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Abstract: Deep neural networks (DNNSs) are increasingly important in the medical diagnosis of
electrocardiogram (ECG) signals. However, research has shown that DNNs are highly vulnerable to
adversarial examples, which can be created by carefully crafted perturbations. This vulnerability can
lead to potential medical accidents. This poses new challenges for the application of DNNs in the
medical diagnosis of ECG signals. This paper proposes a novel network Channel Activation Sup-
pression with Lipschitz Constraints Net (CASLCNet), which employs the Channel-wise Activation
Suppressing (CAS) strategy to dynamically adjust the contribution of different channels to the class
prediction and uses the 1-Lipschitz’s ¢, distance network as a robust classifier to reduce the impact
of adversarial perturbations on the model itself in order to increase the adversarial robustness of the
model. The experimental results demonstrate that CASLCNet achieves ACC,p,s; scores of 91.03%
and 83.01% when subjected to PGD attacks on the MIT-BIH and CPSC2018 datasets, respectively,
which proves that the proposed method in this paper enhances the model’s adversarial robustness
while maintaining a high accuracy rate.

Keywords: arrhythmia classification; adversarial robustness; channel-wise activation suppressing;
le distance network

1. Introduction

Arrhythmias are a significant group of cardiovascular diseases that can cause sudden
cardiac death and pose a major threat to human health [1]. The electrocardiogram (ECG) is
a diagnostic tool used to non-invasively record the heart’s electrical signals. A physician
typically studies and analyzes the ECG to identify the type of disease in which it was
collected [2]. However, the diagnosis requires subjective judgement by doctors with exten-
sive clinical experience, which not only consumes a large amount of healthcare resources
but also does not guarantee reliability. Therefore, researchers have begun to explore the
application of efficient and accurate deep neural networks (DNNSs) in the field of ECG
disease diagnosis and have achieved remarkable results. Oh et al. [3] proposed a novel
automated system, which achieved a 98.10% accuracy in five MIT-BIH categories. Wang
et al. [4] proposed an arrhythmia classification algorithm based on the multi-head self-
attention mechanism (ACA-MA) and achieved a 99.4% accuracy in five categories of the
MIT-BIH dataset. Kim et al. [5] adopted a residual network with a squeeze-and-excitation
(SE) block and a bidirectional long short-term memory (BIL-LSTM) for arrhythmia classifi-
cation and used the synthetic minority oversampling technique (SMOTE) to solve the data
imbalance, and gained a 99.20%, 99.35%, and 97.05% accuracy in MITDB, AFDB, and Cinc
DB, respectively. Kumar et al. [6] built a method to extract ECG features using continuous
wavelet changes and used a model with SENet and lightweight context transform (LCT)
for arrhythmia classification. Zeng et al. [7] proposed Fuzz-ClustNet, which use fuzzy
clustering and deep learning for ECG signals detecting arrhythmia, and achieved a 98.66%
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and 95.79 accuracy in the MIT-BIH and PTB dataset. Recent studies have highlighted the
severe threat posed by adversarial attacks to the security of DNNSs, substantiated across
various domains [8,9]. Adversarial examples introduce minor perturbations to the natural
ECG signals, which can cause DNNs to produce erroneous results in medical diagnoses.
This can potentially lead to significant medical accidents. The authors in [10] demonstrated
the deceptive nature of the electrocardiogram and introduced a novel ‘cross-subject attack’.
This method uses captured victim electrocardiogram short templates to map an attacker’s
electrocardiogram onto the victim’s, enabling cross-device attacks with an exceptional
efficacy. Chen et al. [11] conducted a study on adversarial attacks on DNN-based ECG
classification systems. They proposed two attack methods based on ECG signal characteris-
tics and introduced a smoothness metric to quantify human-perceived distances in ECG
signals. In [12], generative adversarial networks were used to create fake ECG signals using
victim ECG templates. Han et al. [13] proposed the Smooth Adversarial Perturbation (SAP)
method, a technique specifically designed to attack ECG signal classifiers. This method
applies Gaussian kernel convolution to smooth adversarial perturbations, reducing the
occurrence of physiologically implausible square-wave artefacts that may arise.

The adversarial attack algorithms applied in the field of image recognition can similarly
be utilized to target ECG signals. The Fast Gradient Sign Method (FGSM), proposed by
Goodfellow et al. [14], generates adversarial examples based on the model gradient and
single-step optimization, representing a classic adversarial attack technique. Building upon
the FGSM, Madry et al. [15] proposed the Projected Gradient Descent (PGD) adversarial
attack algorithm. This method involves multiple iterations; a random perturbation not
exceeding the specified perturbation range is superimposed on the natural example, and
this is used as the initial adversarial examples for multiple iterations. The definition of
PGD is provided in Equation (1):

Yogy = Clipxe(Xady +6 * sign(Va] (Xadv,¥))) M

where x is the natural example and y is the natural example label, x,4, denotes the initial
adversarial examples and x/ ;. is the new adversarial examples, ¢ is the maximum adver-
sarial perturbation, ¢ is the step size of each iteration, J(-,-) calculates the predicted loss
of the neural network, and Clip,¢( ) limits the size of the perturbation to the inside of
the circle centred on the data x, with ¢ as the threshold. PGD can generate the strongest
adversarial examples within the approximate sample space and stands as one of the widely
used adversarial attack methods. Carlini et al. [16] proposed the C&W adversarial attack
algorithm, treating adversarial examples as optimizable variables. They designed a loss
function to transform the generation process of adversarial examples into a solvable op-
timization problem. Currently, C&W is regarded as one of the most effective white-box
attack algorithms based on gradient optimization.

