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Abstract: The aim of this study was to explore the molecular mechanisms through which different lev-
els of GAA affect chicken muscle development by influencing miRNA expression, to lay a theoretical
foundation for the identification of key functional small RNAs related to poultry muscle development,
and to provide new insights into the regulatory mechanisms of GAA on muscle development and
meat quality in broilers. It provides a new theoretical basis for using GAA as a feed additive to
improve feed performance. Small RNA sequencing technology was utilized to obtain the expression
profiles of miRNA in the broiler pectoral muscle fed with different levels of GAA (0 g/kg, 1.2 g/kg
and 3.6 g/kg). An analysis of differentially expressed miRNAs revealed 90 such miRNAs in the
three combination comparisons, with gga-miR-130b-5p exhibiting significant differences across all
three combinations. Furthermore, three of the differentially expressed miRNAs were performed by
RT-qPCR verification, yielding results consistent with those obtained from small RNA sequencing.
Target gene prediction, as well as the GO and KEGG enrichment analysis of differentially expressed
miRNAs, indicated their involvement in muscle cell differentiation and other processes, particularly
those associated with the MAPK signaling pathway. This study has, thus, provided valuable insights
and resources for the further exploration of the miRNA molecular mechanism underlying the influ-
ence of guanidine acetic acid on broiler muscle development. Combined with previous studies and
small RNA sequencing, adding 1.2 g/kg GAA to the diet can better promote the muscle development
of broilers.

Keywords: small RNA sequencing; guanidinoacetic acid; broiler; muscle development

1. Introduction

For the poultry industry, the expansion and development of chicken myofibers is
economically significant. The pectoral muscles, as a crucial skeletal muscle in poultry, play a
vital role in meat production. Therefore, a focused research effort has been made in the field
of genetics and the breeding of poultry in order to comprehend the molecular principles
behind the growth and development of muscular tissues, including the pectoral muscle.

Guanidinoacetic acid (GAA), also referred to as guanidine acetate or N-imidylglycine,
is classified as an amino acid derivative. It is synthesized from glycine and arginine in the
kidneys and, subsequently, forms creatine in the liver through the action of methyltrans-
ferase guanidineacetic acid [1,2]. GAA serves as a precursor to creatine and its phospho-
rylated derivative, creatine phosphate [3]. Because it acts as a temporary energy source,
creatine is essential to the body’s energy metabolism. The body can regulate ATP supply
through the phosphogenic system, which includes free creatine and creatine phosphate, to
support the energy requirements for animal growth and development [4]. Guanidineacetic
acid, as its precursor, has great stability and acceptable bioavailability, making it a feasible
substitute for creatine, considering its expensive cost and instability [5].
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Muscle energy supply is important in fast-growing broiler chickens. Muscles contain
adenosine-tri-phosphate (ATP), which is a source of energy. PCREA and CREA kinase (CK),
located in skeletal muscle, maintain the homeostasis of ATP and adenosine-di-phosphate
(ADP) by regenerating ATP from ADP in both the cytosol and mitochondria [6,7]. Vivo
experiments proved that when the mouse body lacks Cr, GAA can provide energy for
the body under the catalysis of CK. It also shows that CK can use GAA and go through
the phosphorylation pathway to fight against energy damage [8,9]. And the main reason
why Cr contributes to the synthesis of muscle tissue protein, improves muscle energy
reserves and muscle strength is that it is synthesized with the precursor substance GAA.
According to Ahmadipour et al. [10], adding 0.5–2.0 g/kg of GAA to broiler diets can
considerably increase weight growth and decrease feed-to-gain ratios while having no
discernible impact on feed intake. RINGEL et al. [5] found that the ATP/ADP ratio
inbroiler breast meat increased linearly with an increase in the GAA supplemental level
at 0–0.6 g/kg. Amiri et al. [11] found that the dietary addition of 1.2 g/kg GAA with a
reduced concentration of crude protein in broilers can increase body weight and average
daily gain, and a reduced FCR.

MicroRNAs, also known as miRNAs, are a group of non-coding RNAs that exhibit a
high degree of evolutionary conservation. They are endogenous, single-stranded, small
RNA molecules typically consisting of 18 to 25 nucleotides [12]. MiRNAs can exert post-
transcriptional control of genes by degrading or inhibiting mRNA production through
precise base pairing with target mRNA [13]. These molecules play a crucial role in vari-
ous processes related to muscle development, including proliferation, differentiation, and
apoptosis [14–16]. For instance, miR-1 facilitates muscle generation by targeting HDAC4,
while the overexpression of miR-133 in myoblasts suppresses SRF-mediated promotion
of muscle cell proliferation [17,18]; miR-206 and miR-486 induce myoblast differentiation
and down-regulate Pax7 by directly targeting their 3′UTR [19,20]; miR-2954 inhibits the
proliferation of chicken myoblasts and promotes their differentiation through the YY1
gene [21]; miR-16 promotes myoblast apoptosis by down-regulating the expression activi-
ties of FOXO1 and BCL2 [22]; miR-7 regulates myoblast proliferation, differentiation, and
apoptosis by targeting the expression of the KLF4 gene [23].

