wiring, thereby greatly expanding the places where IoT sensors can be used. Therefore,
thermoelectric materials and manufacturing processes that can replace traditional thin-film
thermoelectric generators must be developed.
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Promising thin-film thermoelectric generators have been fabricated from organic
materials or single-walled carbon nanotubes (SWCNTs) via solution-based manufacturing
processes [35–39]. In particular, SWCNTs are known for their excellent flexibility, heat
resistance, and simplicity of thin-film fabrication despite their inferior thermoelectric
performance compared to inorganic thermoelectric materials [40–42]. Recent studies have
shown that stable n-type SWCNT films can be obtained using several types of doping
materials [43–45]. Based on these studies, it is now possible to obtain both p- and n-type
SWCNT films and fabricate p–n junction SWCNT thermoelectric generators [46–48]. In our
previous studies, n-type SWCNT films with ultra-long stability for over two years were
developed using a cationic surfactant as a dopant [49], and several p–n junction SWCNT
thermoelectric generator structures were developed using vacuum filtration [50]. During
manufacturing, the completed SWCNT films were cut to the desired size and attached
to the substrate using double-sided tape. To reduce manufacturing costs and time, as
well as increase the convenience of using p–n junction SWCNT thermoelectric generators,
innovative manufacturing processes and generator structures are required.

This study presents thin-film thermoelectric generators on paper painted with inks
dispersed in p- and n-type SWCNTs. The painting method using the inks could be ex-
panded into a large-scale printing technology method, thereby enabling mass production
of thin-film thermoelectric generators, which could significantly reduce production costs
and improve cost-effectiveness. Paper was used as a substrate for the generators for three
reasons. First, the inks easily soak into the paper, and p–n junction SWCNT thermoelec-
tric generators can be fabricated by painting the inks into areas with p-type and n-type
properties [51,52]. Second, compared to the thermal conductivity of SWCNT films, this
study employs a low thermal conductivity, which can cause temperature differences in
the generators [53,54]. Third, thermoelectric generators that are flexible, inexpensive, and
recyclable have been realized on paper [55–59]. However, paper is unsuitable for use in
high-temperature environments, as it begins to darken when exposed to temperatures
above 150 ◦C. Therefore, thin-film thermoelectric generators painted on paper using inks
are useful for low- to mid-temperature applications, where most IoT sensors work [60].
The fabricated thermoelectric generators are stretchable and flexible, similar to accordions,
making them suitable for use in spaces of varying sizes and curvatures. We evaluated
the structural and thermoelectric properties of painted p- and n-type SWCNT layers and
measured the performance of the painted generator by creating a temperature difference.

2. Materials and Methods

Figure 1 shows the fabrication of the p–n junction SWCNT thermoelectric generators.
In Figure 1a, the starting materials used in this study were SWCNTs synthesized using the
super-growth method (SG-CNTs) (ZEONANO SG101, ZEON Co., Tokyo, Japan) [61]. An
n-type ink was prepared by adding 80 mg of SG-CNT powders and 400 mg of dimethyldioc-
tadecylammonium chloride (DODMAC) (Fujifilm Wako Pure Chemical, Osaka, Japan) as a
cationic surfactant in 40 mL of deionized water, resulting in a concentration of 0.2 wt% of
SWCNT and 1.0 wt% of DODMAC. The ink was completely dispersed using an ultrasonic
homogenizer (Branson Sonifier SFX 250, Emerson, St. Louis, MO, USA) at 70% output
power (nominal 200 W) for 60 min in an ice bath. The dispersion condition, particularly
the dispersion output power, was determined through our preliminary experiments. In
these experiments, when the dispersion output power was low, the dispersibility of the
SWCNTs was low, resulting in thick SWCNT bundles. Conversely, when the dispersion
output power was high, the dispersibility of the SWCNTs increased, but the SWCNTs
were damaged. Therefore, in this study, the dispersion output power was set to a medium
level (70%) to achieve an optimal balance between the two aforementioned conditions.
Consequently, the n-type ink with a density of 0.83 g/mL and a pH of 4.0 was prepared.
Conversely, a p-type ink was prepared by adding 80 mg of SG-CNT powders and 200 mg
of sodium dodecylbenzene sulfonate (SDBS) (Tokyo Chemical Industry, Tokyo, Japan) as
an anionic surfactant in 40 mL of deionized water, resulting in a concentration of 0.2 wt% of
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SWCNT and 0.5 wt% of SDBS. The dispersion condition of the p-type ink, prepared using
an ultrasonic homogenizer, was identical to that of the n-type ink. Consequently, the p-type
ink with a density of 0.77 g/mL and a pH of 4.1 was prepared.
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Figure 1. Fabrication process of painted thermoelectric generators on Japanese paper. (a) Ultrasonic
dispersion of n- and p-type SWCNT inks, (b) painting n- and p-type SWCNTs on Japanese paper,
and (c) completed painted generator on a curved surface with various shrink and expand conditions.

