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Abstract: P2X7 is an ATP-activated purinergic receptor implicated in pro-inflammatory responses. It is
associated with the development of several diseases, including inflammatory and neurodegenerative
conditions. Although several P2X7 receptor antagonists have recently been reported in the literature,
none of them is approved for clinical use. However, the structure of the known antagonists can
serve as a scaffold for discovering effective compounds in clinical therapy. This study aimed to
propose an improved virtual screening methodology for the identification of novel potential P2X7
receptor antagonists from natural products through the combination of shape-based and docking
approaches. First, a shape-based screening was performed based on the structure of JNJ-47965567, a
P2X7 antagonist, using two natural product compound databases, MEGx (~5.8 × 103 compounds)
and NATx (~32 × 103 compounds). Then, the compounds selected by the proposed shape-based
model, with Shape–Tanimoto score values ranging between 0.624 and 0.799, were filtered for drug-like
properties. Finally, the compounds that met the drug-like filter criteria were docked into the P2X7
allosteric binding site, using the docking programs GOLD and DockThor. The docking poses with the
best score values were submitted to careful visual inspection of the P2X7 allosteric binding site. Based
on our established visual inspection criteria, four compounds from the MEGx database and four
from the NATx database were finally selected as potential P2X7 receptor antagonists. The selected
compounds are structurally different from known P2X7 antagonists, have drug-like properties, and
are predicted to interact with key P2X7 allosteric binding pocket residues, including F88, F92, F95,
F103, M105, F108, Y295, Y298, and I310. Therefore, the combination of shape-based screening and
docking approaches proposed in our study has proven useful in selecting potential novel P2X7
antagonist candidates from natural-product-derived compounds databases. This approach could also
be useful for selecting potential inhibitors/antagonists of other receptors and/or biological targets.

Keywords: P2X7 receptor; antagonists; natural products; virtual screening; shape-based model

1. Introduction

P2X7 is a member of the P2X purinergic receptor family, which is physiologically acti-
vated by extracellular ATP [1]. P2X7 activation results in the opening of a cation-nonselective
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channel that allows for the flux of Ca2+, Na+, and K+ ions through the cell membrane,
according to the electrical and concentration gradient. Prolonged exposure to high ATP con-
centrations (>100 µM) induces the formation of a reversible membrane pore, which allows
for the passage of molecules of up to 900 Da [2]. P2X7 activation also promotes a series of
pro-inflammatory responses, including caspase activation, cytokine release, and reactive
oxygen species generation, in addition to cell death [3–7].

P2X7 is considered a promising therapeutic target for several diseases and pathophys-
iological events, such as cancer, pain, and neurodegenerative, inflammatory, and infectious
diseases [8–12]. P2X7 antagonists have shown potent anti-inflammatory and antinocicep-
tive effects in vivo, reinforcing their therapeutic importance in several pathophysiological
contexts [5,13]. Currently, several compounds have been reported as presenting antago-
nistic activity against P2X7, and some of them were identified through high-throughput
screening (HTS) campaigns carried out by pharmaceutical companies. Nevertheless, none
of the known P2X7 antagonists have been approved for use in clinical therapy, due to
pharmacokinetic limitations or the lack of clinical efficacy [5,14]. This motivates the search
for novel P2X7 antagonists.

Natural products have emerged as a promising source for the discovery of novel
drugs, due to a significant diversity of chemical structures presenting a potential bioactivity
acquired over thousands of years of evolution [15]. Notably, almost 49% of all new chemical
entities released between 1981 and 2019 are natural products, semi-synthetic derivatives, or
synthetic drugs with a pharmacophore derived from natural products [16], highlighting
their importance in drug discovery. Furthermore, over 10 compounds from plants, animals,
and microorganisms have been identified with antagonistic or modulatory activity on
P2X7 [17,18], including emodin [19–21], colchicine [22], and stylissadines [23].

Classical drug discovery strategies include in vitro or phenotypic assays in an HTS
context [24] and/or in silico methods [25]. The HTS strategy is frequently used in the pharma-
ceutical industry as it allows for testing thousands of compounds through bioassays. This
approach, however, is time-consuming, laborious, and costly [25]. In this regard, virtual
screening (VS) has been well established as the main in silico approach to cheaply and quickly
screen very large databases (106–108) to identify compounds with predicted biological ac-
tivities [26–28]. Compounds selected by VS campaigns must, nevertheless, be submitted to
confirmatory in vitro and/or in vivo assays for VS experimental validation [26,27,29,30].

