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Abstract: Single-point mutations in the Kirsten rat sarcoma (KRAS) viral proto-oncogene are the most
common cause of human cancer. In humans, oncogenic KRAS mutations are responsible for about
30% of lung, pancreatic, and colon cancers. One of the predominant mutant KRAS G12D variants is
responsible for pancreatic cancer and is an attractive drug target. At the time of writing, no Food and
Drug Administration (FDA) approved drugs are available for the KRAS G12D mutant. So, there is a
need to develop an effective drug for KRAS G12D. The process of finding new drugs is expensive and
time-consuming. On the other hand, in silico drug designing methodologies are cost-effective and
less time-consuming. Herein, we employed machine learning algorithms such as K-nearest neighbor
(KNN), support vector machine (SVM), and random forest (RF) for the identification of new inhibitors
against the KRAS G12D mutant. A total of 82 hits were predicted as active against the KRAS G12D
mutant. The active hits were docked into the active site of the KRAS G12D mutant. Furthermore, to
evaluate the stability of the compounds with a good docking score, the top two complexes and the
standard complex (MRTX-1133) were subjected to 200 ns MD simulation. The top two hits revealed high
stability as compared to the standard compound. The binding energy of the top two hits was good as
compared to the standard compound. Our identified hits have the potential to inhibit the KRAS G12D
mutation and can help combat cancer. To the best of our knowledge, this is the first study in which
machine-learning-based virtual screening, molecular docking, and molecular dynamics simulation were
carried out for the identification of new promising inhibitors for the KRAS G12D mutant.

Keywords: KRAS G12D; machine learning-based virtual screening; molecular docking; MD
simulations

1. Introduction

Cancer is one of the primary causes of mortality globally [1]. In 2023, 1,958,310 new
cancer cases and 609,820 cancer deaths are projected to occur in the United States [2].
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Radiation, bacteria, and viruses account for about 7% of all cancer cases [3]. Various
genetic alterations, including point mutation, deletion, and amplification, can result in
the production of oncogenes [4]. Mutations in genes that play an important role in cell
proliferation and differentiation are the primary cause of the majority of malignancies.
Mutation in the KRAS gene is also responsible for the formation of cancer [5]. KRAS is a
member of the RAS superfamily of genes and is located on chromosome 12. KRAS acts
as a switch to regulate many signal transduction pathways by cycling between active
and inactive states (GTP and GDP-bound, respectively). The RAF–MEK–ERK pathway is
one of these signal transduction cascades [6]. The three genes (HRAS, NRAS, and KRAS)
encode the four RAS proteins KRAS4A, KRAS4B, HRAS, and NRAS [7]. The two isoforms
KRAS4A and KRAS4B result from the alternative splicing of exon 4, and these two isoforms
have a difference in the C-terminal region [8]. However, KRAS4B is the most prevalent
isoform in human cells, whereas KRAS4A expression is more comparable to viral KRAS [9].
Single-point mutations in KRAS are the most common cause of human cancer. In humans,
oncogenic KRAS mutations are responsible for at least 30% of lung, pancreatic, thyroid,
liver, and colon cancers [10].

Codons 12, 13, and 61 are frequently the sites of cancer-promoting KRAS mutations,
with G12 accounting for the majority of these mutations (89%). Among the KRAS mutants,
KRAS G12D is the most prevalent (36%) followed by KRAS G12V, (23%), and KRAS G12C
(14%) [11]. The G12D variant is responsible for pancreatic cancer and is a target for drug
development initiatives [12]. Because KRAS lacks binding pockets, its structure has shown
to be extremely resistant to small-molecule modification [13]. To date, no FDA-approved
drugs have been made available for the KRAS G12D mutant. However, one of the products
of Mirati MRTX1133 is in clinical trials for patients with advanced solid tumors associated
with the KRAS G12D mutation [14].

New drug development is time-consuming and expensive. It may take 10–15 years
and cost up to $2 billion [14]. Conversely, in silico approaches for drug design are cost-
effective and fast [15]. The drug development process has been significantly influenced
by computer-assisted drug discovery (CADD) tools [16]. These in silico approaches
and the advancement of supercomputing capabilities have impressively improved the
effectiveness of lead discovery in pharmaceutical research [17]. Artificial intelligence
(AI) and machine learning techniques are frequently used for the identification of new
lead compounds [18,19]. The identification and design of new lead compounds that bind
to the therapeutic drug targets are greatly enhanced by artificial intelligence and ML
approaches [20].