The impact of GAA on muscle development has been studied extensively, although
the molecular processes behind this effect are still mostly unknown. There are still many
unanswered questions regarding miRNA control in the development of muscles. This
study focused on Cobb broiler chickens as the subject of investigation and utilized small
RNA sequencing technology to investigate the miRNA regulatory mechanism of GAA’s
effect on chicken muscle development. We have investigated the molecular processes by
which varying GAA concentrations impact the expression of miRNA in chicken muscle
development. Therefore, our research aims to establish a theoretical basis for identifying
key functional small RNAs related to poultry muscle development and provide new
insights into the regulatory mechanism of GAA on muscle development and meat quality
in broilers, offering a new theoretical foundation for using GAA as a feed additive to
improve performance.

2. Materials and Methods
2.1. Ethical Statement

All the operations and experiment procedures were approved by the Life Sciences Ethics
Committee of Yunnan Agricultural University (Approval ID: 202203094), and complied
with the national standard of Laboratory Animal-Guideline for the ethical review of animal
welfare [24] and the Guide for the Care and Use of Laboratory Animals: Eighth Edition.

2.2. Feeding Management and Sample Collection

Ninety-one-day-old Cobb broiler hens with similar birth weight were purchased from
Hunan Shuncheng Industrial Co., Ltd., (Shuncheng, China) and randomly divided into
3 groups with 5 replicates per group and 6 chickens per replicate. And they were reared in
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a tiered cage under the standard feeding environment conditions including temperature,
humidity, and ventilation. The basal diet consisted of corn–soybean meal pellet feed, and
the control group was exclusively fed this diet. The experimental groups, namely the
normal GAA group and high GAA group, were provided with the basal diet supplemented
with 1.2 g/kg and 3.6 g/kg of guanidine acetic acid, respectively, until reaching 42 days
of age for slaughter and sampling. Subsequently, the left pectoral muscle samples from
three chickens in each group were collected, rapidly frozen in liquid nitrogen, and stored at
−80 ◦C for subsequent analysis.

2.3. RNA Isolation, Construction and Sequencing of Small RNA Libraries

Total RNA was extracted using Trizol reagent. The extent of RNA degradation and
potential contamination was assessed through agarose gel electrophoresis, while the purity
of RNA was ascertained using Nanodrop. The concentration of the RNA was precisely
quantified using Qubit, and the integrity of RNA was accurately assessed using Agilent
2100. A small RNA library was created from pectoral muscle tissue using a Small RNA
Sample Prep Kit once the samples had been qualified. Using whole RNA as the starting
material, the distinct 3′ and 5′ end structures of small RNA—which are distinguished by a
full phosphate group at the 5′ end and a hydroxyl group at the 3′ end—were used. The two
ends of small RNA were directly ligated, followed by reverse transcription to synthesize
cDNA. The target DNA fragment was separated using PAGE gel electrophoresis with the
aid of subsequent PCR amplification, and the cDNA library was recovered by gel excision.
Upon library construction, preliminary quantification was performed using Qubit 2.0, and
the library was diluted to 1 ng/µL. The insert size of the library was determined using
Agilent 2100. The effective concentration of the library was accurately measured using
RT-qPCR, with a requirement of greater than 2 nM. Qualified libraries were subsequently
subjected to sequencing using Illumina SE50.

2.4. Quality Control of Small RNA Sequencing

After processing the original sequencing reads, the length distribution of the small
RNA reads was calculated, and the sequencing quality was evaluated. Sequences with
an N content exceeding 10%, low-quality sequences, those with 5′ splices, lacking 3′

splices or inserted fragments, and sequences containing ployA/T/G/C were excluded.
For the ensuing analysis, clean readings in the 18–35 nt range were used. These length-
screened clean reads were aligned to the chicken genome using bowtie and annotated
for rRNA, tRNA, snRNA, snoRNA, repeats, and others. The remaining sequences were
then compared with the chicken miRBase database to identify known miRNAs, while
unannotated sequences were compared with chicken genome sequences to detect potential
novel miRNAs. Utilizing miREvo and miRDeep2 for the prediction of a hairpin structure
and folding energy, only sequences exhibiting a stem-loop hairpin structure were taken
into consideration as possible candidates for novel miRNAs.

2.5. Differential Expression Analysis and RT-qPCR Validation

The levels of expression of both known and novel miRNAs in each sample were tallied,
and these levels were then normalized using transcripts per million (TPM). The normalized
expression value was determined as follows: (read count × 1,000,000)/total miRNA read
count in the library. A screening criterion of p-value < 0.05 and |log2(fold change)| > 1 was
used to identify differentially expressed miRNAs after the samples were analyzed using the
DESeq2 program based on a negative binomial distribution. After selecting differentially
expressed miRNAs at random, the reverse transcription quantitative polymerase chain
reaction (RT-qPCR) was used to confirm the expression levels of the selected miRNAs.
Total RNA was extracted from chest muscle tissue samples using TRIzol reagent (Takara,
Dalian, China), and reverse transcription was carried out using the primerScript™RT
reagent Kit with gDNA Eraser (Takara). The RT-qPCR analysis of miRNAs was conducted
using the TB Green®Premix Ex TaqTMII kit (Takara). The primer information for these
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miRNAs was provided in Table 1. The PCR amplification process involved an initial step
at 95 ◦C for 5 min, followed by 40 cycles of 95 ◦C for 30 s, 61 ◦C for 30 s, and 72 ◦C for
30 s, and the last step was conducted at 72 ◦C for 10 min. PCR reactions were performed
using the CFX Connect Real-Time System (BIO-RAD, Hercules, CA, USA). All reactions
were repeated three times, and the relative expression was determined using the 2−∆∆Ct

method. The U6 small nuclear RNA served as the internal control for miRNA. The statistical
significance of the expression levels was evaluated using the t-test (unpaired, two-tailed),
with a significance level set at p ≤ 0.05.