Shape-based 3D similarity methods have been widely used as a VS approach [31–33],
with several recently reported successful applications [30,34,35], including for the selection of
inhibitors of the human ecto-5′-nucleotidase (h-ecto-5′-NT, CD73), an enzyme that plays a key
role in purinergic signaling pathways [30]. Shape-based 3D similarity methods are based on
the premise of a shape complementarity between a ligand and its corresponding binding site in
the receptor [31–33]. Therefore, compounds with a similar shape would have a high probability
of presenting the same biological activity(ies) against a certain biological target [31]. One of
the main advantages of shape-based similarity methods is that they allow for the selection of
structurally diverse compounds, despite presenting similar shapes [31,32].

Docking methods were originally proposed in the literature to predict the binding
mode of a ligand to a target protein [36–38]. Docking is frequently used, alone or in combi-
nation with other in silico approaches, as part of VS protocols [36–38]. Docking consists
of two major steps: (i) the prediction of ligand conformation and orientation inside the
binding site of the target protein and (ii) the prediction of protein-ligand affinity, usually
applying “scoring functions” [39]. Despite the recent advancements concerning the de-
velopment of docking methods, the scoring functions currently available remain quite
limited in their abilities to consider relevant protein–ligand interaction aspects, including
solvation/desolvation, polarizability, and entropic effects [38–40]. Additionally, accurate
predictions of binding modes and binding affinities are limited by (i) the inherent protein
flexibility, (ii) the undersampling of ligand conformational states, (iii) induced fit effects
or other conformational changes that may occur upon ligand binding, (iv) the resolution
of crystallographic structures available for docking, and (v) the lack of a complete com-
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prehension on the role of water molecules in protein–ligand interactions [38–42]. Due to
these recognized limitations, a visual inspection of the predicted docking poses inside the
protein binding site is crucial for docking-based VS approaches [30,36,40,43,44]. Addition-
ally, experimental validation steps are extremely relevant to overcome inherent docking
limitations [30].

Herein, we aimed to search for novel potential P2X7 antagonists using a VS approach
consisting of (i) a shape-based filter proposed based on the structure of JNJ-47965567, a
known P2X7 receptor antagonist that binds to an allosteric binding site in this receptor [45,46];
(ii) a drug-like filter; and (iii) a docking filter followed by a careful visual inspection of the
docking poses into the P2X7 allosteric binding site. Each of these filters was applied to
the following AnalytiCon natural product databases: MEGx (~5.8 × 103 compounds) and
NATx (~32 × 103 compounds). Using this VS approach, four compounds from the MEGx
database and four from NATx were selected as potential P2X7 antagonists, representing >99%
reduction in the number of compounds from each database. The selected compounds represent
structurally novel drug-like P2X7 antagonist candidates.

2. Results and Discussion

A schematic representation of the VS protocols applied herein to select potential
natural-product-derived P2X7 antagonist candidates is shown in Figure 1. As mentioned
above, the VS protocols were applied to the following AnalytiCon databases: MEGx
(~5.8 × 103 compounds), which encompasses isolated natural products from plants and
microorganisms, and NATx (~32 × 103 compounds), which comprises synthetic compounds
derived from natural products.

Figure 1. Schematic representation of the hierarchical sequence of selection filters applied to the
MEGx and NATx databases aiming at the selection of potential P2X7 antagonists.

2.1. Shape-Based Screening

In the first step of our VS protocol, a shape-based model was generated based on the
structure of JNJ-47965567 (Figure 2). This compound has been described in the literature
as a non-competitive and selective P2X7 antagonist, presenting inhibitory potency in
the low nanomolar range (IC50 = 11.9 nM) [45,46]. The crystal structure of P2X7 from
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Ailuropoda melanoleuca (giant panda), referred to herein as AmP2X7, complexed with JNJ-
47965567 (PDB ID: 5U1X) has been reported in the literature, revealing that JNJ-47965567
occupies an allosteric binding pocket located at the interface between two adjacent P2X7
subunits (Figure 3A,B) [46]. Notably, AmP2X7 has a high sequence identity (~85%) to the
Homo sapiens P2X7 (HsP2X7), and all the residues that form the allosteric binding site are
conserved among AmP2X7 and HsP2X7 (Supplementary Material). Therefore, the AmP2X7
crystal structure was chosen as the reference structure for our studies. AmP2X7 allosteric
binding pocket has also been verified as accommodating other structurally diverse AmP2X7
antagonists, albeit with lower binding affinities, highlighting the crucial roles of the size
and shape of this pocket in the molecular recognition of antagonists by AmP2X7 [46]. The
relevance of shape complementarity for receptor-antagonist binding supports the choice of
a shape-based model as the first filter in our VS protocol. Our shape-based model was built
considering the same JNJ-47965567 conformation as observed in the crystal structure of the
AmP2X7-JNJ-47965567 complex (Figure 3C) [46].