In order to safeguard DNNSs from malicious attacks using adversarial examples on
ECG signals, researchers have conducted in-depth investigations. Wiedeman et al. [17] in-
troduced a novel ensemble method based on feature decorrelation and Fourier partitioning
to enhance network features and reduce the impact of adversarial attacks. This approach
aims to fortify the network against adversarial perturbations. Jeong et al. [18] proposed
Defensive Adversarial Training, which involves training the model using diversified noise
data to enhance the robustness of the recognition algorithm. The results demonstrate
the significant effectiveness of this method in resisting noise injection and random noise
compared to traditional noise removal solutions. To enhance the robustness of ECG signal
classification models against adversarial noise, Ma et al. [19] introduced a regularization
method based on the Noise-to-Signal Ratio (NSR). The approach aims to improve the
robustness of DNNs against adversarial perturbations. Shao et al. [20] proposed a defense
method based on adversarial distillation training, demonstrating its efficacy in enhancing
the generalization performance of DNNs against adversarial attacks in ECG classification.
The above literature does not explore the effect of the model structure on the robustness
of ECG signal classification. However, recent research highlights the critical roles played
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by the feature extraction module and classifier in adversarial robustness [21-23]. In re-
sponse, this research focuses on elucidating the influence of the model structure on the
adversarial robustness of ECG signals. Our efforts are directed towards enhancing the
model architecture, particularly the channel activation in the feature extraction stage and
the design of the classifier, to improve the model’s robustness against adversarial examples
in ECG signals. During the feature extraction phase, adversarial perturbations accumulate
distortions in the channel activation magnitude, leading to a signal enhancement effect
that renders the model prone to misclassification under adversarial attacks. Moreover, for
natural examples of the same category, robust channels in the model generate more uni-
versally applicable patterns, whereas adversarial examples frequently activate non-robust
channels, resulting in incorrect model outputs and diminishing network robustness [24].
In the feature extraction stage, the primary distinctions in features between adversarial
and natural examples originate from variations in the channel activation magnitude and
frequencies induced by adversarial perturbations, thus influencing the model’s perfor-
mance in adversarial robustness. During the classification stage, adversarial attacks on
the feature extraction phase induce variations in feature vectors, consequently leading to
misclassifications by the classifier. Lipschitz continuity imposes a constant constraint on
the range of variations between the input adversarial perturbation and the output of the
model, with the minimum non-negative constant satisfying this property referred to as the
Lipschitz constant for the classifier [25]. By designing a classifier with a Lipschitz constant
constraint, the classification accuracy of adversarial examples can be effectively improved,
particularly those with significant differences from the feature vectors of natural examples.
This constraint plays a positive role in reinforcing the model’s stability and adversarial
robustness.
The main contributions of this study are summarized as follows:

1.  We proposed a novel robust model Channel Activation Suppression with Lipschitz
Constraints Net (CASLCNet). In the feature extraction stage, CASLCNet employs the
Channel-wise Activation Suppressing (CAS) strategy with an auxiliary classifier for
the adaptive learning of the channel importance. This strategy dynamically adjusts
channels to suppress non-robust channels. In the classification stage, CASLCNet
utilizes a /o, distance network with the Lipschitz continuity as the classifier, effectively
resisting small perturbations generated by adversarial attacks.

2. We employed Misclassification Aware Adversarial Training (MART), which can fur-
ther improve the adversarial robustness of CASLCNet for ECG classification.

3.  We validated the model adversarial robustness using multiple adversarial attack
methods in the MIT-BIH dataset and the CPSC2018 dataset and compare it with
state-of-the-art methods. The experimental results show that the method in this
paper can effectively defend against malicious attacks on the model by multiple
adversarial attack methods while maintaining a high accuracy, and outperforms the
state-of-the-art methods in a variety of metrics.

2. Materials
2.1. Datasets

This study validates the performance of the CASLCNet network using the processed
MIT-BIH dataset [26,27] and the CPSC2018 dataset [28]. The specific details of the dataset
are presented in Table 1.

1.  The MIT-BIH dataset, sampled at a frequency of 125 Hz, is categorized into five classes
based on AAMI standards, resulting in a total of 109,446 samples.

2. The CPSC2018 dataset, sampled at a frequency of 500 Hz with a duration ranging from
6 to 60 s, comprises nine sample classes. To streamline our experimentation, 477 elec-
trocardiogram samples with multiple labels are excluded, leaving 6400 samples of
12-lead electrocardiograms for further analysis.
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Table 1. Dataset details.

Dataset Sampling Rates ECG Type Number of Heartbeats
(Hz) Training Set Test Set
N 72,471 18,118
S 2223 556
MIT-BIH 125 \Y% 5788 1448
F 641 162
Q 6431 1608
Normal 868 50
AF 926 50
I-AVB 636 50
LBBB 129 50
CPSC2018 500 RBBB 1483 50
PAC 482 50
PVC 557 50
STD 734 50
STE 135 50

2.2. Validation Metrics

This study employs two fundamental evaluation metrics: accuracy and F1 score.
Additionally, ACC,p,s; and F1,,p,5: [19], as two evaluation metrics, are utilized to measure
the overall robustness of the network within a specific attack range. The definition of
ACC,pyst is provided in Equation (2):

ACCropyst = \/Accclean X AucHsHooﬁemax (2)

Additionally,ACC,,,, represents the normalized classification accuracy, and
AUC||¢||y<emy 18 the normalized area under the curve in the presence of varying noise
levels. It calculates the average classification accuracy within a certain range of noise
levels ||€]]co < €max . Therefore, ACC,op,s; is able to provide a comprehensive performance
indicator that measures both a clean sample accuracy and overall robustness. Similarly, the
definition of another metric F1,,;,,; is given by Equation (3):

Flopust = \/Flclean X AucHé‘HooSemax (3)

Due to the potential significant impact of small adversarial perturbations on the
model output, a maximum perturbation €,y is set to consider only a specific range of
perturbation ||€]|c0 < €max . In this experiment, for the MIT-BIH dataset with €4y 0f 0.3, the
ranges of perturbation are set to {0.01,0.03,0.05,0.1,0.2,0.3} and the number of iterations
is set to 100. In the CPSC2018 dataset, €4 is 0.1 and the ranges of perturbation are set to
{0.001,0.003, 0.005, 0.007,0.01, 0.03,0.05,0.1} and the number of iterations is set to 100. In
the SAP attack algorithm, gaussian kernel with size s is set to {5,7,11, 15,19}, and standard
deviation ¢ is set to {1.0,3.0,5.0,7.0,10.0}.

3. Methods

In this section, the adversarial robustness model for arrhythmia classification using
CASLCNet is described in detail, and the overall flowchart is shown in Figure 1. Firstly,
the ECG signals in the dataset are preprocessed and initialized to generate adversarial
examples; the natural examples and the adversarial examples are fed into CASLCNet
for feature extraction to obtain the feature vectors and the auxiliary classifier prediction
probabilities, respectively, and the feature vectors are fed into the ¢« distance network as the
classifier to obtain the prediction probabilities. The above data are valued for adversarial
training, i.e., maximizing the Cross-Entropy loss function to find the worst-case samples,
minimizing the adversarial loss function to train a model that is robust to the adversarial
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Raw data

examples, and constantly updating the model network parameters while updating the
adversarial examples for training, in the hope of obtaining a model with better adversarial
robustness.
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Figure 1. Overall flow of the proposed methodology.