In Figure 1b, Japanese paper (Kami-4AW, Maruai, Kyoto, Japan) was used as the
substrate because it is very strong and has a relatively long life compared to conventional
paper. Additionally, Japanese paper is less expensive than polymer films and does not emit
harmful gases when burned. The paper for the thermoelectric generator was approximately
100 µm thick, 10 mm wide, and 240 mm long. No additional treatment was performed
on the Japanese paper used in this study to enhance the ink’s stability. Assuming that the
generators would be placed on the curved surface of tubes with typical diameters ranging
from 50 mm to 200 mm, the Japanese paper was folded in a mountain-valley pattern at
30 mm intervals. Using tweezers and brushes, n-type ink was painted on the Japanese paper
at specific regions: 0–30 mm, 60–90 mm, 120–150 mm, and 180–210 mm from the left edge.
To maintain a consistent application of SWCNT ink in each region, approximately 0.6 g of
SWCNT dispersion was absorbed into the brush and applied uniformly to the Japanese
paper until the dispersion in the brush was nearly depleted. This process was repeated
three times for each area. The thickness of the n-type region, including the paper thickness,
ranged from 150 µm to 240 µm. To develop n-type properties with ultra-long air stability,
the thermoelectric generators were subjected to heat treatment in an electric furnace with a
mixture of argon (95%) and hydrogen (5%) gases at atmospheric pressure [49]. The heat
treatment temperature was set at 150 ◦C, and the treatment duration was 1 h. After heat
treatment, p-type ink was painted on the Japanese paper in specific regions: 30–60 mm,
90–120 mm, 150–180 mm, and 210–240 mm from the left edge, using the same procedure



Sensors 2024, 24, 2946 4 of 11

and amount of SWCNT dispersion as that used for n-type ink painting. The thickness
of the p-type region, including the paper thickness, ranged from 120 µm to 150 µm. The
difference in film thickness between the n- and p-type SWCNT layers can be attributed
to the differential absorption of the inks into the paper, despite the nearly equal amount
of paint applied to both types of inks. The details are presented in the next section. We
ensured that both types of SWCNT layers adhered well to the Japanese paper. To enhance
the electrical conductivity of the generators, a silver paste was painted at the interfaces
between the n- and p-type SWCNT layers. Subsequently, the copper electrodes were
connected to both ends of the generator using silver paste. Photographs of the complete
generator are shown in Figure 1c. The generator can be stretched or shrunk on a curved
surface; the valleys of the generator are in contact with the curved surface.

To investigate the structural and thermoelectric properties of the p- and n-type SWCNT
layers, each ink was painted on Japanese paper with a size of 40 mm2. The paper specifica-
tions, including the thickness and conditions of painting and heat treatment, were the same
as those used for the p–n junction SWCNT thermoelectric generators. The microstructure
and crystallinity of the p- and n-type SWCNT layers were analyzed using field-emission
scanning electron microscopy (FE-SEM, Hitachi, S-4800, Victoria, BC, Canada) and Raman
spectroscopy (HORIBA, XploRA, Kowloon, Hong Kong). The in-plane Seebeck coeffi-
cient S and electrical conductivity σ were measured using the ZEM-3 method (Advance
Riko, ZEM-3, Kanagawa, Japan) in a helium atmosphere over a temperature range of
30 ◦C to 150 ◦C. The in-plane power factor PF, which is a crucial parameter for evaluating
thermoelectric performance, was calculated using the equation PF = σS2.