The present study aims to identify new promising inhibitors for the KRAS G12D
mutant. We used different machine learning models to identify new promising hits from
the ZINC database against the KRAS G12D cancer drug target. Using Lipinski’s rule of
five, drug-like compounds were selected from the ZINC database. The drug-like molecules
were docked against the KRAS G12D mutant. The complexes with the top docking scores
were simulated for 200 ns. The newly identified hits were found to be more stable during
MD simulation. The findings indicated that these new hits may be KRAS G12D protein
inhibitors, which may be important for cancer treatment.

2. Results
2.1. Preparation of Dataset

From the binding databank database, a total of 2526 compounds with reported IC50
values for KRAS G12D were obtained. Those compounds for which the IC50 value was not
reported were removed from the dataset. The compounds were labeled as active or inactive
based on the IC50 value of the standard compound MRTX1133 (6.1 nM) [21]. The active
and inactive compounds in the dataset were denoted by the labels 1 and 0, respectively.
The compound with an IC50 value less than or equal to the reference was labeled as active
while the compound with an IC50 value higher than the reference was labeled as inactive.
In our dataset, 422 compounds were found as active while the remaining were labeled
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as inactive. MOE (2016) software was employed to compute 208 2D descriptors in total.
To prevent overfitting and improve the model’s generalizability, the dataset underwent
preprocessing to eliminate any zero and NA values. After preprocessing, there were only
172 descriptors left.

2.2. Optimum Features Selection

Filter, wrapper, and embedding approaches are the three types of methods currently
used by the SVM to evaluate the significance of variables in the dataset. RFE is a gold
standard method among wrapper techniques [22]. In the present study, we used recur-
sive feature elimination (RFE), for the optimum feature selection. Out of 172 features, a
total of 57 optimum features including weinerPath, PEOE_VSA+2, Weight, Q_VSA_HYD,
Q_VSA_POS, vdw_area, vdw_vol, vsa_hyd, SlogP_VSA0, PEOE_VSA+0, SMR_VSA6,
SlogP_VSA3, Zagreb, TPSA, SMR_VSA1, SlogP_VSA7, PEOE_VSA-4, a_IC, SMR_VSA5,
PEOE_VSA-0, vsa_pol, b_single, b_heavy, bpol, PEOE_VSA-1, a_heavy, SMR_VSA2, di-
ameter, logP, weinerPol, and others were selected. Figure 1 shows the optimum feature
selection curve. All machine learning models were trained using optimum feature subsets
in order to increase each model’s performance.
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Figure 1. The chemical space and diversity distribution of the dataset. The scatter plot indicates the
average results from the cross-validation. The molecular weight and LogP are shown on the X and Y
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2.3. Chemical Space and Diversity

The chemical diversity of a dataset significantly affects the reliability of the ML algo-
rithm. Adequate chemical space is needed for model performance [23]. The significant



Pharmaceuticals 2024, 17, 551 4 of 16

chemical gap between logP and molecular weight (MW) is shown in Figure 1. A substantial
chemical gap between active and inactive inhibitors was observed, with logP ranging from
−4 to 8 and MW ranging from 250–600 Da, respectively.

2.4. Performance Evaluation of Models

Several supervised ML models, such as KNN, SVM, and RF, were trained using
Python v3.9. Several metrics like accuracy, sensitivity, specificity, and MCC were computed
to access each model performance. Among all models, the accuracy of RF model was
computed as 99% and the MCC value of RF model was 0.96 so it was ranked as the best
model. The KNN model was ranked second based on accuracy and MCC value. The
accuracy of the KNN model was found as 98% and MCC was found as 0.94. The SVM
model was ranked third with an MCC value of 0.90 and an accuracy of 96%. Table 1 shows
the performance evaluation of all the models. To obtain reliable results we employed five-
fold cross-validation. Analyzing the ROC-AUC curve is one of the most reliable methods to
assess model performance. With an area under the curve (AUC) value of 0.99 the RF model
outperformed the KNN and SVM models, with an AUC value of 0.98 and 0.95, respectively,
as shown in Figure 2.