3.1. Data Preprocessing

Preprocessing of ECG data is required before model training. The MIT-BIH dataset
needs to perform up-sampling operations on the training and test sets to eliminate the
effect of class imbalance on model training. The CPSC2018 dataset needs to populate the
ECG data less than 60 S with 0 to 60 S at both ends, and the ECG data more than 60 S
with the first 60 S intercepted. Since leads V3, V4, V5, and V6 can be obtained from other
leads, these four leads are removed and the remaining eight leads are saved. Using feature
normalization, the lead values are deflated to between —1 and 1 according to the maximum
value of each lead, again using up-sampling to eliminate the effect of category imbalance.

3.2. Feature Extraction and Classification (CASLCNet)

In this section, CASLCNet is described in detail, and the general framework is shown
in Figure 2. The network consists of residual modules [29], residual modules with Channel-
wise Activation Suppression strategy [30], and {« distance network [31]. In the feature
extraction stage, the residual module and the residual module with Channel-wise Activa-
tion Suppression strategy are used to extract the deep features of the ECG signal while
dynamically adjusting the channel importance. Meanwhile, using the /., distance network
as the classifier can constrain the Lipschitz constant of the classifier, which can effectively
resist the influence of adversarial perturbations on the model output. The details of the
model will be introduced one by one in the following. Since the data in the CPSC2018
dataset are variable-length data, zero padding is used in the preprocessing stage to fix
the length of the ECG signal to make it easier to feed into the model for computation.
To eliminate the effect of zero padding in the lead data on the model, average pooling
is performed using a fixed-length input mask in the dimensionality reduction stage in
CASLCNet and multiplied with the extracted feature vectors to obtain a valid output vector.
After the output masking operation, channel averaging weighted by the mask is performed
to reduce the dimensionality of the output vectors from variable-length to a fixed length,
which is then fed into the ¢, distance network for classification. The specific flowchart is
shown in Figure 3. Dimension reduction is carried out using global average pooling and
dimension transformation in the MIT-BIH dataset.
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Figure 3. Dimension reduction diagram.

3.2.1. Residual Module

The expressive capability of DNNs gradually increases with the addition of layers,
allowing for higher accuracy and stronger performance through deeper network archi-
tectures. However, the augmentation of depth in neural networks poses challenges such
as overfitting, gradient explosion, gradient vanishing, and a decline in information prop-
agation capability, leading to a degradation in model performance. In addressing these
challenges, He et al. [29] introduced the concept of residual learning into deep neural
networks and proposed residual network ResNet.

The residual module used in this paper is modified from the original residual module,
consisting of convolutional layers, group normalization layers, activation functions, and a
skip connection, is designed to learn deeper-level features. This module adds the input
of the module to the output obtained after convolutional operations. This mechanism
facilitates the transfer of gradient information between layers, overcoming issues like
gradient vanishing. Consequently, the model’s overall performance is enhanced.

3.2.2. Channel-Wise Activation Suppression Strategy

During the model training phase, the Channel-wise Activation Suppression strategy
dynamically learns the importance of channels. By suppressing non-robust channels, it
effectively reduces the activation magnitude of feature vector channels and the frequency of
network channel activations. Let the k-th CAS module receive the feature vector activated
by the residual module through the ReLU function * € RWXC, where C represents the
number of channels in the feature vector, and W is the width of the feature vector. Initially,
the feature vector f* is subjected to global average pooling to obtain the channel activation
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vector £*. Subsequently, this vector #is fed into a fully connected layer for category classi-
fication. Assuming there are M classes in the dataset, the parameters of the fully connected
layer for the auxiliary classifier can be expressed as follows: H* = [Hk, HE, ., Hé} e RExM,
The fully connected layer identifies the importance of each channel for a given class, and
reweights the natural feature vector accordingly, followed by forward propagation to the
next layer.

During the model training phase, the heartbeat data label y is used as an indicator
for determining the importance of classes, denoted as H; € R°. As obtaining data label
information is not possible during the testing phase, the predicted class by the auxiliary
classifier is used as channel weights, denoted as Hl};k € RC. For adversarial examples

Xady, the output probability of the auxiliary classifier is p* = softmax(kak) € RM. LetK
represent the total number of CAS modules in the network, and the loss function used for
network training is £. The overall loss function for CAS modules during network training
is defined in Equation (4):

& K R
Lcas(x, Xaav y:6,H) = - Yo ﬁ(Pk(x/ Xadvs B,H),y) (4)

Among other things, 6§ denotes the model parameters, and « is the hyperparameter
that balances the training of CAS modules.

3.2.2.1. Y« Distance Network

The /o distance network is a £« multilayer perceptron network composed of distance
neurons as fundamental units. {« distance neurons take the feature vector x as input, with
an added bias term b. The ¢, parametric distance can be computed by the norm distance
between x; and the parameter w, as defined by Equation (5):

u(xf,{w,b}) =[| xf —w [o +b (5)

Based on the definition of /o, distance neurons, a fully connected /., distance network
can be constructed. The /, distance network module g takes x f(o) = xy as input, and its

L-th layer, xf(l), is defined as Equation (6):

x = u (070, {60 ) =) 07D ) || 400, 1€ [Li€ (] (6)

Here, n; represents the number of neurons in the I-th layer. For a classification problem
with M classes, nj = M. The [« distance network module takes g(xf) =x f(L) as output
probabilities and predicts the class argm&ﬁ [g(xf)];- Due to the 1-Lipschitz mapping

1€

property of the distance layer concerning norms, any /o, distance network is inherently
1-Lipschitz through composition.

3.3. Misclassification-Aware Adversarial Training

In this study, we employed Misclassification Aware Adversarial Training [32] to train
the network. For an M-class classification problem, we are given a dataset {(xi, ¥i) }i=1,. n,
where the natural example x; € RY and y, € {1,...,M} represent the class. For a deep neu-
ral model hy with network parameters 6, an adversarial sample x,qy is generated based on
the natural example x;. During adversarial training, both the natural examples and adver-
sarial examples are fed into the /iy to obtain model prediction probability values. Samples
with model prediction errors are classified into three categories: natural example prediction
error hy(x;) # yi, adversarial sample prediction error hy(x,qy) # Vi, and inconsistency
in predictions between the natural examples and adversarial examples g (x;) 7# hg(Xaqy)-
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MART addresses these three types of misclassifications during adversarial training, and its
loss function is defined by Equation (7):

LVART (3, xogy, 430) = A - KL(p(x;,0) || P(aar. 8)) - (1 Py, (x:,9))

1. ymn . @)
+4u Zizl BCE(p(xadvrQ);yz)