3. Results and Discussion
3.1. Structural Properties of SWCNT Layers

The microstructures of the p- and n-type SWCNT layers observed using FE-SEM are
shown in Figure 2. The surface morphologies of the SWCNT layers differed significantly
between the p- and n-types. As shown in Figure 2a, the p-type SWCNT layer consists of
several entangled SWCNT bundles with very small diameters (tens of nanometers). As
shown in Figure 2b, the n-type SWCNT layer is composed of entangled SWCNT bundles
with relatively large diameters (tens of micrometers) compared to that of the n-type layer.
The difference in bundle diameters between the two types of layers suggests that SDBS,
rather than DODMAC, improved the dispersibility of the SWCNTs. Therefore, the dif-
ference in dispersibility is believed to affect the thickness of the layer. The relationship
between the bundle diameter and dispersibility of SWCNTs has been reported for different
dopants [62,63]. In the p-type SWCNT layer, the ink was easily absorbed by the Japanese
paper because of its very small bundle diameter compared with the fabric diameter of the
paper, as shown in Figure 2c. In contrast, in the n-type layer, the ink did not penetrate
deeply into the Japanese paper because of its relatively large bundle diameter compared to
the p-type SWCNT layer. Consequently, the p-type SWCNT layer is thinner than the n-type
SWCNT layer.
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The Raman spectra of the p- and n-type SWCNT layers are shown in Figure 3. For
comparison, we added the Raman spectrum of the surfactant-free SWCNT film prepared
using the same starting material (SG-CNT powders) via vacuum filtration, based on our
previous report [64]. Distinct Raman shifts associated with the SWCNTs are observed,
including the G-band at ≈1590 cm−1 and the D-band at approximately 1340 cm−1. The
degree of crystallinity of the SWCNTs was determined from the G/D ratio, which represents
the intensity ratio of the G and D bands. The G/D ratios of the p- and n-type SWCNT
layers and surfactant-free SWCNT film were 1.9, 1.6, and 1.9, respectively. These trends
suggest that the crystallinity of the SWCNTs remains largely unaffected by the different
doping conditions. However, downshifts of the G- and D-bands were observed in both
the p- and n-type SWCNT layers with almost identical magnitudes. The downshift of the
bands occurred because of the effective surfactant doping. Similar phenomena have been
observed in other doped materials [65].
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free SWCNT film.

3.2. Thermoelectric Properties of SWCNT Layers

Figure 4 shows the in-plane thermoelectric properties of p- and n-type SWCNT layers
measured at temperatures ranging from 30 ◦C to 150 ◦C. In Figure 4a, the Seebeck coeffi-
cients of p- and n-type SWCNT layers measured at 30 ◦C were 50 µV/K and −46 µV/K,
respectively. Both layers of SWCNTs maintained mostly consistent values even as the
temperature increased from 30 ◦C to 150 ◦C.
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Figure 4b shows the electrical conductivities of the SWCNT layers at different temper-
atures. Notably, the electrical conductivity was calculated using the layer thickness, which
does not account for the ink soaked in the Japanese paper. In p-type SWCNT layers, the
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electrical conductivity was maintained at a similar value of 550 S/m temperatures below
120 ◦C. When the temperature was increased to 150 ◦C, the electrical conductivity decreased
to 380 S/m. In contrast, the electrical conductivity of the n-type SWCNT layers at 30 ◦C
was comparable to that of the p-type SWCNT layers at the same temperature. However,
the electrical conductivity of n-type SWCNT layers increased linearly as the temperature
was raised from 30 ◦C to 150 ◦C. The electrical conductivity of the n-type SWCNT layer at
150 ◦C was 1153 S/m, which was 2.4 times higher than that at 30 ◦C.

To investigate the factors that cause differences in the temperature dependence of
the electrical conductivity of the p- and n-type SWCNT layers, the thermoelectric prop-
erties of a surfactant-free SWCNT film were measured, which is the same sample used
for Raman spectroscopy (Figure 3). The temperature dependence of the thermoelectric
properties of the fabricated surfactant-free SWCNT films is provided in the Supplementary
Information (Figure S1). The surfactant-free SWCNT film showed an increase in electri-
cal conductivity and a decrease in the p-type Seebeck coefficient as the temperature was
raised from 30 ◦C to 150 ◦C. These observations indicate that the surfactant-free SWCNT
film exhibits semiconducting behavior; that is, the interband transitions of holes occur by
absorbing thermal energy in the far-infrared region. This was consistent with a previous
report on SWCNT films with similar G/D ratios [66]. In the n-type SWCNT layer, the
electrical conductivity increased, whereas the Seebeck coefficient remained relatively stable
as the measurement temperature increased. These phenomena occurred because the carrier
concentration remained unchanged, whereas the mobility increased as the temperature
increased. Therefore, cationic surfactant components are expected to adsorb tightly onto
the SWCNT surface and enhance the electronic conduction of the entire SWCNT bundle
without interband electron transitions. To further enhance the electrical conductivity of
the n-type SWCNT layers, an effective approach is to use SWCNTs with a high G/D ratio.
In contrast, in the p-type SWCNT layers, the temperature dependence of the electrical
conductivity is affected by the change in the anionic surfactant component adsorbed on the
SWCNT surface in the high-temperature region, which inhibits current flow and reduces
hole mobility.