Table 1. Performance evaluation of machine-learning models.

Models Accuracy Sensitivity F1 Score MCC

KNN 98 0.99 0.95 0.94

SVM 96 0.93 0.92 0.90

RF 99 0.94 0.96 0.96
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2.5. Virtual Screening

Among the ML algorithms, the RF model revealed good accuracy and MCC score so
it was used for the virtual screening of a total of 20,000 drug-like compounds retrieved
from the ZINC database. A total of 82 hits were predicted as active against the KRAS G12D
mutant. Among these 82 hits, ten hits were found to be toxic, so these compounds were
removed from the database while the non-toxic compounds were docked against the KRAS
G12D mutant.

2.6. Molecular Docking Study

All 72 hits were docked into the active site of the KRAS G12D mutant. The docking
analysis revealed that most of the newly identified hits revealed good docking scores
and interactions with the KRAS G12D mutant. MRTX-1133 was selected as the control
compound in the docking study. Compound ZINC05524764 was identified as the most
promising with a docking score of −7.91 (kcal/mol). Compound ZINC05524764 establishes
five hydrogen bonds with Glu62, Asp92, Asp12, His95, and Gly60 and one ionic interaction
with Glu62 residues of KRAS G12D. Compound ZINC05828661 was found to be the
second most potent compound with a docking score of −6.85 (kcal/mol). Compound
ZINC05828661 made six hydrogen bond interactions with the Asp12, Lys16, Ala59, and
Arg68 active site residues. The docking score of compound ZINC05725307 was predicted
as −6.70 (kcal/mol). Compound ZINC05725307 made three hydrogen bond contacts with
Asp12 and Arg102 and one ionic interaction with Lys16, one arene-H interaction with Ala59,
and one arene-cation interaction with Arg68 residue of the KRAS G12D receptor. Control
compound MRTX1133 revealed four hydrogen bonds with the Asp12, Glu62, and His95
active site residues of KRAS G12D while one arene-cation interaction with Arg68 was also
observed. Table 2 shows the docking score and interactions of the most promising hits of
the ZINC database. The 3D interactions of the most promising compounds in comparison
with the control compound are shown in Figure 3.

Table 2. Docking score and interactions of the most potent compounds of ZINC database.

Zinc ID Interacting Residues Interaction Type Distance (Å)
Energy

(kcal/mol)
S Score

(kcal/mol)

ZINC05524764

GLU 62 H-bond 3.30 −2.0

−7.91

ASP 92 H-bond 3.13 −1.8
ASP 12 H-bond 3.02 −2.1
HIS 95 H-bond 2.96 −2.8
GLY 60 H-bond 3.23 −3.5
GLU 62 Ionic 3.72 −1.1

ZINC05828661

ASP 12 H-bond 3.01 −2.6

−6.85

LYS 16 H-bond 3.15 −1.7
Ala 59 H-bond 3.25 −0.6
ASP 12 H-bond 3.30 −0.5
ARG 68 H-bond 3.20 −2.6
ARG 68 H-bond 3.23 −1.5

ZINC05725307

ASP 12 H-bond 2.88 −1.6

−6.70

ARG 102 H-bond 2.88 −5.1
LYS 16 H-bond 3.33 −0.9
LYS 16 Ionic 2.78 −6.2
ALA 59 Arene-H 4.12 −0.6
ARG 68 Arene-cation 4.83 −0.8

ZINC17004657

GLN 61 Arene-H 3.88 −1.1

−5.68
ASP 12 H-bond 2.98 −1.6
ASP 12 H-bond 3.05 −1.2
LYS 16 H-bond 3.30 −1.0
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Table 2. Cont.