Here, boosted cross-entropy (BCE) loss is used for misclassifications where l1y(xX,qv) # Vi,
allowing the model to obtain a stronger decision boundary. For misclassifications where
hg(xi) # hg(xaqv), KL divergence is employed to minimize the distribution difference
between the two, thereby better fitting the outputs of the natural examples and adversarial

examples. Regarding misclassifications where hg(x;) # y;, the soft decision (1 — Py, (x4, 6))
dynamically adjusts the loss function size for improved robust network training. In the

training of the model in this study, MART is also applied to the auxiliary classifier. Therefore,
the overall loss function during network training is given by Equation (8):

n R
L= LMY (2 xoav, 130) + R L LYLRT (x, Xaay, 130, H) (8)

The direct use of MART for the CPSC2018 dataset leads to difficulties in model
convergence. Therefore, it is necessary to add the MSE loss function to assist the model
convergence during the training process. The overall loss function formula is given by
Equation (9):

% R 1
L= LYART (o, xaqv, y:0) + o Yoy LEAST (3 Xav, 036, H) + — - 300 (i — hg(x:))* (9)

4. Result and Discussion
4.1. Experimental Setup

The research experiments are conducted on a server equipped with an Intel(R) Xeon(R)
Gold 5218 CPU (2.30 GHz) and NVIDIA A100-SXM4 GPU (40 GB memory). The operating
system used is Centos 8, with Python version 3.8.3, PyTorch version 1.13.1, and CUDA
version 11.6. For the MIT-BIH dataset, the batch size is set to 512, the number of training
rounds is 100, the Adamax optimizer is used for training, the initial learning rate is set
to 1 x 1073, and the ReduceLROnPlateau learning rate scheduler is used to dynamically
adjust the learning rate. For CASLCNet training, the PGD attack algorithm is used to
generate adversarial examples for adversarial training, the number of attacks is set to 10,
the attack range is 0.1, and the attack step size is one-tenth of the attack range. For the
CPSC2018 dataset, the batch size during training is set to 64, the initial learning rate is set
to 1 x 107%, and the model is also trained using MART with the number of attacks set to
10, the attack range to 0.01, and the rest of the settings the same as for the MIT-BIH dataset.
Table 2 shows the detailed structure of the network using CASLCNet for the MIT-BIH and
CPSC2018 dataset.
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Table 2. Detailed settings of CASLCNet.

MIT-BIH CPSC2018
Layer Name Output Size Module Parameters Output Size Module Parameters
P (Kernel Size ks, Dimension d, Stride st) 4 (Kernel Size ks, Dimension d, Stride st)
1D convolution layer 64 x 94 ks=11,st=2,d =64 64 x 16,896 ks=11,st=2,d=64
Group Normalization 64 x 94 [64,64] 64 x 16,896 [64,64]
Leaky ReLU 64 x 94 ) - 64 x 16,896 ) -
Residual layer 1 128 x 24 ks =3,d =128 _ 128 x 4224 ks =3,d =128 B
Y ks =3,d = 128) % =2 ks = 3,d = 128] * % 5 =2
Residual layer 2 256 X 6 ks =3,d = 256 _ 256 x 1056 ks =3,d = 256 B
Yy =ks=3,d:256=><2/5f—2 =ks:3,d:256=><2’5t_2
Residual layer 3 512 x 2 ks =3,d = 512 _ 512 x 264 ks =3,d =512 B
y =k5:3,d:512=><2’5t_2 =ks:3,d:512=><2’5t_2
Residual with CAS layer 512 x 2 ks =3,d = 512 _ 512 x 132 ks =3,d =512 B
4 _ks:3,d:512_X2’St_1 _ks:3,d:512_><2’5t_2
Downscaling (average pooling) 512 st=2 512 ks = 3072, st =234
{ distance network 5 {512,512,512,512,512,5} 9 {512,512,512,512,512,5}
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4.2. Channel-Wise Activation Suppression Effect

As examples, we chose the N class and Normal class from the MIT-BIH and CPSC2018
dataset. Our observation focused on the channel activation frequency and magnitude at
the final layer of the model’s feature extraction. For each channel, if the activation value
surpassed a threshold (20% of the maximum activation value across all 512 channels in MIT-
BIH, and 70% of the maximum activation value in CPSC2018), the channel is identified as
an activated channel. Subsequently, we calculated the activation frequency on each channel
for both the natural examples and adversarial examples, sorting them in descending order
of the natural example’s activation frequency. In the experiments, CASLCNet is trained
using MART and ResNet18 is trained using the cross-entropy loss function as the contrast
model. Figures 4 and 5 illustrates the channel-wise activation frequency and magnitude
of ResNetl8 and CASLCNet on the test sets of both datasets. From the subfigures a,
it is evident that the channel-wise activation magnitude of the adversarial examples is
significantly higher than that of the natural examples. This indicates that adversarial
perturbations progressively accumulate from the model’s input layer to the output layer.
By looking at the subfigures ¢, we notice that adversarial examples activate the model
channels more uniformly, frequently activating non-robust channels seldom activated by
the natural examples. This has a severe impact on the model’s robustness. Subfigures b
depict the activation magnitude of CASLCNet when faced with adversarial examples. It
is apparent that our proposed method effectively suppresses the activation magnitude
of adversarial examples, reducing the magnitude gap between adversarial and natural
examples. Subfigures d represent the channel-wise activation frequency of adversarial
examples. Our proposed method effectively suppresses the channel activation frequency,
aligning the activation frequencies of natural examples and adversarial examples and
reducing the activation on non-robust channels by adversarial examples. Consequently,
this mitigates the impact of adversarial sample attacks on the network, enhancing overall
robustness.
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4.3. Hyperparameter Selection Experiment

In the training of the CASLCNet network, adjustments to the o parameter of the CAS
loss are made to achieve optimal training outcomes. To assess the sensitivity of the CAS
strategy under different « values, MART is conducted on the MIT-BIH and CPSC2018
datasets for « values of {0,1,2,3,4}, where « = 0 represents standard adversarial training.
Table 3 presents the corresponding ACC,op,s; and F1,4p,s; scores for each « value. The
results indicate that the model achieves optimal performance across metrics when « is set
to 2, striking a balance between the accuracy rate and robustness. Figure 6 shows the loss
function curves as well as the accuracy curves of CASLCNet in the MIT-BIH dataset and
the CPSC2018 dataset when the hyperparameter « is 2.

Table 3. Impact of hyperparameter « on model adversarial robustness (%).