Figure 2. Two-dimensional representation of the structure of the JNJ-47965567, a selective P2X7 antagonist.

Subsequently, the generated shape-based model was applied to the MEGx and NATx
databases. The top-ranked 202 and 1005 compounds from each database, respectively, were
selected for the next step (Figure 1), representing ~3.5% and ~3.1% of the total number
of compounds in these databases. The Shape-Tanimoto score values of the compounds
from the MEGx and NATx databases ranged from 0.624 to 0.698 and from 0.679 to 0.799,
respectively. To validate our shape-based approach, 79 compounds described in the litera-
ture as P2X7 allosteric antagonists were applied to the generated shape-based model. The
Shape-Tanimoto score values of the known antagonists ranged from 0.467 to 0.694 (Table S1,
Supplementary Material). Therefore, the compounds selected from the MEGx and NATx
databases as novel potential P2X7 antagonist candidates by our generated shape-based
model have Shape-Tanimoto score values in the same range or even higher than the Shape-
Tanimoto score values of P2X7 allosteric antagonists described in the literature and applied
to the same model.
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Figure 3. Shape-based model building. (A) Schematic representation of the AmP2X7-JNJ-47965567
complex (PDB ID: 5U1X; resolution: 3.20 Å). (B) Close-up view of JNJ-47965567 bound to the allosteric
AmP2X7 binding site. (C) The shape-based model was generated using ROCS. The molecular shape
surface is represented in gray. JNJ-47965567 is represented as sticks, with carbon, oxygen, nitrogen, and
sulfur atoms colored in green, red, blue, and yellow, respectively. The figure was prepared using PyMOL
v.2.5.0 and ROCS v.3.5.0.2.

2.2. Drug-like Filter

Aiming to filter for potentially drug-like compounds, those selected by the shape-based
screening in the first step of the VS protocol were subsequently submitted to a drug-like
filter, using the “blockbuster” criteria implemented in the FILTER program v.4.1.2.0 [47,48].
As a result, 126 and 977 compounds from the MEGx and NATx databases (Figure 1),
respectively, were retained for the next step, representing a ~37.6% and ~2.8% reduction in
the number of compounds selected from both databases by the shape-based screening.

2.3. Docking and Visual Inspection

Compounds that met the applied drug-like filter criteria were finally docked into the
AmP2X7 allosteric binding pocket (see Figure 3B), using the GOLD v.5.2 and DockThor v.2.0
programs. The docking procedures were validated by redocking JNJ-47965567 into the
allosteric binding site. The redocking procedure was also performed for four other AmP2X7
antagonists that occupy the same allosteric binding site and whose AmP2X7R-complexed
structures have been elucidated by X-ray crystallography and deposited into PDB (PDB IDs:
5U1U, 5U1V, 5U1W, and 5U1Y). Most of the protein–ligand interactions observed in the
crystal structures were reproduced by the respective best ranked docking poses obtained
using GOLD and DockThor software (Supplementary Material).

Next, 25 compounds from the MEGx database with the highest score values according
to the GOLD ChemPLP scoring function (PLP score values ranging from 86.2 to 107.5)
and 25 compounds from the MEGx database with the highest score values according to
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the DockThor scoring function (score values ranging from −12.2 to −10.6 kcal/mol) were
selected for further analyses. Among the 50 compounds, 10 were simultaneously selected by
both docking programs, which means that the total number of compounds selected from the
MEGx database was 40 (~68.3% reduction in the number of docked compounds; Figure 1).
Additionally, 100 compounds from the NATx database with the highest score values
according to the GOLD ChemPLP scoring function (PLP score values ranging from 99.9 to
111.1) and 100 compounds from the NATx database with the highest score values according
to the DockThor scoring function (score values ranging from −11.8 to −10.9 kcal/mol) were
also selected for further analyses. As 18 compounds were simultaneously selected from
both docking programs, the total number of compounds selected from the NATx database
was 182 (~81.4% reduction in the number of docked compounds; Figure 1).

Aiming to select the compounds that greatest fit into the binding site, the best scoring
pose of each compound was analyzed by visual inspection into the AmP2X7 allosteric binding
site. To establish criteria that could aid in guiding our visual inspection, we carefully analyzed
the protein–ligand interactions in the crystal structures of the five aforementioned AmP2X7-
antagonist complexes, including AmP2X7-JNJ47965567 (see Supplementary Material). Our
analysis revealed that at least three of the five analyzed antagonists interact with the following
residues from the AmP2X7 allosteric binding site via hydrophobic interactions: F88, F95,
M105, F108, Y295, and I310. Additionally, at least three establish a hydrogen bond and/or
an ionic interaction with D92 and a hydrogen bond or a hydrophobic interaction with Y298
(from the adjacent monomer). The importance of the interactions with many of these residues
for protein–ligand recognition has already been experimentally confirmed by site-directed
mutagenesis studies, as reported in the literature [46]. Moreover, interaction with F103 is
essential for the inhibitory activity of all antagonists [46].