ZINC18169629

GLN 61 H-bond 3.09 −0.6

−6.19

HIS 95 H-bond 2.91 −6.2
GLY 60 H-bond 3.26 −1.0
LYS 16 H-bond 3.13 −3.0
ALA 59 Arene-H 4.03 −1.2
GLY 60 Arene-H 4.39 −0.6
THR 58 Arene-H 4.02 −0.8

ZINC22760692

GLU 63 H-bond 3.20 −1.1

−6.51

HIS 95 H-bond 3.24 −0.8
ARG 68 H-bond 3.12 −0.5
GLY 10 H-bond 3.10 −0.5
LYS 16 H-bond 3.16 −0.8
MET 72 Arene-H 4.17 −0.6

Control

GLU 62 H-bond 3.29 −1.4

−5.39
GLU 62 H-bond 3.30 −0.7
ASP 12 H-bond 2.64 −3.1
HIS 95 H-bond 2.77 −3.0

ARG 68 Arene-cation 4.72 −0.7
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2.7. Docking Validation
The docking procedure was validated by removing the co-crystal ligand (PDB ID: 7RPZ) and

then re-docking it into the active site using MOE (2016) software [23]. The RMSD value between the
top-ranked docked conformation and the co-crystallized ligand was predicted to be 0.148 Å (Figure 4),
revealing the validity of the MOE docking protocol.
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2.8. Drug-Likeness and Toxicity Analysis of the Compounds
In evaluating the drug-likeness of the compounds, one widely accepted criterion is the Lipinski

rule of five. In this study, the MOE software was employed to calculate the drug-likeness of the
compounds. The Lipinski rule of five for the most promising compounds is present in Table 3. All
the compounds obeyed the Lipinski rule of five. Our newly identified compounds against the KRAS
G12D target possess drug-likeness. Furthermore, the virtual toxicity of the compounds was evaluated
by using the MOE software. All the compounds were predicted non-toxic as presented in Table 4.

Table 3. Drug-likeness of the compounds.

Compound ID M-Weight HB-Donor HB-Acceptor logP

ZINC05524764 254.25 3 5 −1.41

ZINC05828661 289.75 2 4 0.13

ZINC05725307 259.24 3 4 0.41

Table 4. Two-dimensional structures and toxicity analysis of the most promising compounds.

Compound ID 2D Structure Toxicity

ZINC05828661
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2.9. Post-Simulation Analysis
2.9.1. RMSD Analysis

One of the most acceptable methods for examining the underlying stability of protein-ligand
complexes is the performance of MD simulations. The stability of the complexes was evaluated by
RMSD analysis. For the 200 ns production simulations, the RMSD of the KRAS G12D was plotted
and the result was compared to the control complex. The RMSD of the ZINC05524764 complex
was initially stable up to 50 ns but minor fluctuations were observed between 50 and 55 ns then the
system converged and remained stable to 120 ns. After 120 ns, the RMSD gradually increased up
to 170 ns, then the system attained stability and remained stable up to 200 ns. The RMSD of the
ZINC05828661 complex revealed stability during the first 50 ns, after that minor deviations were seen
between 50 and 70 ns, then the system attained stability and remained stable up to 200 ns, except
for some deviation between 125 and 175 ns. However, when compared to the control system, the
RMSD of the two systems were found to be highly stable during the 200 ns MD simulation. The
control system revealed unstable behavior between 60 and 125 ns but overall, a stable RMSD was
observed for all the systems. The average RMSD of the ZINC05524764, ZINC05828661, and control
systems was found to be 2 Å, 2.1, and 2.5 Å, respectively. Figure 5 displays the RMSD plots for all
of the complex systems. The ligand RMSD also showed limited fluctuation, indicating that once
bound, the ligand remains consistently positioned within the binding site of the KRAS G12D protein.
The minimal deviation of the RMSD ligand from the RMSD complex suggests a synergistic stability
between the ligand and the protein, an indication of a stable complex that is less likely to dissociate
under physiological conditions. This result suggests that ZINC05524764 has the potential to act as an
inhibitor for the KRAS G12D protein. Figure S1 shows the RMSD ligand plots, while Figure S2 shows
the complex systems before and after MD simulation.
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2.9.2. RMSF Analysis
The root mean square fluctuation (RMSF) allowed for a more thorough examination of the

protein’s backbone flexibility. The RMSF plots for all the complexes are shown in Figure 6. The loop
regions had the highest variations, with an overall comparable tendency in the fluctuations. Residues
Asp30, Glu31, Tyr32, Asp33, Pro34, Thr35, Ile36, Ser65, Ala66, Met67, Arg68, and Asp69 revealed
high fluctuations during MD simulation. Conversely, a decrease in flexibility was noted in the region
where the inhibitor was bound, indicating the impact of inhibitor interactions with the active site
residues of KRAS G12D.
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2.10. Structure Compactness Analysis
We calculated the structural compactness in a dynamic setting to determine the binding and