PGD SAP
Dataset Hyperp;rameter
ACCppust Flopust ACCppust F1,opust

0 60.68 56.63 63.12 59.37
1 87.33 87.48 88.15 88.54
MIT-BIH 2 91.03 91.22 91.90 92.07
3 85.50 85.72 86.09 86.33
4 86.77 86.93 87.21 87.45
0 80.61 80.46 81.84 81.70
1 79.18 78.85 83.52 83.27
CPSC2018 2 83.01 82.64 85.34 85.07
3 80.01 79.99 81.62 81.66
4 78.78 78.32 80.75 80.35

CASLONet training MIT-BIH dataset CASLCNet training CPSC2018 dataset

w

Training Loss
N

~

By 2
Epochs Epochs

(a) (b)

Figure 6. CASLCNet network loss function and accuracy display in MIT-BIH and CPSC2018 dataset.
(a) CASLCNet indicator in MIT-BIH dataset; and (b) CASLCNet indicator in CPSC2018 dataset.

4.4. Adversarial Robustness Verification

To assess the effectiveness of CASLCNet in defending against various malicious
attacks, we conducted validation using different adversarial attack methods on the test
sets of the MIT-BIH and CPSC2018 datasets. The adversarial attack methods employed
included white noise, FGSM, C&W, PGD, and SAP. White noise and FGSM attacks utilized
a single iteration, while MI-FGSM and C&W used 100 iterations. White noise and FGSM
and MI-FGSM perturbation ranges are set to 0.1 and 0.01 in the MIT-BIH and CPSC2018
datasets, respectively, with an MI-FGSM step range of 0.01 and 0.001. When using PGD
and SAP adversarial attacks, the settings are as shown in 2.2. Table 4 provides the detailed
accuracy and F1 scores under the white noise, FGSM, MI-FGSM, and C&W attack methods.
Tables 5 and 6 show the accuracy and F1 scores of CASLCNet when the MIT-BIH dataset
and the CPSC2018 dataset are attacked by different PGD and SAP adversarial attack,
respectively. Notably, the model’s accuracy and F1 scores showed minimal degradation
when faced with white noise, FGSM, MI-FGSM, C&W, and SAP attacks. Even under PGD
adversarial attacks, the model maintained a high level of accuracy, demonstrating the
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model’s ability to effectively withstand various adversarial attacks while preserving a high
accuracy.

Table 4. Performance metrics of CASCLC-Net in MIT-BIH and CPSC2018 dataset under different
adversarial attack scenarios (%).

Dataset Metrics - White Noise FGSM MI-FGSM C&W
Accuracy 92.44 91.58 89.56 88.43 86.25

MIT-BIH
F1 92.48 92.09 90.34 88.49 86.72
Accuracy 84.89 84.89 86.67 61.33 60.89

CPSC2018
F1 84.61 85.07 86.46 62.34 57.38

Table 5. Performance metrics of CASCLC-Net in MIT-BIH dataset under PGD and SAP adversarial
attack scenarios (%).

Attack Metrics 0 0.01 0.03 0.05 0.1 0.2 0.3
Accuracy 92.44 92.18 91.19 90.39 85.26 53.28 23.24
Feb F1 92.48 92.24 91.37 90.70 85.97 55.30 23.82
Accuracy 92.44 92.30 91.96 91.69 89.63 83.58 78.17
SAP F1 92.48 92.38 92.13 92.12 90.04 84.06 78.71

Table 6. Performance metrics of CASCLC-Net in CPSC2018 dataset under PGD and SAP adversarial
attack scenarios (%).

Attack Metrics 0 0.001 0.003 0.005 0.007 0.01 0.03 0.05 0.1
Accuracy 84.89 84.89 85.33 85.56 84.89 84.89 84.00 82.00 74.67
reb F1 84.61 84.61 85.07 85.30 84.63 84.63 83.75 81.68 73.76
Accuracy 84.89 84.89 84.89 84.89 85.11 85.11 85.33 86.00 86.44
SAP F1 84.61 84.61 84.61 84.61 84.85 84.85 85.09 85.77 86.20

4.5. Ablation Experiment

To assess the effectiveness of each module in enhancing the adversarial robustness
of the CASLCNet network, we conducted ablation experiments on both the MIT-BIH and
CPSC2018 datasets. Method 1 employed ResNet18 as the baseline model, while Method 2
replaced the last feature extraction layers of Method 1 with residual modules incorporating
the channel-wise activation suppression strategy. Method 3 replaced the fully connected
layer of Method 1 with an £, distance network serving as the classifier. Method 4 represents
our proposed CASLCNet. All methods utilized MART. Table 7 shows the ACC,,s; and
F1,opust scores under the test set of MIT-BIH and CPSC2018 datasets, where x means that
the method model does not contain the module, and / means that the model contains the
module, and it can be observed that Method 4 achieves the best values in all the metrics;
it shows that both modules added in this paper are effective in improving the model
adversarial robustness.
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Table 7. Results of ablation experiments (%).

PGD SAP
Dataset Method  BackBone CAS Block {o Distance Net
Accrobust Flrohust Accrobust Flrobust
1 ResNet18 X X 68.81 83.39 86.60 84.83
2 ResNet18 Vv X 82.95 86.18 88.23 88.33
MIT-BIH 3 ResNet18 X J 85.67 86.51 84.70 85.08
4 ResNet18 \/ \/ 91.03 91.22 91.90 92.07
1 ResNet18 X X 31.85 31.80 72.57 71.92
2 ResNet18 Vv X 76.07 75.12 81.47 80.56
CPSC2018 3 ResNet18 X v 50.28 51.16 81.44 81.22
4 ResNet18 \/ \/ 83.01 82.64 85.34 85.07

4.6. Contrast Experiment

In this study, CASLCNet is trained using various methodologies, including standard
adversarial training [15], TRADES adversarial training [33], and MART. The experimen-
tal results are presented in Table 8. Table 8 demonstrates that Misclassification-Aware
Adversarial Training consistently achieves optimal values across metrics. To verify the
effectiveness of the CASLCNet model, three classical networks, VGG19 [34], ResNet18
and DenseNet [35], are used in this paper and the proposed CASLCNet is trained with
different loss functions, respectively, and the experimental results are shown in Table 9
and Table 10, respectively. Table 9 shows the detailed results of the ACC,ypyst and Flyopyst
scores of each method in the MIT-BIH dataset, and Table 10 shows the detailed results
of the ACC,,p,st and F1,,p,s scores of each method in the CPSC2018 dataset. Table 10
shows that the ACC,p,s; and F1,yp,s scores of CASLCNet are higher when the model
is attacked by adversarial examples when trained with the cross-entropy loss function,
compared to the ACC,,p,5r and F1,,p,¢ scores of VGG19, ResNet18, and DenseNet trained
with MART, which effectively shows that the CASLCNet network proposed in this paper
has strong adversarial robustness without adversarial training. The ACC,,p,s; and F1,,p,s¢
scores of CASLCNet under PGD adversarial attack can be improved by more than 40%
compared to other methods when CASLCNet is trained using MART in the CPSC2018
dataset. Tables 9 and 10 show that the proposed method can achieve the best performance
in each index, and can effectively improve the ACC,yp,s; and F1,,p,s Scores compared with
the other networks, which indicates that CASLCNet can achieve the advantage in the accu-
racy of the natural examples, as well as the robustness. This observation substantiates the
effectiveness of CASLCNet in significantly enhancing the model’s adversarial robustness.

