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Abstract: Ermp1 is a putative metalloprotease from Schizosaccharomyces pombe and a member of the
Fxna peptidases. Although their function is unknown, orthologous proteins from rats and humans
have been associated with the maturation of ovarian follicles and increased ER stress. This study
focuses on proposing the first prediction of PPI by comparison of the interologues between humans
and yeasts, as well as the molecular docking and dynamics of the M28 domain of Ermp1 with possible
target proteins. As results, 45 proteins are proposed that could interact with the metalloprotease. Most
of these proteins are related to the transport of Ca2+ and the metabolism of amino acids and proteins.
Docking and molecular dynamics suggest that the M28 domain of Ermp1 could hydrolyze leucine
and methionine residues of Amk2, Ypt5 and Pex12. These results could support future experimental
investigations of other Fxna peptidases, such as human ERMP1.

Keywords: Ermp1; S. pombe; metalloprotease; protein–protein interaction; molecular docking; molecular
dynamic

1. Introduction

Endoplasmic Reticulum Metalloprotease 1 (ERMP1), also referred to as Fxna peptidase
or Felix-ina, is a nine-transmembrane domain protease and a member of the M28 family
of zinc metallopeptidases [1,2]. The gene was first discovered in the granulosa cells of rat
ovarian follicles, where its expression is necessary for follicular organization, possibly to aid
in the processing of protein precursors required for intraovarian cellular communication [2].

In vitro studies have suggested that overexpression of ERMP1 may contribute to in-
creased endoplasmic reticulum (ER) stress by activating the Unfolded Protein Response
(UPR) through GRP78-PERK-CHOP [1,3–5]. The role of the ERMP1 protein in cancer prolif-
eration and progression through the PI3K/AKT/mTOR/β-catenin signaling pathways has
been identified as a promising therapeutic strategy for treating various types of cancer [6,7].
Although there is evidence that ERMP1 could play an important role in these signaling
pathways, the molecular mechanism remains unclear.

The use of Protein–Protein Interaction (PPI) networks has been instrumental in an-
alyzing the molecular machinery of cells [8,9]. This approach is primarily employed to
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assign functional roles to potential proteins and to characterize multi-protein complexes
and signaling pathways [10]. High-throughput technologies are available for the detection
of PPIs, including yeast two-hybrid, immunoprecipitation, X-ray crystallography, and
protein chips [11,12]. However, these techniques are limited to the analysis of reduced pro-
teome coverage due to the time and cost required to perform experiments in the laboratory.
Consequently, these limitations have prompted the development of computational tools
for predicting large-scale PPIs, such as STRING, PEPPI, and deep neural networks [13–15].
Even so, the accuracy and reliability of these tools are highly dependent on the prior knowl-
edge of the analyzed proteins. In contrast, there are databases that compile the interactions
reported in publications based on experimental evidence, such as BIND, DIP, INTACT,
MINT, and BioGRID [11,16–20].

In addition to the empirical discovery of PPIs, the comparative strategy of protein
interactions conserved across species (interologues) has contributed to the functional
annotation of uncharacterized proteins [21]. Although the prediction of human interologues
inferred from model organisms is less frequent than expected, the high conservation of
small groups of orthologues could be related to highly evolutionarily conserved cellular
processes [9,21–23].

In particular, Schizosaccharomyces pombe is a fission yeast that shares many charac-
teristics with eukaryotic cells, despite their evolutionary divergence of approximately
1144 million years [24]. Genetic conservation between S. pombe and humans has been con-
firmed by functional complementation of yeast mutants with human genes, showing high
similarity between the two species [24–27]. Therefore, this model organism has been useful
for the functional analysis of eukaryotic genes related to the cell cycle and the regulation of
gene expression. In recent years, S. pombe has also been useful for the study of biochemical
aspects of genetic products, such as the identification of domains related to catalytic activity
and interactions with other proteins [28–31].

The orthologous gene erm1 (SPCC1259.02c) in S. pombe encodes the protein Ermp1
(Putative Endoplasmic Reticulum Metallopeptidase 1), which has not yet been fully char-
acterized. According to homology, it can be inferred that Ermp1 may be involved in
proteolysis, as it contains the M28 domain commonly found in zinc metallopeptidases.