Table 1. The primer sequences of the stem-loop RT-qPCR experiments.

miRNA Name Primer Primer Sequence

gga-miR-130b-5p

Loop GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACAGTAGT

F TGTGTTTTCCTCTTTCCCTGTTG

R GTGCAGGGTCCGAGGT

gga-miR-1a-3p

Loop GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACTACATA

F TGTTGTGGGTGGAATGTAAAGAAG

R GTGCAGGGTCCGAGGT

gga-miR-19a-3p

Loop GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACTCAGTT

F GGTTTTTTTTTTGTGCAAATCTATGCAA

R GTGCAGGGTCCGAGGT

2.6. Differentially Expressed miRNA Target Gene Prediction, GO and KEGG Enrichment Analysis

The miRNA target genes were forecasted by using two software tools, miRanda 3.3a
and RNAhybrid v2.0, and the common set of predictions was chosen. Subsequently, the
Gene Ontology (GO) enrichment analysis was utilized to elucidate the functions of the
target genes. Additionally, pathway analysis was performed using the KEGG database
to identify the significant pathways associated with the target genes, with a threshold of
p-value < 0.05 indicating significant enrichment.

3. Results
3.1. Quality Control of Small RNA Sequencing Data

Following small RNA sequencing, the control group yielded 39917681 original se-
quences, while the normal GAA and high GAA groups produced 46448889 and 45750599
original sequences, respectively (Table A1). After the removal of sequences containing over
10% N content, low-quality sequences, those with 5′ splices, lacking 3′ splices or insertions,
and those containing ployA/T/G/C, the clean reads obtained were 38330614, 44975675,
and 44986930, respectively. The Q20 and Q30 quality tests both passed, with the required
error rates being less than 0.01% (Table A2). These results show that the sequencing results
are appropriate for additional data processing. Subsequently, small RNAs within the
18–35 nt range were selected from the obtained clean reads for further analysis (Table A3).
The sequencing revealed that small RNAs were predominantly distributed within the
20–24 nt range (Figure 1), indicative of typical Dicer enzyme cleavage products. Notably,
the peak length of small RNAs was concentrated at 22 nt, consistent with the distribution
of animal miRNA length sequencing. The main text should cite all the figures and tables as
Figure 1, Table 1, etc.
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Figure 2. Model performance overview.

Key Findings

1. Ensemble methods, particularly random forest (90% accuracy, 95% precision, 84%
recall, 89% F1-score) and XGBoost (90% accuracy, 94% precision, 86% recall, 90%
F1-score), emerged as the frontrunners, exhibiting exceptional performance across
all metrics. Their ability to leverage the strengths of multiple decision trees likely
contributed to their superior ability to capture complex patterns within the data,
leading to more accurate scam profile detection.

2. Gradient boosting (90% accuracy, 95% precision, 84% recall, 89% F1-score) and neural
networks (Keras) (89% accuracy, 93% precision, 84% recall, 88% F1-score) also demon-
strated promising results, achieving high accuracy and precision. These approaches
offer flexibility in handling non-linear relationships within the data and might be
further optimized through hyperparameter tuning.

Figure 1. The length distribution statistics of total sRNA fragments were obtained. “Control” repre-
sents the broilers fed the basal diet; “Normal GAA” represents the broilers fed the diet with 1.2 g
GAA; “High GAA” represents the broilers fed the diet with 3.6 g GAA; (A) is the total sRNA fragment
length distribution obtained from the three samples in the control group; (B) is the total sRNA
fragment length distribution obtained from the three samples in the Normal GAA group; (C) is the
total sRNA fragment length distribution obtained from the three samples in the High GAA group.

3.2. Genome Comparison and Classification Notes

The small RNA (sRNA) was aligned to the reference genome using bowtie. On average,
90.71%, 95.41%, and 95.90% of the clean reads in the control group, normal GAA group,
and high GAA group, respectively, were mapped to the reference sequence. Among these,
67.59%, 75.61%, and 78.06% were aligned to the reference sequence in the same direction,
while 23.12%, 19.80%, and 17.85% were aligned in the opposite direction (Table 2). A
priority order of known miRNA > rRNA > tRNA > snRNA > snoRNA > repeat > NAT-
siRNA > gene > novel miRNA > ta-siRNA was employed for classification in order to
guarantee unique annotation for each sRNA (Tables 3 and 4). When compared with the
chicken miRBase database, an average of 47.16%, 73.72%, and 75.97% of sequences in
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the control group, normal GAA group, and high GAA group were annotated as known
miRNAs, with very few types of miRNAs (0.77%, 0.98%, and 0.77%, respectively). Repeated
sequences accounted for approximately 0.26%, 0.11%, and 0.09% in the control group,
normal GAA group, and high GAA group; additionally, these types of repeated sequences
had a proportion of 2.54%, 2.49%, and 2.06%, respectively. Prediction software such as
miREvo [25] and mirdeep2 version 2.0.1.2 [26] were utilized to analyze new miRNAs,
revealing approximately 0.06%, 0.03%, and 0.06% new miRNAs in the control group,
normal GAA group, and high GAA group, with a proportion of new miRNA species
of 0.04%, 0.03%, and 0.03%, respectively. Additionally, approximately 14.50%, 13.42%,
and 12.51% of sequences in the control group, normal GAA group, and high GAA group
were unannotated.