Table 8. Comparison of results of different adversarial training methods (%).

PGD SAP
Dataset Method
ACCopyst Fliopust ACCopyst Fl,opust
Adpversarial Training 91.02 91.11 92.06 92.50
MIT-BIH Trades 88.04 88.18 89.34 89.49
MART 91.03 91.22 91.90 92.07
Adversarial Training 52.34 51.97 79.05 78.76
CPSC2018 Trades 74.58 73.82 83.23 82.91

MART 83.01 82.64 85.34 85.07
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Table 9. Contrast results with different methods in MIT-BIH dataset (%).
PGD SAP
Method
ACCrobust Plrobust ACCrobust Plrobust
VGG19 35.85 36.94 63.69 64.31
VGG19+MART 82.21 82.30 80.04 83.91
ResNet18 56.79 57.66 65.78 65.97
ResNet18+ MART 68.81 83.39 86.60 84.83
DenseNet 71.18 69.20 79.91 78.27
DenseNet + MART 83.51 83.61 85.31 85.39
CASLCNet 53.04 51.35 65.18 64.47
CASLCNet + MART 91.03 91.22 91.90 92.07
Table 10. Contrast results with different methods in CPSC2018 dataset (%).
PGD SAP
Method
ACCmbust Fl,opust ACCrubust Fl,opust

VGG19 21.95 23.19 66.14 65.19
VGG19+MART 30.17 30.23 70.10 67.26
ResNet18 18.42 18.43 39.47 38.76
ResNet18+ MART 31.85 31.80 72.57 71.92
DenseNet 22.22 21.89 74.00 73.48
DenseNet + MART 44.50 43.98 76.79 75.70
CASLCNet 46.76 45.99 84.76 84.74
CASLCNet + MART 83.01 82.64 85.34 85.07

4.7. Comparison with Existing Literature

Recent studies have indicated that SNR regularization enhances network robustness
by suppressing the Signal-to-Noise Ratio (SNR) of adversarial noise signals, while Jaco-
bian regularization mitigates the impact of adversarial noise perturbations by penalizing
large gradients relative to the output. These regularization methods represent advanced
approaches for defending against adversarial attacks on electrocardiographic signals.
Figures 7 and 8 show the histograms of the accuracy and F1 scores of the proposed method
with the two methods, Jacob, as well as SNR, under different PGD and SAP adversarial
attacks. Table 11 shows the detailed data of the comparison between the proposed method
and the existing literature, from which it can be seen that the proposed method in this paper
achieves the optimal results in terms of ACC,yp,s and F1,,p,s scores. In the CPSC2018
dataset, when attacked by PGD, the ACC,p,¢; and F1,4p,,5; scores of this paper’s method
are more than 30% higher than other methods. In the MIT-BIH dataset, this paper’s method
is also reaching the best index. The above experiments fully prove that the proposed
method in this paper achieves a better balance between identifying natural examples and
adversarial examples; not only can it maintain a high accuracy, but it can also effectively
resist the attack of adversarial examples, which effectively indicates that the proposed
method in this paper is better than the existing methods in the literature and reaches the
advanced level.
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MIT-BIH Test Set Under PGD Attack
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Figure 7. Accuracy and F1 scores of proposed method with Jacob and SNR under different adversarial
attacks in MIT-BIH dataset. (a) Accuracy under different adversarial perturbations in PGD adversarial
attacks; (b) F1 score under different adversarial perturbations in PGD adversarial attacks; (c) accuracy
under different adversarial perturbations in SAP adversarial attacks; and (d) F1 score under different
adversarial perturbations in SAP adversarial attacks.

CPSC2018 Test Set Under PGD Attack PSC2018 Test Set Under SAP Attack GPSC2018 Test Set Under SAP Attack

0 000 0003 0005 0.007 001 003 005 01
Perturbation level

0 0001 0003 0.005 0007 001 003 005 01
Perturbation level

0 0001 0.008 0.005 0.007 0.01 003 005 01
Perturbation level

(b) (9 (d)
Figure 8. Accuracy and F1 scores of proposed method with Jacob and SNR under different adver-
sarial attacks in CPSC2018 dataset. (a) Accuracy under different adversarial perturbations in PGD
adversarial attacks; (b) F1 score under different adversarial perturbations in PGD adversarial attacks;
(c) accuracy under different adversarial perturbations in SAP adversarial attacks; and (d) F1 score
under different adversarial perturbations in SAP adversarial attacks.

Table 11. Comparative experimental results with other methods (%).

PGD SAP
Author Method Dataset
ACCopyst Fliopust  ACCropust  Flyopust

MIT-BIH 79.94 79.88 79.88 82.93

Jabob
CPSC2018 4891 49.18 80.60 70.12

Ma et al. [19]
SNR MIT-BIH 88.64 88.63 88.63 91.08
CPSC2018 46.99 46.67 81.26 80.98
MIT-BIH 91.03 91.22 91.90 92.07
Ours CASLCNet

CPSC2018 83.01 82.64 85.34 85.07

This study aims to investigate the effectiveness of the proposed CASLCNet in de-
fending against adversarial examples when applied to medical diagnostics using electro-
cardiographic signals. We conducted experiments focusing on Channel-wise Activation
Suppression, hyperparameter selection, robustness validation, and comparisons with exist-
ing literature.