unbinding processes that took place during the simulation. The radius of gyration (Rg), as a function
of time, was used to evaluate the structural compactness. The Rg of ZINC05828661 showed a similar
trend to that of RMSD, as shown in Figure 7. For a short period in the first 50 ns, the complex first
reported low Rg values. After that, the Rg value increased to 15.9 Å, then decreased again, and
continued to follow a consistent pattern up to 200 ns. The average Rg value for the ZINC05524764
system (green) was found to be 15.2–15.6 Å, the Rg value for the ZINC05828661 system was observed
to be 15.1–15.8 Å, and for the control system, the Rg value was found to be 15.3–15.7 Å. Figure 6
displays the Rg plots for all the systems.
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DCCM Analysis
By computing the correlation among residues of receptor the dynamic cross-correlation map

(DCCM) was employed to obtain information regarding correlated motions during the MD simulation.
Inter-residue correlation analysis, or DCCM, was carried out to elucidate the correlations among
the residues in the systems. Figure 8 displays the DCCM results for all of the complex systems.
The motions of the amino acids appeared positively correlated, indicating that they were strongly
associated with correlated motions. If the amino acids are moving in the opposite or reverse direction,
demonstrated anti-correlations of motion. The anti-parallel and parallel directions, respectively,
represent the negative and positive correlations between the residues of the systems [24]. The dark
brown region in the plots shows a negative correlation while the green regions indicate positive
correlations between the residues. More positive correlations were observed in ZINC05524764 and
ZINC05828661, as compared to the control system.
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2.11. Binding Energy Calculation
Using the binding free energy method, or MM-GBSA, to measure the binding strength of small

molecules is a frequently used technique to confirm the ligand binding and docking stability. In
terms of calculation, the MM-GBSA approach which was previously reported is less expensive and,
as compared to the rational scoring functions, is one of the most accurate techniques [25]. We also
used this method to determine the binding free energy for the ZINC05524764, ZINC05828661, and
control complexes, keeping in mind its applicability. Total binding free energy (TBFE) estimates for
the ZINC05524764 complex were −39 kcal/mole, for the ZINC05828661 complex the binding energy
was calculated as −35 kcal/mole, and for the control system, the binding free energy was found as
−30 kcal/mole. Table 5 shows the results of the MMGBSA analysis.

Table 5. MMGBSA analysis indicating the binding energy of all the complexes.

Complex vdW EEL ESURF EGB ∆G TOTAL

ZINC05524764-KRASG12D −48.7803 −9.8255 −5.8669 25.3835 −39.0880

ZINC05828661-KRASG12D −42.7893 −5.4652 −4.8129 17.8249 −35.2418

Control-KRASG12D −26.6921 −29.9760 −4.5080 30.4723 −30.7021

3. Discussion
The second most common cause of cancer death is considered to be pancreatic ductal adenocar-

cinoma (PDAC) in the US. For metastatic PDAC, the 5-year survival rate is less than 5% due to the
restricted therapeutic choices available [26,27]. Human malignancies are often linked to the activation
of missense mutations of RAS genes (KRAS, HRAS, and NRAS), which are crucial in oncogenic
transformation [28]. Due to the absence of binding sites appropriate for small-molecule inhibitors,
oncogenic RAS proteins have long been thought to be undruggable [29]. Most KRAS mutations
occur at codon 12, where G12D mutations account for the largest frequency (35%), followed by G12V
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(20–30%), G12R (10–20%), Q61 (~5%), G12C (1–2%), and other uncommon mutations. [30] FDA has
approved sotorasib (AMG510) and adagrasib (MRTX849) for the treatment of advanced lung cancer
with a KRASG12C mutation. Additionally, MRTX 1133, a KRAS G12D inhibitor, has demonstrated
encouraging preclinical development outcomes, and it is presently undergoing a phase 1 clinical trial.
To date, no FDA-approved drugs are available for the KRAS G12D mutant. So, there is a need to
develop a new and effective drug for KRAS G12D [31]. The pharmaceutical industry has benefited
greatly from the deployment of several machine learning algorithms in drug discovery. Predicting
bioactivity, drug–protein interactions, and enhancing the bioactivity and safety profile of compounds
are among the common uses of these algorithms [32]. For the identification of new inhibitors against
different drug targets, ML-based virtual screening is widely used [33,34].