Table 2. Comparisons with reference sequences.

Sample Total sRNA Mapped sRNA +Mapped
sRNA

−Mapped
sRNA

NC_1 6,294,787
(100.00%)

5,835,551
(92.70%)

3,938,059
(62.56%)

1,897,492
(30.14%)

NC_2 8,083,155
(100.00%)

6,821,769
(84.39%)

5,655,641
(69.97%)

1,166,128
(14.43%)

NC_3 14,262,690
(100.00%)

135,553,165
(95.03%)

10,017,664
(70.24%)

3,535,501
(24.79%)

Normal_GAA_1 13,645,431
(100.00%)

12,975,568
(95.09%)

9,757,778
(71.51%)

3,217,790
(23.58%)

Normal_GAA_2 13,575,735
(100.00%)

12,976,213
(95.58%)

10,679,295
(78.66%)

2,296,918
(16.92%)

Normal_GAA_3 13,806,341
(100.00%)

13,193,544
(95.56%)

10,582,156
(76.65%)

2,611,388
(18.91%)

High_GAA_1 14,263,796
(100.00%)

13,609,746
(95.41%)

11,012,433
(77.21%)

2,597,313
(18.21%)

High_GAA_2 14,496,158
(100.00%)

13,803,787
(95.22%)

11,036,143
(76.13%)

2,767,644
(19.09%)

High_GAA_3 14,185,836
(100.00%)

13,770,873
(97.07%)

11,467,097
(80.83%)

2,303,776
(16.24%)

Notes: Sample is the sample id; Total sRNA: clean reads of each sample obtained after length screening; Mapped
sRNA: the number and percentage of clean reads mapped to the reference sequence in the sample; +Mapped
sRNA: the number and percentage of reads in the clean reads of the sample that are mapped to the same direction
of the reference sequence; −Mapped sRNA: the number and percentage of reads in the clean reads of the sample
that are mapped to the chain in the opposite direction of the reference sequence.

3.3. Screening and RT-qPCR Validation of Differentially Expressed miRNAs

Each sample’s levels of known and novel miRNAs were measured, and TPM was
used to standardize the expression levels of each miRNA. DESeq2 was used to perform
pairwise comparisons of samples based on a negative binomial distribution (Figure 2).
Upon comparison and analysis, 16 miRNAs exhibited significant differences in expression
between the normal GAA group and the control group, with 4 miRNAs being up-regulated
and 16 miRNAs being down-regulated (Figure 2A). Additionally, 60 miRNAs showed
significant expression differences between the high GAA group and the control group,
with 12 miRNAs being up-regulated and 48 miRNAs being down-regulated (Figure 2B).
Additionally, compared to the high GAA group and the normal GAA group, 49 miRNAs
showed significant expression variations; these included 21 miRNAs with up-regulated
expression and 28 miRNAs with down-regulated expression (Figure 2C). Notably, 8 miR-
NAs were the common differentially expressed miRNAs for normal GAA group vs. control
group and high GAA group vs. control group, while 3 miRNAs exhibited differential
expression between the normal GAA group and the control group, and between the high
GAA group and the normal GAA group. Furthermore, a difference in the expression of
22 miRNAs was observed between the groups with high GAA and normal GAA, as well
as between the high GAA group and the normal GAA group. Notably, gga-miR-130b-5p
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was identified as the differentially expressed miRNA in the comparison of the three groups
(Figure 2E). The differentially expressed miRNAs from nine samples were subjected to
hierarchical cluster analysis in order to determine whether GAA had an impact on the
expression of miRNA. The clustering results distinctly segregated the 9 samples into three
main branches, indicating good consistency among the samples and the rational design
of the study (Figure 2D). A number of these differentially expressed miRNAs, including
gga-miR-148a-3p and gga-miR-1a-3p, were discovered to be connected to the development
of muscle. Furthermore, three of the differentially expressed miRNAs were randomly
selected for RT-qPCR verification, and the results were consistent with the small RNA
sequencing (Figure 2F), suggesting that the findings of this small RNA sequencing were
reproducible and reliable, and could be utilized for further data analysis.
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Figure 2. (A) Differentially expressed miRNA volcano map for Normal GAA group vs. control group
in small RNA sequencing analysis; (B) Differentially expressed miRNA volcano map for High GAA
group vs. control group in small RNA sequencing analysis; (C) Differentially expressed miRNA
volcano map for High GAA group vs. Normal GAA group in small RNA sequencing analysis;
(D) Differentially expressed miRNA cluster diagram; (E) Wayne diagram; (F) Illustration of qPCR
confirmation results for three selected differentially expressed miRNAs.