To confirm the change in the anionic surfactant on the SWCNT surface, we remeasured
the thermoelectric properties of the p-type SWCNT layer in the same sample, as shown in
the Supplementary Information (Figure S2). Even after re-measuring the thermoelectric
properties of the p-type SWCNT layer at 30 ◦C, the values remained low. Thus, it can be
inferred that the anionic surfactant component changes at temperatures exceeding 150 ◦C,
which corresponds to our previous report [67]. Therefore, we are considering using anionic
surfactants other than SDBS, such as sodium dodecyl sulfate (SDS) that can stabilize the
p-type properties of the SWCNT layer from room temperature to high temperatures, specif-
ically the nonburning temperature of paper. Currently, when evaluating the performance of
paintable SWCNT thermoelectric generators, the upper-temperature limit is set at 120 ◦C.

In Figure 4c, the power factors of p- and n-type SWCNT layers measured at 30 ◦C
were 1.3 µW/(m·K2) and 1.0 µW/(m·K2), respectively. The temperature-dependent power
factor of both types of SWCNT layers was mainly reflected in the electrical conductivity,
owing to the small variation in the Seebeck coefficient with temperature. The power factor
of the n-type SWCNT layer at 150 ◦C was 2.6 µW/(m·K2), which was 2.2 times higher than
that of the p-type SWCNT layer at the same temperature.

3.3. Performance of Thin-Film Thermoelectric Generators

The system used to measure the performance of the painted thermoelectric generator
is shown in Figure 5a. The generator was folded to a length of 145 mm and positioned with
the valleys in contact with the heater. To take advantage of the flexibility of the generator,
it was not fixed to the heat source using adhesives. The height was 13 mm owing to the
folding condition. Two copper wires for voltage measurements and two thermocouples for
temperature measurements at high and low temperatures were attached to the generator,
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and the opposite sides of the copper wires and thermocouples were connected to a data
logger (GRAPHTEC, GL240).
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Figure 5. (a) Photograph of performance measurement of painted thermoelectric generator on
Japanese paper. (b) Output voltage and (c) maximum power of the generator as a function of
temperature difference. Insets show (b) relationship between generator temperatures and temperature
difference and (c) relationship between heater temperature and total resistance of generator.

Figure 5b shows the output voltage of the painted thermoelectric generator as a
function of temperature difference. The inset in this figure illustrates the correlation
between the temperature difference and the temperatures on the hot and cold sides of the
generator. When the temperature of the generator’s hot side increased steadily from 25 ◦C
to 120 ◦C at a rate of approximately 0.5 K per second, the temperature of the cold side also
increased from 25 ◦C to 56 ◦C. Consequently, the temperature difference increased from 0 to
64 K. The output voltage of the generator increased linearly with the temperature difference.
When the temperature difference reached 64 K while the hot side temperature was 120 ◦C,
the output voltage was 10.4 mV. This value is insufficient for powering IoT sensors, which
require a minimum output voltage of 20 mV [68]. When the Seebeck coefficients of the p-
and n-type SWCNT layers were directly applied to the generator performance, as shown
in Figure 4a, the output voltage was expected to be approximately 24 mV. Therefore, the
actual generator performance was only approximately 50% of the expected value. This
phenomenon is due to the fact that part of the generator valley was not in firm contact with
the heater, and only a small temperature difference occurred inside the generator in this
area. Therefore, the adhesion between the generator and heat source should be improved
before being used in the power supplies of IoT sensors.

Figure 5c shows the maximum power of the painted thermoelectric generator as a function
of temperature difference. The maximum power Pmax is expressed as Pmax = Voc

2/4Rtotal,
where Voc and Rtotal represent the output voltage and measured total resistance of the generator,
respectively, and the total resistance is the sum of the SWCNT layers, electrodes, and contact
resistances. The total resistance of the generator could not be determined by measuring the
output voltage and temperature of our system. Therefore, the total resistance was measured
individually by varying the temperature of the heater, as shown in the inset. The total resistance
decreased from 200 to 135 Ω as the heater temperature increased from 30 ◦C to 120 ◦C, primarily
due to the increase in the electrical conductivity of the n-type SWCNT layers. The maximum
power of the generator increased quadratically when the temperature difference increased. The
maximum power at a temperature difference of 64 K is 0.21 µW.