In this study, different machine learning models were used to identify new promising hits from
the ZINC database against the KRAS G12D cancer drug target. Among the 82 hits predicted as active,
a total of 10 hits were found to be toxic. These toxic compounds were removed, and the remaining
hits were docked into the active site of KRAS G12D. The molecular docking analysis confirmed six
compounds as the most promising inhibitors for KRAS G12D. A previous study identified three
promising inhibitors Quercetin, Psoralidin, and Resveratrol for the KRAS G12D mutant. These
promising inhibitors formed hydrogen bonding with the Gly10, Thr58, Asp69, Tyr96, Gln61, Glu62,
Tyr64, Met72, and Arg68 active site residues of KRAS G12D [35]. Our promising inhibitors also made
interactions with the active site residues including Gly10, Asp12, Lys16, Thr58, Glu62, Gly60, Arg68,
Met72, and His95. Following molecular docking, a 200 ns MD simulation was carried out for the
top two complexes along with the standard complex to determine their stability. The identified hits
revealed stable binding to the protein confirmed by the RMSD analysis, demonstrating that these
compounds are appropriate inhibitors of KRAS G12D. The stability of the ZINC05524764 complex in
comparison to all other complexes was further corroborated by the RoG analysis, which is consistent
with the RMSD profile. Furthermore, MMGBSA analysis revealed the strong binding energy of the
two complexes as compared to the control complex.

4. Materials and Method
4.1. Dataset Preparation

A total of 2526 compounds for the KRAS G12D mutant found in the Binding DB were extracted.
MRT1133 was considered as the standard compound. The standard compound’s IC50 value was
found to be 6.1 nM [21]. Based on the IC50 value, the compounds were divided into active and
inactive categories. For 526 compounds, the IC50 value was not reported so these were removed.
A total of 1578 compounds were categorized as inactive because their IC50 value exceeded that of
the reference compounds, while 422 compounds were considered active because their IC50 value
was equal to or less than that of the reference compound. In the target class, the active and inactive
compounds were indicated by 1 and 0, respectively.

4.2. Features Extraction and Dataset Cleaning
The experimentally validated compounds against the KRAS G12D mutant were obtained from

Binding DB. Then, descriptors were calculated in MOE (2019) software [36]. A total of 206 features
were computed by MOE software. All the 0 and null (NA) values were removed from the dataset
using python v3.9. The dataset cleaning was carried out using the pandas library of python [37].
Then, the dataset was split into training (70%) and test (30%) subsets. The train_test_split function
was used to divide the dataset into training and test sets [38].

4.3. Feature Selection
To develop a computationally inexpensive model and to improve model performance, optimum

features selection was carried out. We employed SVM-RFE to choose optimum features for model
development [39].

4.4. ML Models
Using open-source Python v3.9, three models such as the k-nearest neighbors, support vector

machine, and random forest models were developed. All the models were developed using the
scikit-learn package of the Python software v3.9 [23].
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4.5. K-Nearest Neighbor (kNN)
The k-nearest neighbors (KNN), also known as a lazy algorithm, can solve the problems of

classification as well as regression. First, the distance between the nearest neighbors in the data can
be measured [40]. The parameter n_neighbors can be used to select the nearest neighbors [41]. The
optimal k value was found to be 11.

4.6. Support Vector Machine (SVM)
The SVM model can tackle the problems of regression and classification [42]. Apart from binary

classification, SVM can address multiclass classification problems. SVM classifies data with the help
of an optimum hyper-plane. Various kernel functions (linear, polynomial, sigmoid, and radial base
functions) are used to convert low-dimensional data into a higher dimensional space [43]. The grid
search method and RBF were employed to predict the optimal values for the C and γ parameters.
Finally, C = 1000 and γ = 1 were found to be the ideal values.

4.7. Random Forest (RF)
The RF algorithm was first presented by Breiman [44]. It is a favored model for data categoriza-

tion or regression tasks. A bootstrap sample is used to train the random forest tree, and predictions
are made by the majority vote of the trees. Max_features and n_estimators, which indicate the number
of trees built before predictions, were the two main hyperparameters that were optimized during
model development [41]. Some 100 to 500 estimates were taken during model generation.