3.4. Prediction and Bioinformatics Analysis of Differentially Expressed miRNA Target Genes

Following the identification of differentially expressed miRNAs among the groups,
the target genes of these miRNAs were screened based on their correspondence. A total of
636 target genes were identified from 16 miRNAs with significant expression differences
between the normal GAA group and the control group. Additionally, 2374 target genes
were identified from 60 miRNAs with significant expression differences between the high
GAA group and the control group, and 1669 target genes were identified from 49 miRNAs
with significant expression differences between the high GAA group and the normal
GAA group. Afterwards, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses were used to enrich the target gene sets of the differentially
expressed miRNAs in each group. The GO analysis revealed that, compared to the control
group, the target genes in the normal GAA group were primarily enriched in cellular
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composition, single-organism processes, somatic processes, localization, propagation, and
establishment of localization (Figure 3A), while the target genes in the high GAA group
were mainly enriched in catalytic activity, cellular components, and transferase activity
compared to the control group (Figure 3B). Furthermore, compared to the normal GAA
group, the target genes in the high GAA group were mainly enriched in protein binding
and transferase activity (Figure 3C). According to the KEGG pathway enrichment analysis,
the target genes in the normal GAA group were primarily enriched in metabolic pathways,
endocytosis, MAPK signaling pathways, and RNA transport as compared to the control
group (Figure 4A). Similarly, compared to the control group, the target genes in the high
GAA group were mainly enriched in metabolic pathways, MAPK signaling pathways,
endocytosis, and adhesion plaques (Figure 4B). Finally, compared to the normal GAA
group, the target genes were primarily abundant in metabolic pathways, MAPK signaling
pathways, adhesion plaques, and endocytosis (Figure 4C).
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Figure 3. GO enrichment column of candidate target genes. (A) GO functional enrichment histogram
of candidate target genes for Normal GAA group vs. control group in small RNA sequencing analysis;
(B) GO functional enrichment histogram of candidate target genes for High GAA group vs. control
group in small RNA sequencing analysis; (C) GO functional enrichment histogram of candidate
target genes for High GAA group vs. Normal GAA group in small RNA sequencing analysis.
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Table 3. The number of sRNA types above.

Types NC_1 NC_2 NC_3 Normal_GAA_1 Normal_GAA_2 Normal_GAA_3 High_GAA_1 High_GAA_2 High_GAA_3

total 5,835,551
(100.00%)

6,821,769
(100.00%)

13,553,165
(100.00%)

12,975,568
(100.00%)

12,976,213
(100.00%)

13,193,544
(100.00%)

13,609,746
(100.00%)

13,803,787
(100.00%)

13,770,873
(100.00%)

known_miRNA 2,520,080 (43.18%) 2,099,008 (30.77%) 9,152,611 (67.53%) 8,735,596 (67.32%) 10,154,260
(78.25%) 9,971,723 (75.58%) 9,975,678 (73.30%) 10,387,778

(75.25%)
10,926,503
(79.35%)

rRNA 1,425,155 (24.42%) 1,898,055 (27.82%) 1,204,404 (8.89%) 1,369,240 (10.55%) 490,065 (3.78%) 836,735 (6.34%) 961,446 (7.06%) 717,176 (5.20%) 821,914 (5.97%)
tRNA 144,481 (2.48%) 73,725 (1.08%) 257,837 (1.90%) 48,019 (0.37%) 104,579 (0.81%) 33,326 (0.25%) 179,490 (1.32%) 141,007 (1.02%) 56,612 (0.41%)

snRNA 1633 (0.03%) 13,109 (0.19%) 3240 (0.02%) 2433 (0.02%) 2091 (0.02%) 1459 (0.01%) 4170 (0.03%) 3218 (0.02%) 2712 (0.02%)
snoRNA 20,339 (0.35%) 78,328 (1.15%) 49,895 (0.37%) 27,276 (0.21%) 30,450 (0.23%) 18,055 (0.14%) 52,642 (0.39%) 51,549 (0.37%) 33,589 (0.24%)

repeat 26,939 (0.46%) 12,204 (0.18%) 17,813 (0.13%) 18,937 (0.15%) 13,861 (0.11%) 8890 (0.07%) 13,933 (0.10%) 12,478 (0.09%) 9691 (0.07%)
novel_miRNA 2385 (0.04%) 5318 (0.08%) 7863 (0.06%) 3611 (0.03%) 5041 (0.04%) 3508 (0.03%) 6634 (0.05%) 10,407 (0.08%) 7171 (0.05%)

exon 592,596 (10.15%) 220,250 (3.23%) 441,720 (3.26%) 543,749 (4.19%) 232,465 (1.79%) 251,753 (1.91%) 297,656 (2.19%) 314,672 (2.28%) 216,897 (1.58%)
intron 196,410 (3.37%) 1,492,176 (21.87%) 471,223 (3.48%) 419,346 (3.23%) 281,334 (2.17%) 285,090 (2.16%) 348,324 (2.56%) 243,553 (1.76%) 235,124 (1.71%)
other 905,533 (15.52%) 929,596 (13.63%) 1,946,559 (14.36%) 1,807,361 (13.93%) 1,662,067 (12.81%) 1,783,005 (13.51%) 1,769,773 (13.00%) 1,921,949 (13.92%) 1,460,660 (10.61%)

Notes: total: refers to the number of sRNAs of each sample compared to the reference sequence; known_miRNA: refers to the number and proportion of sRNAs that are compared to
known miRNAs in each sample; rRNA/tRNA/snRNA/snoRNA: refers to the number and proportion of sRNAs that are compared to rRNA/tRNA/snRNA/snoRNA in each sample;
repeat: refers to the number and proportion of sRNA that each sample is compared to the repeat; novel_miRNA: refers to the number and proportion of sRNAs that are compared to new
miRNAs in each sample; exon/intron: refers to the number and proportion of sRNAs compared to exon/intron for each sample; other: refers to the number and proportion of each
sample to the reference sequence, but not to known_miRNA, ncRNA, repeat, novel_miRNA, and sRNA in gene exon and intron region.