Based on these AmP2X7-antagonist interaction analyses, we established that the com-
pounds selected by our docking filter should fulfill the following criteria to be selected in the
visual inspection analysis: (i) make at least six interactions with any allosteric binding site
residues; (ii) make interactions with at least four “key-residues”, as follows: a hydrophobic
interaction with F88, F95, F103, M105, F108, Y295, and/or I310; a hydrogen bond and/or
an ionic interaction with D92 and/or a hydrogen bond or a hydrophobic interaction with
Y298 (from the adjacent monomer); and (iii) make at least one hydrogen-bond interaction,
ionic interaction, or cation–pi interaction with any other allosteric binding site residue.
Additionally, the following criteria should also be fulfilled: (i) there should be a shape
complementarity between the compound and the allosteric binding site; (ii) the docking
pose with the best score should be reproducible; and (iii) the conformation of the docking
pose with the best score should not be sterically hindered.

Compounds whose docking poses from both GOLD and DockThor met the visual
inspection criteria were finally selected as potential AmP2X7 antagonists, encompassing
four compounds from the MEGx database and four compounds from the NATx database
(Figure 1). This represents 90.0% and ~97.9% reductions in the number of docked com-
pounds from each database, respectively. The structures of selected compounds, some of
their physicochemical properties, and their GOLD ChemPLP and DockThor score values are
shown in Table 1. Notably, the GOLD ChemPLP score values for the compounds selected
by our VS protocol (89.99 to 101.31) are overall higher than the score values of the five
known aforementioned AmP2X7 antagonists (67.35 to 97.22), which were redocked into the
AmP2X7 allosteric binding site (Supplementary Material). Additionally, the DockThor score
values for the compounds selected by VS (−12.169 to −10.924) are lower than the score
values of the five known AmP2X7 antagonists (−11.242 to −9.601; Supplementary Material).
These results suggest that the compounds selected by our VS would have higher affinities
to AmP2X7 in comparison to the known AmP2X7 antagonists. Nevertheless, as mentioned
above, experimental validation is a unique way of confirming in silico predictions.
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Table 1. Some physicochemical properties * and docking scores of the selected compounds from the
MegX and NatX databases as potential P2X7 antagonists.

DB Compound
(Structure)

Molecular
Formula

MW
(g·mol−1) clogP TPSA

(Å) HA HD
GOLD

ChemPLP
Score

DockThor
Score

M
eg

X
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DB: database; MW: molecular weight; TPSA: topological polar surface area; HA: hydrogen acceptors; HD: hydrogen
donors. * Taken from AnalytiCon MegX and NatX databases.

The main protein–ligand interactions between the best scoring docking poses of each
selected compound from the MEGx and NATx databases and the residues that form the
AmP2X7 allosteric binding site are shown in Tables 2 and 3, respectively. Remarkably, all
docking poses from the compounds from both databases make hydrophobic interactions
with F95, which has been recognized as essential for the binding affinity of known P2X7
antagonists that bind the same allosteric pocket, as discussed above and reported in
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the literature [46]. Additionally, all compounds make a cation–pi or a hydrogen bond
with K297 according to GOLD and/or DockThor predictions. Moreover, at least seven
of the eight selected compounds make hydrophobic and/or π-stacking interactions with
residues F88, Y295, and I310. All compounds from the NATx database make a hydrophobic
interaction with F103, another residue that is recognized as crucial for the binding of known
antagonists [46].

Table 2. Protein–ligand interactions recognized between the best scoring docking poses of the
compounds selected from the MEGx database as potential P2X7 antagonists.

Compound

NP-016468 NP-025047 NP-025357 NP-025358

Residues
Subunit A GOLD DockThor GOLD DockThor GOLD DockThor GOLD DockThor

F88 HD HD HD HD HD HD

A91 HB HB

D92 HD

Y93 HB

T94 HB HB

F95 HD HD HD HD HD HD HD HD

P96 HD

F103 HD HD HD

M105 HD HD HD

F108 HD

K110 HB HB HB HB HB

F293 HD HD HD HD HD

Y295 HD HD HB HB, π-π HB, HB HD, HB,
π-π

K297 HB HB π-C, SB HB π-π

I310 HD HD HD HD HD HD

V312 HD HD HD

Residues
Subunit B GOLD DockThor GOLD DockThor GOLD DockThor GOLD DockThor

W167 HD HD HD

F293 HD

Y295 HD HD

A296 HB

Y298 HB HD, HB HD HD, HB HD HD

Residues
Subunit C GOLD DockThor GOLD DockThor GOLD DockThor GOLD DockThor

F95 HD

HD: hydrophobic interaction; HB: hydrogen bond interaction; SB: salt bridge; π-π: π-stacking interaction. Interac-
tions were recognized using the LigandScout and PLIP programs.
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Table 3. Protein–ligand interactions recognized between the best scoring docking poses of the
compounds selected from the NATx database as potential P2X7 antagonists.