As the UPR signaling pathway is conserved in S. pombe [32–34], it is possible to study
ER stress and its relationship with Ermp1. Since there is no experimental evidence of the
cellular process in which it participates and its possible target proteins are not known, in
the present study, an in silico prediction of the PPI using a comparison of the interologues
between humans and yeasts, as well as the molecular docking and dynamics of the M28
domain of Ermp1 with fission yeast proteins.

2. Materials and Methods
2.1. Prediction of Protein–Protein Interaction

The bioinformatics assays were carried out in Laboratorio de Bioquímica y Biología
Molecular and Laboratorio de Elucidación y Síntesis en Química Orgánica of the BUAP,
Puebla, Mexico. The period of all online software was carried out in January to February
2024. The PPI network of human ERMP1 was obtained from the BioGRID 4.4 repository [20].
The queries were conducted on the platform between 2020 and 2023, taking into account
the latest updates to the database. The DIOPT Ortholog Finder server 9.0, Boston, MA,
USA [35] was used to search for orthologous proteins in S. pombe using the PPI network of
human ERMP1 as a reference. DIOPT employs a suite of tools and algorithms, including
Ensembl Compara v104, HomoloGene v68, Inparanoid v8, Isobase v2, OMA, orthoMCL
v6.6, Phylome v4, RoundUp, and TreeFam v9, to predict orthologs across a range of species,
including humans, mice, flies, worms, zebrafish, and yeasts [35]. These tools provide a
simplified method for integrating, comparing, and accessing orthological predictions based
on sequence homology, phylogenetic trees, and functional similarity. Additionally, DIOPT
calculates a simple score indicating the number of tools supporting a given orthologous
gene pair relationship. Moreover, Gene Ontology was used to assign the subcellular
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localization and related biological processes. A PPI network for the Ermp1 protein was
constructed using orthologous proteins identified in S. pombe. The orthologous relationship
score assigned by DIOPT was used as a distribution criterion. The PPI network was then
edited using Cytoscape 3.10.

2.2. In Silico Prediction of Cleavage Sequences of Proteolytic Candidates

In order to identify potential proteolytic candidates for interaction analysis with the
M28 proteolytic domain of Ermp1, we considered proteins with DIOPT scores greater
than 9 [35] and located in the cytosolic compartment, as well as membrane proteins with
cytosolic regions. The proteins selected were the first to be identified as true human
homologs in S. pombe when the BioGRID repository was reviewed. To predict the cleavage
sequences for the metalloprotease family, the amino acid sequences of each protein were
analyzed using PROSPER, Victoria, Australia [36]. The results were selected according
to a cleavage probability score greater than 0.8 [37] for the subsequent protein–protein
docking analysis.

2.3. Three-Dimensional Modeling of the M28 Domain of Ermp1 and Proteolytic Candidates

The M28 domain of Ermp1 and the target proteins Ypt5, Pex12, Oca8, Fis1 and Pmc1
were modeled by homology in Phyre2 v2.0, London, UK [38]. The templates were selected
based on the percentage of homology of the sequences, domain conservation, and cellular
function. Additionally, validation reports of potential templates in the Protein Data Bank
were reviewed to select those that met the acceptance criteria, such as the experimental
method, structure resolution, and percentile scores (ranging from 0 to 100) of global valida-
tion metrics like R-value free, R-value work, R-value observed, and Ramachandran outliers.
The models were validated using PDBeFold v2.59 [39] and the PROCHECK-SAVES v6.0
Structure Validation Server, Europe Union [40]. A Q-score of approximately 1 and an
RMSD value < 1 Å were considered the main modeling validation parameters due to
their association with the percentage of aligned residues and the quality of the alignment
of the secondary structures with respect to the template [39,41,42]. Furthermore, it has
been confirmed that the cleavage sequences predicted in PROSPER were present in the 3D
models of the proteolytic candidates, which were subsequently utilized for the docking
analysis. As the N-terminal segment of the protein could not be modeled by homology
and was essential for the docking analysis, the 3D model of Amk2 was obtained from the
AlphaFold Protein Structure Database 4.0, Europe Union [43]. The model was subjected to
a validation analysis using PROCHECK-SAVES v6.0, with the confidence score pLDDT of
AlphaFold (ranging from 0 to 100) serving as the criterion for assessment.