Table 4. The types of sRNA compared above.

Types NC_1 NC_2 NC_3 Normal_GAA_1 Normal_GAA_2 Normal_GAA_3 High_GAA_1 High_GAA_2 High_GAA_3

total 219,401 (100.00%) 284,669 (100.00%) 278,624 (100.00%) 239,364 (100.00%) 284,463 (100.00%) 186,060 (100.00%) 358,971 (100.00%) 342,354 (100.00%) 268,206 (100.00%)
known_miRNA 1453 (0.66%) 2362 (0.83%) 2304 (0.83%) 1931 (0.81%) 2068 (0.73%) 2050 (1.10%) 2443 (0.68%) 2491 (0.73%) 2411 (0.90%)

rRNA 22,849 (10.41%) 46,812 (16.44%) 37,576 (13.49%) 33,722 (14.09%) 32,757 (11.52%) 31,463 (16.91%) 48,641 (13.55%) 44,012 (12.86%) 43,990 (16.40%)
tRNA 1895 (0.86%) 4136 (1.45%) 3312 (1.19%) 2534 (1.06%) 3012 (1.06%) 2,308 (1.24%) 3841 (1.07%) 4032 (1.18%) 3053 (1.14%)

snRNA 318 (0.14%) 1434 (0.50%) 605 (0.22%) 482 (0.20%) 560 (0.20%) 345 (0.19%) 910 (0.25%) 724 (0.21%) 686 (0.26%)
snoRNA 1240 (0.57%) 4672 (1.64%) 2114 (0.76%) 1612 (0.67%) 1909 (0.67%) 1343 (0.72%) 2803 (0.78%) 2458 (0.72%) 2240 (0.84%)

repeat 7059 (3.22%) 5532 (1.94%) 6842 (2.46%) 6287 (2.63%) 7356 (2.59%) 4184 (2.25%) 7813 (2.18%) 6900 (2.02%) 5275 (1.97%)
novel_miRNA 75 (0.03%) 123 (0.04%) 98 (0.04%) 82 (0.03%) 90 (0.03%) 78 (0.04%) 114 (0.03%) 98 (0.03%) 95 (0.04%)

exon 71,761 (32.71%) 85,408 (30.00%) 86,346 (30.99%) 74,266 (31.03%) 79,096 (27.81%) 57,626 (30.97%) 111,909 (31.17%) 101,894 (29.76%) 84,741 (31.60%)
intron 42,222 (19.24%) 35,702 (12.54%) 46,795 (16.80%) 38,953 (16.27%) 62,547 (21.99%) 24,670 (13.26%) 63,943 (17.81%) 59,326 (17.33%) 37,840 (14.11%)
other 70,529 (32.15%) 98,488 (34.60%) 92,632 (33.25%) 79,495 (33.21%) 95,068 (33.42%) 61,993 (33.32%) 116,554 (32.47%) 120,419 (35.17%) 87,875 (32.76%)

Notes: total: refers to the sRNA type of each sample compared to the reference sequence; known_miRNA: refers to the type and proportion of sRNA that is compared to known miRNA
in each sample; rRNA/tRNA/snRNA/snoRNA: refers to the type and proportion of sRNA that is compared to rRNA/tRNA/snRNA/snoRNA in each sample; repeat: refers to the type
and proportion of sRNA that each sample is compared to the repeat; novel_miRNA: refers to the types and proportion of sRNAs that are compared to new miRNAs in each sample;
exon/intron: refers to the types and proportion of sRNAs compared to exon/intron of each sample; other: refers to the types and proportion of SRnas in the exon and intron regions of
each sample compared to the reference sequence but not compared to known_miRNA, ncRNA, repeat, novel_miRNA, TAS, and gene exon and intron region.
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4. Discussion

In addition to its great agricultural and economic significance, chickens are excellent
models for animal experiments. The assessment of poultry meat yield and economic benefit
relies heavily on the growth and development of chicken muscle. Studying the patterns
of chicken muscle development is essential for enhancing poultry meat production and
gaining insights into muscle-related diseases. Wang et al. demonstrated a notable increase
in the diameter of mouse muscle fibers following the administration of GAA [27]. Similarly,
Lu et al. reported a significant reduction in muscle fiber density and an increase in the
cross-sectional area of pig muscle fibers with the dietary supplementation of GAA [28]. Ac-
cording to Michiels [29] and Lemme [30], broiler body weight and breast meat output could
be effectively increased by supplementing feed with GAA. Ringel et al. [31] found that the
dietary supplementation of guanidine acetic acid (0.6–1.2 g/kg) significantly improved pro-
duction performance and increased breast muscle ratio. Exogenous GAA supplementation
has been demonstrated in studies to enhance feed consumption and average daily growth
in Angus cattle [32,33]. Meanwhile, in sheep, performance, carcass characteristics and
meat nutritional content have been reported to improve in association with GAA [34,35].
Unlike mammals, environmental stress is more common in broiler production. Several
studies have shown that adding GAA can improve the growth performance of heat-stressed
chickens. For example, dietary supplementation with GAA (1.2 g/kg) and the reduction of
crude protein concentration (90% of normal crude protein concentration) increased body
weight and average daily gain, and decreased FCR in heat-stressed broilers [12]. Our earlier
research showed that supplementing with 1.2 g/kg GAA greatly improved broiler perfor-
mance and muscle growth, while supplementing with 3.6 g/kg GAA did not significantly
affect the control group’s performance [36]. These results suggest that an appropriate level
of GAA supplementation in the diet can effectively enhance the development of pectoral
muscle. Conversely, excessive GAA supplementation can also promote pectoral muscle
development, but to a lesser extent compared to the appropriate dosage.