Compound ID

NAT28-412055 NAT28-416626 NAT14-350419 NAT13-340161

Residues
Subunit A GOLD DockThor GOLD DockThor GOLD DockThor GOLD DockThor

F88 HD HD HD HD HD HD HD

A91

D92 HD HD

T94

F95 HD HD HD HD HD HD HD HD

F103 HD HD HD HD HD HD

M105 HD HD HD

F108 π-π HD

K110 HB HD HB

Y291 HB

F293 HD HD HD HD HD HD HD

Y295 HD HD π-π HB HD HD HB

K297 HBA HBA π-C π -C π-C HB HB

I310 HD HD HD HD HD HD HD

V312 HD HD

Residues
Subunit B GOLD DockThor GOLD DockThor GOLD DockThor GOLD DockThor

F95 HD HD

W167 HD HD HD

Y293 HD HD

Y295 HD HD HD

A296 HD HD

Y298 HD HD HD HD HD, HB HB HB

Residues
Subunit C GOLD DockThor GOLD DockThor GOLD DockThor GOLD DockThor

F95 HD

P96 HD HD HD

Q98 HB HB

HD: hydrophobic interaction; HB: hydrogen bond interaction; π-π: π-stacking interaction; π-C: π-cation interaction.
Interactions were recognized using the LigandScout and PLIP programs.

Interestingly, many of these residues are located near energetically favorable regions
to position hydrophobic, hydrogen-bond donor, and hydrogen-bond acceptor groups,
as revealed by the molecular interaction fields (MIFs) [49–51] calculated using the GRID
program v.2021.3 [49–51] (Figure 4). An extensive hydrophobic region is observed near
residues F95, F103, F293, and Y295. A hydrophobic contour is also observed near residues
F95, F03, and Y295 from the adjacent subunit. Hydrogen-bond acceptor regions are detected
close to K297.
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Figure 4. Representation of the molecular interaction fields (MIFs) calculated using the GRID
program for the allosteric binding site of AmP2X7 used as the reference pocket for the docking
calculations in our VS protocol. White, blue, and red surfaces represent the hydrophobic, hydrogen-
bond donor, and hydrogen-bond acceptor MIFs obtained using the DRY probe (energy cutoff value
of −1.0 kcal.mol−1), N1 probe (energy cutoff value of −7.0 kcal.mol−1), and O probe (energy cutoff
value of −7.0 kcal.mol−1), respectively. The main binding site residues are represented as sticks, and
the protein 3D structure is shown as a cartoon representation. Residues from subunits A and B are
labeled in black and blue, respectively. The figure was prepared using PyMOL v.2.5.0.

Notably, a high overlap between GOLD and DockThor poses for compound NP-016468
from the MEGx database is observed, as displayed in Figure 5A. Hydrogen bonds with
K110, A91, and Y298 (from the adjacent subunit) are observed for both these docking
poses. Additionally, hydrophobic interactions with F88, F95, F293, and I310 are common to
both docking poses (Table 2). Among the compounds selected from the NATx database,
the best overlap between GOLD and DockThor docking poses was observed for NAT13-
340161 (Figure 5B), displaying hydrogen bonds with K297 and with Y298 (from the adjacent
subunit), and hydrophobic interactions with F88, F95, F103, and F293 (Table 3).
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Figure 5. Schematic representation of the predicted binding modes (docking solutions with the best
score) of two representative compounds selected by our VS protocol as potential P2X7 antagonists.
(A) Superposition between the best scoring poses from the GOLD (carbon atoms in yellow) and
DockThor (carbon atoms in pink) programs for compound NP-016468 from the MEGx database.
(B) Superposition between the best scoring poses from the GOLD (carbon atoms in yellow) and
DockThor (carbon atoms in pink) programs for compound NAT13-340161 from the NATx database.
The AmP2X7 structure is represented as a green cartoon. Representative compound structures
and binding site residues that make hydrophobic and/or hydrogen bond interactions with the
representative compounds are shown as sticks. Oxygen, nitrogen, and fluorine atoms are colored
red, blue, and light blue, respectively. Hydrogen bonds are represented by dashed lines (in cyan for
GOLD docking poses and in magenta for DockThor docking poses). Residues from different subunits
are labeled in black and in blue. The figure was prepared using the PyMOL v.2.5.0 software.