2.4. Analysis of the Sequence and Structure of the M28 Domain of Ermp1

A sequence alignment was conducted using NCBI-BLAST to determine the percent-
age of homology between the human ERMP1 (Q7Z2K6) and Ermp1 from the S. pombe
(O94702) proteins. The M28 domain of both proteases was subjected to analysis, with
supplementary information retrieved from the PhosphositePlus v6.7.3 database regarding
the post-translational modifications of ERMP1 in humans [44]. Furthermore, a predictive
analysis of the serine phosphorylation sites of both proteases was carried out on the Net-
Phos 3.1, Lyngby, Denmark [45], with results scoring > 0.9 considered to be measures of the
prediction accuracy [46].

2.5. Optimizing the Conformational Stability of Proteins through Energy Minimization Techniques

The PDB files were prepared, and the energy was minimized at pH 7.4 using the Protein
Preparation Wizard (PrepWizard) tool from Maestro 13.0, New York, NY, USA [47] before
the molecular docking. The integrity of each of the structures was reviewed and adjusted.
Hydrogen atoms were added for each protein and the conformations of the rotamers of
the polar residues were verified. Furthermore, the protonation and tautomeric states of
Asp, Glu, Arg, Lys, and His were adjusted to pH 7.4. Additionally, the orientation of the
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hydrogen bonds was adjusted using PROPKA at pH 7.4 and the proteins were minimized
using the OPLS4 force field with an RMDS of 0.3 Å [48]. The models were edited and
visualized using UCSF Chimera 1.17.1, San Francisco, CA, USA [49] and Maestro 13.0.

2.6. Protein–Protein Docking of Ermp1 and Proteolytic Candidates

The Blind Docking process was conducted on the ClusPro 2.0 Boston, MA, USA [50]
and using BioLuminate 4.5 software New York, NY, USA [51] in accordance with previously
established parameters for the protein–protein docking of zinc metalloproteases [52]. The
M28 domain of Ermp1 was designated as the rigid receptor, while the target proteins were
considered to be the ligands. The PDB files were imported into ClusPro 2.0, and protein–
protein docking was initiated automatically with an RMSD of less than 10 Å between the
receptor and the ligand. The most promising interaction models were selected from the
balanced energy category, as this is the recommended approach for the analysis of enzyme
complexes. The score calculated by the program using the PIPER algorithm was derived
from the favored energy contributions (electrostatics-favored, hydro-phobic-favored, and
van der Waals-electrostatics), and thus, it was not considered a measure of binding affinity.
Because ClusPro 2.0 removes metal ions during the processing of PDB files, Zn2+ ions
from the M28 domain of Ermp1 were added to the interaction complexes according to the
model coordinates. In the BioLuminate 4.5 software, the protein–protein docking runs
were conducted with a limit of 70,000 rotations for each ligand evaluated. The electrostatic
potential of the Zn2+ atoms of the M28 domain of Ermp1 was assigned for each inter-action
complex using PIPER and Prime. The TOP30 ranking of the results obtained from each
program was analyzed to search for interactions between the catalytic cavity of Ermp1 and
the cleavage sequences of the proteolytic candidates that were predicted in PROSPER. The
molecular interactions were analyzed using DIMPLOT tool of the software LigPlus v.2.2,
Europe Union [53].

2.7. Solvation of Interaction Models in WaterMap

The Ermp1 interaction complexes were hydrated in the WaterMap tool, New York,
NY, USA [54]. A molecular dynamics simulation was carried out in the presence of the
solvent and a thermodynamic analysis of the water in the protein binding site was also
performed [52,55]. The WaterMap calculations were run with the default simulation
parameters: TIP4P solvent model at 300 K, 1 atmospheric pressure, and 2 ns simulation time.
Subsequently, a cluster analysis was conducted to identify the principal hydration sites
through the partitioning of the solvent density distribution within the binding cavity [54,56].