MicroRNAs (miRNAs), as a type of small non-coding RNAs, can suppress the expres-
sion of target genes by binding to the 3′ untranslated region (UTR) of these genes [37].
A single miRNA has the capacity to regulate multiple genes, while a single gene can
be regulated by multiple miRNAs [38]. Previous histological analyses have shown that
different concentrations of guanidine acetic acid (GAA) in diets can lead to significant
differences in muscle development. To investigate the regulatory mechanism of miR-
NAs in GAA-mediated muscle development, small RNA sequencing was employed to
identify the signaling pathway associated with miRNA target genes. Previous research
has established that the involvement of miRNAs in animal muscle development, such as
miR-128a, targets IRS1 to modulate myoblast proliferation [39]; miR-199a-5p regulates the
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proliferation and differentiation of myogenic cells by inhibiting WNT signaling factors [40],
miR-221/222 regulates myogenesis in quail through p27 [41], and miR-148a-3p participates
in the proliferation and differentiation of bovine muscle cells by targeting KLF4 [42].

This investigation identified a total of 90 differentially expressed miRNAs through
small RNA sequencing. Out of all of them, gga-miR-1a-3p had the highest expression
level, and, in a pairwise analysis, only gga-miR-130b-5p showed a significant difference
among the three groups. Previous studies have shown that GAA can target Insulin Re-
ceptor (Insr) and Eukaryotic Translation Initiation Factor 4E (EIF4E) through miR-1a-3p
and miR-133a-3p, respectively, and then activate the AKT/mTOR/S6K signaling pathway,
thereby stimulating myoblast differentiation [27]. Additionally, miR-130b-5p has been
demonstrated to enhance cardiomyocyte proliferation via MAPK-ERK [43]. It was found
that Transforming Growth Factor-β1 (TGF-β1) may be the target gene of miR-133a-3p, and
GAA can affect the muscle development of broilers through TGF-β signaling pathway [44].
KEGG pathway enrichment analysis of the target genes of differentially expressed miRNAs
revealed a significant enrichment in the MAPK signaling pathway. The MAPK signaling
pathway is a conserved mechanism involved in various cellular processes such as cell
proliferation, differentiation, apoptosis, and oxidative stress [45]. The MAPK signaling
cascade can regulate muscle cell proliferation or differentiation by controlling the expres-
sion of myogenic transcription factors [46]. The genes Platelet-derived Growth Factor A
(PDGFA), Insulin-like Growth Factor-2 (IGF-2), Platelet-derived Growth Factor D (PDGFD),
and HRAS proto-oncogene (HRAS) are targeted by gga-miR-1a-3p and gga-miR-130b-5p,
respectively, and are all associated with the MAPK signaling pathway. Liu et al. showed,
through in vivo studies, that IGF2-edited pigs showed higher skeletal muscle weight [47].
Studies have shown that the HRAS gene can regulate the differentiation of myoblasts,
and the PDGFD gene can regulate the proliferation and differentiation of smooth mus-
cle cells [48–50]. It is reported that the PDGFA gene can regulate the proliferation and
differentiation of muscle cells [51]. Furthermore, these genes are also regulated by other
differentially expressed miRNAs, including gga-miR-206 and gga-miR-12266-5p. These
findings suggest that GAA may modulate the expression of multiple genes in the MAPK
signaling pathway through gga-miR-1a-3p, gga-miR-130b-5p, and other differentially ex-
pressed miRNAs, thereby influencing muscle development. The above mechanisms for the
regulation of guanidinoacetic acid on muscle development are summarized in Figure 5.
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Figure 5. The mechanism by which GAA promotes muscle development and growth through mirNA-
targeted gene regulatory signaling pathway [27,43,44,47–51]. GAA, guanidinoacetic acid; TGF-β1,
Transforming Growth Factor-β1; EIF4E, Eukaryotic Translation Initiation Factor 4E; PDGFA, Platelet-
derived Growth Factor A; IGF-2, Insulin-like Growth Factor-2; PDGFD, Platelet-derived Growth
Factor D; HRAS, HRAS proto-oncogene.
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5. Conclusions

In this study, we used small RNA sequencing technology to compare the levels of
different GAA in the breast muscle tissue of Cobb broilers, and screened out the differential
expression miRNAs related to muscle development, such as gga-miR-1a-3p, gga-miR-130b-
5p, etc. Through GO and KEGG enrichment analysis, the target genes of differentially
expressed miRNAs were enriched in the MAPK signaling pathway related to muscle
development. This suggests, to some extent, that GAA may regulate the signaling pathway
through miRNA, and then affect muscle development. However, in order to understand
the molecular mechanism of miRNA’s role, further verification is needed. Combined with
previous studies and small RNA sequencing, adding 1.2 g/kg GAA to the diet can better
promote the muscle development of broilers.
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Appendix A

Table A1. Filtering of sequencing data.