2.4. Molecular Dynamics (MD) Simulations

Finally, we conducted MD simulations to evaluate the dynamic behavior of com-
pounds with protein flexibility, since in docking, the protein is maintained rigidly. This
test could allow more realistic protein–ligand interactions. As shown in Figure 6A, the
compound NP-016468 is not sufficiently stabilized in the P2X7 binding site and an extended
simulation time is necessary to observe this feature. Despite this, it is worth noting that
within 50 ns, the compound did not dissociate from the binding site, suggesting that it is
not likely to be ejected. The compound NP-025357 appears to stabilize its conformation
in a short time, around ~40 ns, as observed in Figure 6B. Although an extended time
for simulation is required for a more precise assessment, this behavior suggests that this
compound might have a greater affinity for P2X7. On the other hand, with a longer period,
it was possible to observe the stability of the compound NP-025047 in the P2X7 binding
site. There are two main instances of ligand accommodation observed at 30 and 45 ns
peaks (Figure 6C).

There is a predominance of hydrophobic and ring-stacking interactions such as π-
stacking and π-π in the analyzed interactions, as previously observed in docking. As
shown in Figure 7, compound NP-016468 mainly interacts with Phe, Tyr, and Trp residues.
A similar pattern of interactions was observed with compound NP-025357 in Figure 8.
Furthermore, it is possible to observe two hydrogen bonds occurring between the com-
pound and the residues D92B and Y298C, which likely stabilized the ligand rapidly. It is
important to note that an extended computational time would be necessary to reinforce
these assertions. Finally, compound NP-025047 also presents a similar profile, involving
P96 in addition to the previously described Phe, Tyr, and Trp residues (Figure 9). These
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multiple interactions between aromatic residues and the compound rings reinforced its
stability over the MD simulation time. Nevertheless, more than 150 ns was necessary to
notice stability, suggesting that the compound may not be ejected, due to the narrow exit of
the binding site.
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Figure 7. Interaction map between protein residues and compound NP-016468 using the most
representative structures obtained over 50 ns, clustered using the gromos method (cut-off 0.14 Å).
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Residues are identified by their names, position in the primary structure, and chain. Each of the most
representative structures is associated with an average frame of the computational simulation. The
maps were generated using the free version of the LigPlot+ v.2.2 program.
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maps were generated using the free version of the LigPlot+ v.2.2 program.
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In summary, the combination of shape-based and docking approaches presented has
proven useful for the selection of eight natural product-derived compounds as novel P2X7
antagonist candidates. The selected compounds are structurally different from known P2X7
antagonists, display drug-like properties, and are predicted to interact with key residues of
the P2X7 allosteric binding pocket, including F88, F92, F95, F103, M105, F108, Y295, Y298,
and I310. Finally, we point out that these compounds should be tested in in vitro assays for
the experimental validation of the proposed VS protocol due to the inherent limitations of
in silico methods.

3. Material and Methods
3.1. Compound Databases’ Preparation

The MEGx (~5.8 × 103 compounds) and NATx (~32 × 103 compounds) natural product
databases from the AnalytiCon Discovery library (release 04/2022; available at https://ac-
discovery.com/, (accessed on 2 January 2024)) were obtained in SDF format and used for

https://ac-discovery.com/
https://ac-discovery.com/
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the VS protocols in this study. The 3D coordinates of each compound from these databases
were obtained using the OpenBabel v.3.1.1 software. The most abundant tautomeric form
and the predominant protonation states of the ionizable groups for each compound at
pH 7.4 were obtained using the Tautomers and FixpKa tools available in the QUACPAC
v.2.1.3.0 program (OpenEye Scientific Software, Santa Fe, NM, USA). Subsequently, up to
50 conformations of each compound were generated using the OMEGA v.4.1.2.0 program
(OpenEye Scientific Software, Santa Fe, NM, USA) [47,48], with default parameters.

3.2. Shape-Based Screening Procedures

The 3D structure of the JNJ-47965567 antagonist was obtained from the crystal struc-
ture of the P2X7R-JNJ-47965567 complex (PDB ID: 5U1X, resolution: 3.20 Å) and used for
building a shape-based model (“query”) using the ROCS v.3.5.0.2 program (OpenEye Sci-
entific Software, Santa Fe, NM, USA) [31] applying the default settings. The JNJ-47965567
conformation considered to build the model was the same as that observed in the crystal
structure. The model was applied to the MEGx and NATx databases, which were prepared
as described above. As reported in the literature, the ROCS software overlays candidate
molecule conformation to the generated query based on their shape matches. The confor-
mation that best matched the model for each compound in the MEGx and NATx databases
was ranked according to the Shape-Tanimoto score value, which ranges from 0 to 1.