In our observations, CASLCNet demonstrated significant advantages when confronted
with various adversarial attack methods on the test sets of the MIT-BIH and CPSC2018
datasets. Under white noise, FGSM, MI-FGSM, C&W, PGD, and SAP attacks, CASLCNet
maintained a high accuracy and F1 scores, showcasing its robust resistance to diverse
adversarial attack methods. Furthermore, we conducted an in-depth investigation into the
efficacy of the Channel-wise Activation Suppression strategy within CASLCNet. By scru-
tinizing the channel activation frequencies and magnitude of CASLCNet in the MIT-BIH
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and CPSC2018 datasets, we observed a significant reduction in the activation magnitude
of adversarial examples. This reduction resulted in a diminished Magnitude gap between
adversarial and natural examples, indicating a pivotal role played by the Channel-wise Ac-
tivation Suppression strategy in effectively enhancing the model’s robustness. In terms of
model training, we used an adversarial training approach that emphasizes misclassification.
This approach involves designing the loss function to address misclassifications of both
natural examples and adversarial examples. The results demonstrated that CASLCNet
consistently achieved a favorable performance on the MIT-BIH and CPSC2018 datasets.
These experiments serve as empirical evidence of the effectiveness of proposed method
in enhancing the model’s robustness. Comparisons with the existing literature demon-
strated that CASLCNet consistently achieved the best results in terms of ACC,,p,s; and
F1,,pyst scores, showcasing its significant advantage in adversarial attacks. This establishes
CASLCNet as an advanced technology in the field of robustness research.

The proposed method in this paper achieves a significant robustness improvement in
the context of arrhythmia classification, which can be applied to the automatic diagnosis
of arrhythmia models, and can effectively prevent attackers from causing misdiagnosis
leading to medical accidents by formulating specific adversarial examples to deceive the
model, which is of great significance for improving the reliability and safety of ECG
signal processing systems in practical medical applications. However, there are still some
problems that need to be improved in the method of this paper. For multi-lead ECG signals,
this paper’s method does not consider the influence of each lead’s signals on the robustness
of the model, and there is the problem of the long computation time and large computation
volume. In future work, we will investigate other applications in the field of ECG signal
classification, such as identity recognition, and consider methods such as introducing a
lead attention mechanism to further investigate the effect of each lead on the adversarial
robustness of the model, as well as lightening the modules in CASLCNet by optimizing the
adversarial training algorithms to reduce the time and computational volume.

5. Conclusions

In order to enhance the robustness of the electrocardiographic signal classification
model, this paper proposes a novel robust network, CASLCNet. By leveraging a Channel-
wise Activation Suppression strategy, CASLCNet dynamically adjusts the importance
of channels, reducing the activation frequency of non-robust channels. Simultaneously,
the introduction of an /, distance network composed of /s distance neurons serve as
the network classifier, effectively suppressing the impact of adversarial perturbations on
the network. This design allows the network to maintain a high accuracy while robustly
resisting malicious attacks on adversarial examples. The experimental results demonstrate
that our proposed method outperforms the existing literature, reaching optimal levels on
the MIT-BIH and CPSC2018 datasets. This substantiates the effectiveness of our approach
in defending against adversarial attacks.

Author Contributions: Conceptualization, X.C. and Y.S.; methodology, X.C.; software, X.C.; valida-
tion, X.C. and J.F; formal analysis, W.Y. and Z.Z.; resources, Y.S.; data curation, W.Y., ].F. and Z.Z.;
writing—original draft preparation, X.C. and Y.S.; writing—review and editing, X.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was funded by the Natural Science Foundation of Guangdong Province
(2023A1515011302), the Guangdong Key Disciplines Project (2022ZD]S140), and the Featured Innova-
tion Projects of the Guangdong Universities (2022KTSCX189).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used in this study is publicly available on Kaggle at
https:/ /www.kaggle.com/datasets/shayanfazeli/heartbeat and Icbeb at http://2018.icbeb.org/
(accessed on 30 April 2024).


https://www.kaggle.com/datasets/shayanfazeli/heartbeat
http://2018.icbeb.org/

Sensors 2024, 24, 2954 17 of 18

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.  Xiao, Q.; Lee, K.; Mokhtar, S.A.; Ismail, I.; Pauzi, A.Lb.M.; Zhang, Q.; Lim, PY. Deep Learning-Based ECG Arrhythmia
Classification: A Systematic Review. Appl. Sci. 2023, 13, 4964. [CrossRef]

2. Wu, M, Lu, Y; Yang, W.; Wong, S.Y. A study on arrhythmia via ECG signal classification using the convolutional neural network.
Front. Comput. Neurosci. 2021, 14, 564015. [CrossRef] [PubMed]

3.  Oh, SL.; Ng, EY,; San Tan, R.; Acharya, U.R. Automated diagnosis of arrhythmia using combination of CNN and LSTM
techniques with variable length heart beats. Comput. Biol. Med. 2018, 102, 278-287. [CrossRef]

4. Wang, Y, Yang, G,; Li, S,; Li, Y;; He, L.; Liu, D. Arrhythmia classification algorithm based on multi-head self-attention mechanism.
Biomed. Signal Process. Control 2023, 79, 104206. [CrossRef]

5. Kim, YK, Lee, M,; Song, H.S; Lee, S.-W. Automatic cardiac arrhythmia classification using residual network combined with long
short-term memory. IEEE Trans. Instrum. Meas. 2022, 71, 4005817. [CrossRef]

6. Kumar, S.; Mallik, A.; Kumar, A.; Del Ser, J.; Yang, G. Fuzz-ClustNet: Coupled fuzzy clustering and deep neural networks for
Arrhythmia detection from ECG signals. Comput. Biol. Med. 2023, 153, 106511. [CrossRef]

7. Zeng, Y.; Lv, H; Jiang, M.; Zhang, J.; Xia, L.; Wang, Y.; Wang, Z. Deep arrhythmia classification based on SENet and lightweight
context transform. Math. Biosci. Eng. 2023, 20, 1-17. [CrossRef]

8. Wu, D,; Xu, J.; Fang, W.; Zhang, Y; Yang, L.; Xu, X.; Luo, H.; Yu, X. Adversarial attacks and defenses in physiological computing:
A systematic review. Natl. Sci. Open 2023, 2, 20220023. [CrossRef]

9. Xu,H.;Ma, Y, Liu, H-C,; Deb, D.; Liu, H.; Tang, ].-L.; Jain, A K. Adversarial attacks and defenses in images, graphs and text: A
review. Int. J. Autom. Comput. 2020, 17, 151-178. [CrossRef]

10. Karimian, N.; Woodard, D.; Forte, D. ECG biometric: Spoofing and countermeasures. IEEE Trans. Biom. Behav. Identity Sci. 2020, 2,
257-270. [CrossRef]

11.  Chen, H,; Huang, C.; Huang, Q.; Zhang, Q.; Wang, W. Ecgadv: Generating adversarial electrocardiogram to misguide arrhythmia
classification system. Proc. AAAI Conf. Artif. Intell. 2020, 34, 3446-3453. [CrossRef]

12.  Garg, A.; Karimian, N. ECG biometric spoofing using adversarial machine learning. In Proceedings of the 2021 IEEE International
Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 10-12 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1-5.