Sample Total_Reads N% > 10% Low Quality 5_Adapter_Contamine 3_Adapter_Null or
Insert_Null with ploya/T/G/C Clean Reads

NC_1 9,875,151 (100.00%) 394 (0.00%) 18,995 (0.19%) 105,833 (1.07%) 312,038 (3.16%) 13,139 (0.13%) 9,424,752 (95.44%)
NC_2 14,441,618 (100.00%) 365 (0.00%) 38,177 (0.26%) 31,738 (0.22%) 651,214 (4.51%) 52,777 (0.37%) 13,667,347 (94.64%)
NC_3 15,600,912 (100.00%) 360 (0.00%) 33,805 (0.22%) 75,301 (0.48%) 228,177 (1.46%) 24,754 (0.16%) 15,238,515 (97.68%)

Normal_GAA_1 15,352,341 (100.00%) 383 (0.00%) 31,269 (0.20%) 85,795 (0.56%) 252,960 (1.65%) 19,553 (0.13%) 14,962,381 (97.46%)
Normal_GAA_2 15,560,784 (100.00%) 542 (0.00%) 33,473 (0.22%) 35,518 (0.23%) 434,904 (2.79%) 16,993 (0.11%) 15,039,354 (96.65%)
Normal_GAA_3 15,535,764 (100.00%) 479 (0.00%) 41,092 (0.26%) 53,305 (0.34%) 449,571 (2.89%) 17,377 (0.11%) 14,973,940 (96.38%)

High_GAA_1 15,287,814 (100.00%) 373 (0.00%) 38,844 (0.25%) 39,613 (0.26%) 167,238 (1.09%) 27,765 (0.18%) 15,013,981 (98.21%)
High_GAA_2 15,166,518 (100.00%) 381 (0.00%) 31,076 (0.20%) 31,112 (0.21%) 143,446 (0.95%) 17,570 (0.12%) 14,942,933 (98.53%)
High_GAA_3 15,296,267 (100.00%) 345 (0.00%) 30,692 (0.20%) 32,201 (0.21%) 183,827 (1.20%) 19,186 (0.13%) 15,030,016 (98.26%)

Note: Sample is the sample id; total_reads indicates the number of original sequence data; the number of filtered reads and their proportion to total_reads were N% > 10% because N
content exceeded 10%; low quality indicates the number of filtered reads and their proportion in total_reads due to low quality; 5_adapter_contamine the number of filtered reads and
their proportion in total_reads because it contains a 5 ‘joint; 3_adapter_null or insert_null Number of filtered reads and their proportion to total_reads because there is no 3 ‘joint or no
insert_null; with ployA/T/G/C, the number of reads filtered out and their proportion in total_reads because of ployA/T/G/C; the resulting number of clean reads and their proportion
in total_reads.
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Table A2. Summary of the quality of sequencing data output.

Sample Reads Bases Error Rate Q20 Q30 GC Content

NC_1 9,875,151 0.494 G 0.01% 99.57% 98.26% 48.60%
NC_2 14,441,618 0.722 G 0.01% 99.37% 97.71% 52.39%
NC_3 15,600,912 0.780 G 0.01% 99.54% 98.21% 46.58%

Normal_GAA_1 15,352,341 0.768 G 0.01% 99.55% 98.30% 46.04%
Normal_GAA_2 15,560,784 0.778 G 0.01% 99.53% 98.07% 45.44%
Normal_GAA_3 15,535,764 0.777 G 0.01% 99.54% 98.19% 45.46%
High_GAA_1 15,287,814 0.764 G 0.01% 99.47% 97.71% 45.92%
High_GAA_2 15,166,518 0.758 G 0.01% 99.53% 98.27% 45.39%
High_GAA_3 15,296,267 0.765 G 0.01% 99.59% 98.43% 45.36%

Note: Sample is the sample id; Reads is statistical raw sequence data; Bases were the number of sequencing
sequences multiplied by the length of sequencing sequences and converted to G; Error rate is the sequencing error
rate; Q20 was the percentage of bases with Phred value greater than 20 in the total base; Q30 is the percentage of
bases with Phred value greater than 30 in the total base; GC content is the percentage of the total number of bases
G and C combined to calculate the total number of bases.

Table A3. The number and types of sRNA after length screening.

Sample Total Reads Total Bases (bp) Uniq Reads Uniq Bases (bp)

NC_1 6,294,787 144,153,981 292,159 6,966,123
NC_2 8,083,155 171,818,221 358,265 7,735,712
NC_3 14,262,690 324,483,031 358,329 8,775,554

Normal_GAA_1 13,645,431 304,579,166 318,234 7,546,472
Normal_GAA_2 13,575,735 301,417,656 362,851 8,403,654
Normal_GAA_3 13,806,341 306,305,999 245,337 5,756,793

High_GAA_1 14,263,796 320,833,708 453,565 10,991,480
High_GAA_2 14,496,158 325,818,359 448,438 10,970,521
High_GAA_3 14,185,836 315,122,981 342,272 8,174,591

Note: Sample is the sample id; total_reads is the total number of sRNAs; Total bases (bp) is the total length of the
sRNA; Uniq reads is the type of sRNA; Uniq bases (bp) are the total length of each sRNA.
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