3.3. Drug-like Filter

Criteria from the “blockbuster” filter available in the FILTER module of the OMEGA
v.4.1.2.0 software (OpenEye Scientific Software, Santa Fe, NM, USA) [47,48] were used
to filter compounds selected through shape-based screening for potentially “drug-like”
compounds. The applied criteria are based on physicochemical properties (e.g., molecular
weight, solubility, clogP, and number of hydrogen bond donors/acceptors), topological
properties (e.g., number of rotatable and rigid bonds, chiral centers, and ring systems),
atomic and chemical group contents (e.g., number of carbon atoms, “heteroatoms”, “un-
desirable” chemical groups, such as protein-reactive electrophilic groups like acyl halides,
aldehydes, epoxides, and Michael acceptors; redox cyclers, like quinones; and metal
chelators). “Secondary filters” based on empirical rules, such as “Lipinski’s Rule of Five”
(modified to allow a maximum of three violations of the established criteria), as well as
filters for known “aggregators”, were also included as part of the “blockbuster” criteria.

3.4. Protein Structure Preparation for Docking Procedures

The crystal structure of the P2X7 receptor from Ailuropoda melanoleuca (AmP2X7) was
chosen according to its high sequence identity (~85%) to human P2X7. This 3D crystal
structure, complexed with the allosteric antagonist JNJ-47965567 [46], was obtained from
the Protein Data Bank in PDB format (PDB ID: 5U1X). The biological assembly (trimeric
structure) of AmP2X7 was built using the PyMOL v.2.5.0 software (Schrödinger, New York,
NY, USA), based on the alignment of AmP2X7 monomers with the crystal structure of P2X7
from Rattus norvegicus, available in PDB in the trimeric form (PDB ID: 6U9V, resolution:
2.90 Å) [52]. Then, the protein structure was prepared for docking procedures using the
MAESTRO v.13.5 software (Schrödinger, New York, NY, USA). All water molecules and
ligands (including the JNJ-47965567 antagonist and the NAG molecules) were removed
from the original PDB file. All hydrogen atoms were added and the protonation states of
the ionizable residues at pH 7.4 were assigned.

3.5. Docking Procedures and Visual Inspection

Docking calculations were performed using the GOLD v.5.2 (CCDC, Cambridge,
UK) [53] and DockThor v.2.0 (LNCC, Petrópolis, Brazil) programs, with the AmP2X7 struc-
ture prepared as described above. For docking using the GOLD program, the protein
binding site region was defined considering all atoms within a 10 Å radius from the JNJ-
47965567 antagonist as observed in the AmP2X7-JNJ-47965567 complex (PDB ID: 5U1X) [46].
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Ten docking runs were performed for each compound using the ChemPLP scoring func-
tion [54] and default settings for genetic algorithm parameters. Docking procedures using
the DockThor program were conducted using the following grid center coordinates, x
(171.206 Å), y (157.196 Å), and z (223.025 Å), and grid size, x (20 Å), y (20 Å), and z (20 Å),
as well as default virtual screening parameters for soft docking. Twelve docking runs were
performed for each compound using the MMFF94S force field as a scoring function [55].

After performing the docking runs, the compounds were ranked according to the score
values obtained in each program independently. The 25 compounds with the highest score
values from the MEGx database and the 100 compounds with the highest score values from
the NATx database were then visually inspected. The best scoring pose of each docked
compound was analyzed by visual inspection into the AmP2X7 binding site using the
PyMOL v.2.5.0 (Schrödinger, New York, NY, USA), LigandScout v.4.4 (Inte:Ligand, Viena,
Austria) [56], and PLIP v.2.2.0 (Biotechnology Center TU Dresden, Dresden, Germany) [57]
programs. Next, a consensus analysis was performed to detect identical molecules in the
top-25 or top-100 rankings of the two docking programs.

Docking procedures using GOLD and DockThor programs were validated by redocking
JNJ-47965567 and four other AmP2X7 antagonists co-crystallized with AmP2X7 (PDB ID:
5U1U, 5U1V, 5U1W, and 5U1Y; resolution values ranging from 3.30 Å to 3.60 Å) into their
corresponding allosteric binding sites in the AmP2X7 structure, using the same settings as
defined above [46].