Table 1 compares the effectiveness of thermoelectric generators painted on Japanese
paper with SWCNT ink to that of flexible thermoelectric generators that use similar SWCNT
inks. The only differences between the two are the generator structure and the manufactur-
ing process of the SWCNT films. The reference generator used SWCNT films prepared on
polyimide sheets using the drop-cast method [49]. When the temperature differences in
the generators were nearly equal, the output voltage and maximum power of the painted
thermoelectric generator on Japanese paper were approximately half those of a drop-cast
thermoelectric generator on a polyimide sheet. Furthermore, this work compares the maxi-
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mum power of the generator to that of the flexible thermoelectric generator comprising
inorganic materials of n-type Bi2Te3 and p-type Sb2Te3 thin films, which exhibit high ther-
moelectric properties near 300 K [22]. The generator comprising inorganic materials with a
similar film length (L = 26 mm) exhibited a maximum power of 0.11 µW at a temperature of
40 K. This value is approximately two times larger than that of the thermoelectric generators
in this study at the same temperature difference. Therefore, even though there is still room
for improvement in the performance, such as the thermal durability of p-type SWCNT
films and the adhesion condition of the heat source, we demonstrated that electricity can
be generated in stretchable and flexible thermoelectric generators fabricated on Japanese
paper painted with inks dispersed with p- and n-type SWCNTs. By improving the genera-
tor’s performance, it can be used as a power source for IoT sensors in narrow and curved
locations such as automobiles and pipes for hot water and oils by using the advantages of
their stretchable and flexible characteristics. Furthermore, the stability and reliability of
the painted thermoelectric generator are currently being evaluated, as they are important
factors for commercialization.

Table 1. Comparison of SWCNT thermoelectric generators (TEGs) painted on Japanese paper and
drop-casted on polyimide sheet.

Structure of Generator Painted TEG
on Japanese Paper

Drop-Casted TEG
on Polyimide Sheet

Voc [mV] 10.7 24
Pmax [µW] 0.21 0.4

Number of pair 4 4
SWCNT powder SG-CNT SG-CNT

Surfactant (P-type) SDBS No use
Surfactant (N-type) DODMAC DODMAC

Reference This work [49]

Finally, we discuss the environmental impact and sustainability aspects of using
SWCNTs in the fabrication of thermoelectric generators. The manufacturing process in
this study does not use equipment that requires high electric power, which reduces CO2
emissions. Regarding disposal, the device can be incinerated after use, and no toxic gases
are generated. Furthermore, the waste can be recycled back into the original paper and
SWCNTs, as follows. The generators are cut into small pieces, and water and chemicals are
added to them. The pieces are then stirred to produce a dispersion of SWCNTs and paper
fibers. By filtering them, the SWCNTs and paper fibers can be separated and reused.

4. Conclusions

Stretchable and flexible painted thermoelectric generators were prepared on Japanese
paper using inks dispersed in p- and n-type SWCNTs. Japanese paper is suitable as a
substrate for generators because it is strong and has a relatively long life compared to
conventional paper. The p- and n-type SWCNT inks were dispersed with the anionic
surfactant of SDBS and the cationic surfactant of DODMAC, respectively. The p- and n-type
SWCNT inks were painted on the Japanese paper to prepare the p- and n-type SWCNT
layers, respectively. The Seebeck coefficients for both p- and n-type SWCNT layers were
almost constant for the entire temperature range (30 ◦C–150 ◦C), respectively. However, the
electrical conductivity of the n-type SWCNT layer exhibited an increase with temperature,
while that of the p-type SWCNT layer exhibited a constant value below 120 ◦C and a
decrease at 150 ◦C. When the thermoelectric generators were prepared, the Japanese paper
was folded into a mountain-valley structure, and p- and n-type inks were applied to it to
form a striped pattern. Similar to accordions, the resulting generators can be placed in tight
spaces by shrinking and in wide spaces by expanding, even though the surfaces are curved.
To measure the performance of the generator, it was folded to a length of 145 mm and a
height of 13 mm and placed on a heater. At a temperature difference of 64 K, the generator
exhibited an output voltage of 10.4 mV and a maximum power of 0.21 µW. Therefore, we
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demonstrated the operation of stretchable and flexible thermoelectric generators using
Japanese paper and SWCNT ink-painting processes.

Supplementary Materials: The following supporting information can be downloaded from
https://www.mdpi.com/article/10.3390/s24092946/s1. Figure S1: Temperature dependence of
the in-plane thermoelectric properties of surfactant-free SWCNT films. (a) Seebeck coefficient,
(b) electrical conductivity, and (c) power factor; Figure S2: Temperature dependence of in-plane ther-
moelectric properties of p-type SWCNT layers (reproducibility measurement). (a) Seebeck coefficient,
(b) electrical conductivity, and (c) power factor.
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