4.8. Models Validation and Performance Evaluation
In the case of unbalanced datasets, accuracy alone is not sufficient to access the strength of a

classification model [45]. In the case of binary classification problems, the MCC parameter can be
used to evaluate the performance of a model. The receiver operating characteristic (ROC) curve is
another useful tool for evaluating the models’ performance. A ROC curve can be used to visually
represent the true positive rate against the false positive rate [46]. For ML model evaluation, several
parameters were calculated, including accuracy, F1 score, MCC score, and ROC curves. We employed
five-fold cross-validation in this study.

4.9. Virtual Screening and Molecular Docking Study
The model that revealed high accuracy and MCC values was used for the virtual screening of

the 20,000 drug-like compounds of the ZINC database [47]. The hits obtained from the RF model
were docked against the KRAS G12D mutant. The 3D structure of the KRAS G12D mutant (PDB ID:
7RPZ) was retrieved from the PDB database. The water molecules were removed from the structure
before docking [48]. Energy minimization was carried out using an RMS gradient of 0.05. The
protein preparation module of the MOE version 2016 (Chemical Computing Group, Montreal, QC,
Canada) software was used to prepare the structure. The KRAS structure was 3D protonated. Ten
conformations were generated in total for each hit [49]. Finally, for docking analysis, the PyMOL
version 2.5 (Schrödinger, New York, NY, USA) and MOE version 2016 (Chemical Computing Group,
Montreal, QC, Canada) software were used.

4.10. MD Simulation
Using the AMBER version 2022 (Schrödinger, San Francisco, CA, USA) package [24], MD

simulation was carried out for 200 ns to examine the stability and dynamic evaluation of the best
complexes. For protein and ligand molecules, the FF19SB force field and the general amber force
field (GAFF), respectively, were used [50]. Na+ ions were added to counteract the effects of any
charge, and energy reduction was accomplished in two phases (using the steepest descent and
conjugate gradient methods) [51]. The heating and equilibration processes were then carried out.
Then, the production run of 200 ns for each complex was run. The particle mesh Ewald algorithm
was applied to the long-range electrostatic interactions using cutoff distance of 10.0 Å [52]. Lastly,
the simulations were conducted using PMEMD.cuda, and the trajectories were analyzed using the
CPPTRAJ package [53].

4.11. Binding Free Energy Calculations
The most frequently utilized method in various research studies is the assessment of the

potency of small molecule binding by calculating the binding free energy (BFE) using the MM/GBSA
approach [54]. We employed the MMPBSA.py script to calculate the binding free energy of the
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protein–ligand complexes by taking into account 2500 snapshots. To calculate the BFE, the following
formula was applied:

∆G bind = ∆G complex − [∆G receptor + ∆G ligand]

The binding energy of a protein, drug, or complex is represented by the symbols ∆G receptor, ∆G
ligand, and ∆G complex, respectively, while the overall binding energy is represented by the symbol
∆G bind [25].

5. Conclusions
The KRAS G12D variant is responsible for pancreatic cancer and is a target for cancer drug

development initiatives. In this study, different computational approaches were used to identify new
promising inhibitors for the KRAS G12D mutant. Among the 72 active hits against KRAS G12D,
two compounds ZINC05524764 and ZINC05828661 were found to be the most promising for the
KARS G12D mutant. As compared to the standard compound MRTX 1133, our reported compounds
revealed high stability during the 200 ns MD simulation. Our identified hits have the potential to
inhibit the KRAS G12D mutation and can help combat cancer. This study provides hope for the
development of new drugs to treat the cancer caused by the KRAS G12D mutation. This work sets the
stage for continued innovation in the field of drug discovery. It is further recommended to evaluate
the inhibitory potential of these compounds through in vitro and in vivo approaches.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph17050551/s1, Figure S1: RMSD plot for ligands ZINC05524764
(Green) ZINC05828661 (Purple) and Control (Red) systems. Time in ns is shown on the X-axis and
the RMSD value of each ligand is shown on the Y-axis; Figure S2: (A–C) indicates the complex
ZINC05524764, ZINC05828661, and Control systems before MD simulation while (D–F) indicates the
ZINC05524764, ZINC05828661, and Control systems after MD simulation.
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