13.  Han, X,; Hu, Y; Foschini, L.; Chinitz, L.; Jankelson, L.; Ranganath, R. Deep learning models for electrocardiograms are susceptible
to adversarial attack. Nat. Med. 2020, 26, 360-363. [CrossRef]

14.  Goodfellow, L].; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572.

15. Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards deep learning models resistant to adversarial attacks. arXiv
2017, arXiv:1706.06083.

16. Carlini, N.; Wagner, D. Towards evaluating the robustness of neural networks. In Proceedings of the 2017 IEEE Symposium on
Security and Privacy (SP), San Jose, CA, USA, 22-26 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 39-57.

17. Wiedeman, C.; Wang, G. Decorrelative Network Architecture for Robust Electrocardiogram Classification. arXiv 2022,
arXiv:2207.09031.

18. Jeong, H.; Son, ].; Kim, H.; Kang, K. Defensive Adversarial Training for Enhancing Robustness of ECG based User Identification.
In Proceedings of the 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Las Vegas, NV, USA, 6-8
December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 3362-3369.

19. Ma, L,; Liang, L. A regularization method to improve adversarial robustness of neural networks for ECG signal classification.
Comput. Biol. Med. 2022, 144, 105345. [CrossRef]

20. Shao,].; Geng, S.; Fu, Z.; Xu, W,; Liu, T.; Hong, S. CardioDefense: Defending against adversarial attack in ECG classification with
adversarial distillation training. Biomed. Signal Process. Control 2024, 91, 105922. [CrossRef]

21. Fawzi, A.; Fawzi, O.; Frossard, P. Analysis of classifiers” robustness to adversarial perturbations. Mach. Learn. 2018, 107, 481-508.
[CrossRef]

22. Huang, H.; Wang, Y.; Erfani, S.; Gu, Q.; Bailey, J.; Ma, X. Exploring architectural ingredients of adversarially robust deep neural
networks. Adv. Neural Inf. Process. Syst. 2021, 34, 5545-5559.

23. Peng, S.; Xu, W,; Cornelius, C.; Hull, M.; Li, K,; Duggal, R.; Phute, M.; Martin, J.; Chau, D.H. Robust principles: Architectural
design principles for adversarially robust cnns. arXiv 2023, arXiv:2308.16258.

24. Yan, H.; Zhang, J.; Niu, G.; Feng, ].; Tan, V.; Sugiyama, M. CIFS: Improving Adversarial Robustness of CNNs via Channel-wise
Importance-based Feature Selection. In Proceedings of the 38th International Conference on Machine Learning, Virtual, 18-24
July 2021; Marina, M., Tong, Z., Eds.; PMLR: Proceedings of Machine Learning Research; Volume 139, pp. 11693-11703.

25.  Zhou, S; Schoellig, A.P. An analysis of the expressiveness of deep neural network architectures based on their lipschitz constants.
arXiv 2019, arXiv:1912.11511.

26. Kachuee, M,; Fazeli, S.; Sarrafzadeh, M. Ecg heartbeat classification: A deep transferable representation. In Proceedings of the
2018 IEEE International Conference on Healthcare Informatics (ICHI), New York, NY, USA, 4-7 June 2018; IEEE: Piscataway, NJ,
USA, 2018; pp. 443-444.

27. ECG Heartbeat Categorization Dataset. Available online: https://www.kaggle.com/shayanfazeli/heartbeat (accessed on 30

April 2024).


https://doi.org/10.3390/app13084964
https://doi.org/10.3389/fncom.2020.564015
https://www.ncbi.nlm.nih.gov/pubmed/33469423
https://doi.org/10.1016/j.compbiomed.2018.06.002
https://doi.org/10.1016/j.bspc.2022.104206
https://doi.org/10.1109/TIM.2022.3181276
https://doi.org/10.1016/j.compbiomed.2022.106511
https://doi.org/10.3934/mbe.2023001
https://doi.org/10.1360/nso/20220023
https://doi.org/10.1007/s11633-019-1211-x
https://doi.org/10.1109/TBIOM.2020.2992274
https://doi.org/10.1609/aaai.v34i04.5748
https://doi.org/10.1038/s41591-020-0791-x
https://doi.org/10.1016/j.compbiomed.2022.105345
https://doi.org/10.1016/j.bspc.2023.105922
https://doi.org/10.1007/s10994-017-5663-3
https://www.kaggle.com/shayanfazeli/heartbeat

Sensors 2024, 24, 2954 18 of 18

28.

29.

30.

31.

32.

33.

34.
35.

Liu, F; Liu, C.; Zhao, L.; Zhang, X.; Wu, X,; Xu, X; Liu, Y.; Ma, C.; Wei, S.; He, Z. An open access database for evaluating the
algorithms of electrocardiogram rhythm and morphology abnormality detection. J. Med. Imaging Health Inform. 2018, 8, 1368-1373.
[CrossRef]

He, K.; Zhang, X.; Ren, S.; Sun, ]J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016; pp. 770-778.

Bai, Y.; Zeng, Y,; Jiang, Y.; Xia, S.-T.; Ma, X.; Wang, Y. Improving adversarial robustness via channel-wise activation suppressing.
arXiv 2021, arXiv:2103.08307.

Zhang, B.; Cai, T,; Lu, Z.; He, D.; Wang, L. Towards certifying robustness using neural networks with I-dist neurons. arXiv 2021,
arXiv:2102.05363.

Wang, Y.; Zou, D.; Yi, |.; Bailey, J.; Ma, X.; Gu, Q. Improving adversarial robustness requires revisiting misclassified examples. In
Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6-9 May 2019.

Zhang, H.; Yu, Y,; Jiao, J.; Xing, E.; El Ghaoui, L.; Jordan, M. Theoretically principled trade-off between robustness and accuracy.
In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9-15 June 2019; pp. 7472-7482.
Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21-26 July 2017; pp. 4700-4708.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1166/jmihi.2018.2442

	Introduction 
	Materials 
	Datasets 
	Validation Metrics 

	Methods 
	Data Preprocessing 
	Feature Extraction and Classification (CASLCNet) 
	Residual Module 
	Channel-Wise Activation Suppression Strategy 

	Misclassification-Aware Adversarial Training 

	Result and Discussion 
	Experimental Setup 
	Channel-Wise Activation Suppression Effect 
	Hyperparameter Selection Experiment 
	Adversarial Robustness Verification 
	Ablation Experiment 
	Contrast Experiment 
	Comparison with Existing Literature 

	Conclusions 
	References