3.6. Molecular Dynamics Simulations
3.6.1. Ligand Parameterization

The protonation state and ligand charges were set using the Chimera (UCSF, San
Francisco, CA, USA) at pH 7. The ligand parameter files required for carrying out the
MD steps were generated using the Antechamber program [58], employing a set of scripts
known as ACPYPE [59]. The Lennard–Jones molecular parameters and bonded interactions
were obtained using the General Amber Force Field (GAFF) [60]. Atom partial charges
were assigned using the AM1-BCC generator [61].

3.6.2. Geometric Configuration of Simulated Systems

An orthorhombic box with approximate dimensions of 11 × 11 × 18 nm (in X, Y, and Z
directions, respectively) was constructed under periodic boundary conditions and explicit
solvation with 56,085 Transferable Intermolecular Potential with 3-points (TIP3P) water
molecules [62]. System neutrality was achieved by adding 110 Na+ ions and 134 Cl− ions
at physiological concentration.

All protein parameterizations were conducted using Gromacs v.2023.3 software [63].
The Amber99SB.ff force field [64] was applied for all systems. Equilibration was performed
at a pressure of 1.013 Bar and a temperature of 310 K in the Gibbs ensemble (NPT), utilizing
a 2 fs integration time step. The non-bonded interactions’ cutoff (Lennard–Jones 6-12 po-
tential) and treatment of the Particle-mesh Ewald (PME) electrostatic potential [65] were
set using algorithmic automation (Verlet) [66]. The LINCS algorithm was employed for
covalent bonds [67,68].

The energy minimization structural optimization process was conducted in two stages:
initially, using the steepest descent algorithm with 20,000 minimization steps; subsequently,
an additional 20,000 steps using the conjugate gradient algorithm, with a gradient tolerance
of <1.0 kJ mol−1. Throughout equilibration, system heating commenced at different tem-
peratures per replica (0.5, 0.6, and 0.7 K, respectively), and atom velocities were generated
using the Maxwell–Boltzmann distribution for each initial heating temperature, gradually
increasing by 1 K after every 50 ps of simulation until reaching the final reference tempera-
ture of 310 K. Positions of protein and ligand heavy atoms were restrained using a harmonic
potential with force constants, decreasing after every 3 ns of simulation at values of 4000,
2000, 1000, 750, 500, and finally 250 kJ/mol−1 nm−2. Following energy minimization,
thermalization, and equilibration steps, production dynamics were executed to obtain



Pharmaceuticals 2024, 17, 592 18 of 21

atom trajectories, employing the NPT ensemble with a Parrinello–Rahman thermostat and
Nose–Hoover barostat at a constant temperature of 310 K and pressure of 1.013 Bar.

3.6.3. Analysis of Trajectories Simulated by Molecular Dynamics

The root-mean-square deviation (RMSD) was calculated to assess the deviation of a
structure from its reference conformation over the simulation time. The RMSD value was
computed using the gmx rms program through the following expression:

RMSD(t1, t2) =

[
1
M

N

∑
i=1

mi∥ri(t1)− ri(t2)∥2

] 1
2

where t1 is an instant in time t, t2 correspond to the structure at the reference instant,
M = ∑n

i=1 mi, ri (t) represents the position of atom i at time t, and N is the number of atoms
in the system.

4. Conclusions

The VS approach reported herein, comprising shape-based screening, drug-like fil-
tering, and docking followed by careful visual inspection into an allosteric P2X7 binding
site, was proven useful in screening two natural product databases (MEGx and NATx) to
search potential P2X7 antagonists. Using this approach, four compounds from the MEGx
database and four from the NATx database were selected as potential P2X7 antagonists,
representing a >99% reduction in the number of compounds from each database. To the best
of our knowledge, this study is the first to combine shape-based screening (a ligand-based
approach) and docking followed by careful visual inspection (a structure-based approach)
to search for novel potential P2X7 antagonists from natural product-derived compound
databases. Similar approaches could be useful for selecting inhibitors/antagonists of other
receptors and/or biological targets. The compounds selected herein represent structurally
novel and drug-like P2X7 antagonist candidates. This study, therefore, allows for the
exploration of natural product-derived compounds as novel P2X7 antagonist candidates.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph17050592/s1, Table S1: Structures, inhibitory activities, and Shape
Tanimoto score values of some known P2X7 receptor allosteric antagonists that were applied to the
proposed shape-based model. All data containing the docking score values obtained in the GOLD
and DockThor programs, the consensus analyses between the two programs, and the visual inspection
data are contained in an Excel spreadsheet made available as supplementary material. Sequence
alignment between Ailuropoda melanoleuca P2X7 (AmP2X7) and Homo sapiens P2X7 (HsP2X7) using
BLAST is available as supplementary material.
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