2.8. Molecular Dynamics Simulation

Molecular dynamics studies were conducted in Desmond, New York, NY, USA [57,58]
to assess the stability of the interaction complexes: Ermp1–Pex12, Ermp1–Amk2 and Ermp1–
Ypt5. The simulation was conducted within an orthorhombic box, with the ligand–protein
complex situated in the center at a distance of 10 Å. Molecules of water were utilized to
solvate the box, with a concentration of 150 nM of sodium chloride employed to simulate
physiological conditions. The energy system was minimized using the OPLS4 force field
with 2000 interactions, with a convergence criterion of 1 kcal/mol/Å [59]. Finally, a 120 ns
simulation was conducted at 300 K and 1 bar of pressure. The root means square deviation
(RMSD) and root mean square fluctuation (RMSF) were reported.

3. Results
3.1. Prediction of Protein–Protein Interactions of Ermp1 in S. pombe

BioGRID is an open-access database resource that hosts gene and protein interactions
from multiple species, including yeasts, worms, flies, and humans. All the content is
selected from experimental evidence reported in scientific publications, making it the most
comprehensive repository of its kind [20]. Approximately 1.93 million of the reported
interactions can be used to build interaction networks that facilitate biomedical research,
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particularly in the context of human health and diseases [20]. The BioGRID database
currently contains a register of an interactome consisting of 19,229 interactions between
3844 proteins encoded in the yeast genome. Furthermore, it has been observed that at least
1355 proteins in the S. pombe proteome correspond to human orthologs that are related to
diseases such as diabetes, hypertension, and cancer [27,29].

For example, the molecular study of S. pombe has proven invaluable for the functional
analysis of genes related to human diseases, such as RAD1, RAD9, and HUS1. These human
genes play a crucial role in the checkpoint response to DNA damage, and their aberrant
expression has been linked to various cancers, including prostate, breast, intestinal, thyroid,
and gastric cancers. Notably, these genes exhibit high homology with rad1, rad9, and hus1
in S. pombe [60,61].

Between 2020 and 2023, BioGRID recorded 190 proteins with experimental evidence of
interaction with ERMP1 in H. sapiens (Q7Z2K6), including 8 viral proteins from SARS-CoV-2
and 1 from SARS-CoV (Figure 1). Despite this, no evidence of interaction was observed
with the major UPR pathway proteins, such as IRE1, PERK, ATF6 and GRP78. However,
the network analysis revealed the presence of proteins that are related to the activation of
the pathway in the ER in a non-canonical manner, such as TM9SF4 [62], IER3IP1 [63] and
BSCL2 [64], although the exact mechanism of their involvement remains unclear.
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Figure 1. PPI network for human ERMP1. Information obtained from the BioGRID database. The
network was edited using Cytoscape 3.10 software.

According to BioGRID’s records, there are currently no known instances of Ermp1 PPI
in S. pombe (O94702), but there are positive genetic interactions (GIs) with the amk2 and
gsk3 genes. These interactions were identified in a synthetic genetic array (SGA) study of
single and double mutants of genes related to the TORC1 (Rapamycin Complex) signaling
pathway [65].

GIs can be classified as either negative (lethality) or positive (suppression). In the case
of a negative GI, a double mutant exhibits a more severe phenotype than that observed
in single mutants, indicating that the gene products function redundantly in parallel on
a signaling pathway. In cases of positive GI, it appears that the phenotype of the double
mutants is less severe than that observed in the single mutants. This may suggest that the
gene products interact within the same signaling pathway [66–68].

Ermp1 is suggested to have a physical interaction with Amk2 and Gsk3, as there may
be a synergy between the GI and PPI. As a result, these proteins were included in the PPI
network. Furthermore, the corresponding orthologous proteins in humans, PRKAB1 and
GSK3B, were added to the human ERMP1 interaction network (Figure 1, highlighted in
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orange). PRKAB1 serves as a subunit of the heterotrimeric AMPK complex, which acts as
a scaffold for the assembly of the PRKAA1 and PRKAG1 subunits. The AMPK complex
plays a role as a negative regulator of the UPR pathway [69]. Additionally, GSK3B, a kinase,
has been associated with an increased apoptosis response during ER stress, although its
influence on the signaling pathway is not yet fully understood [70].

Analysis in DIOPT identified 45 human orthologous proteins in S. pombe (Figure 1,
highlighted in yellow and orange, Table S1). The proteins were distributed in an interaction
network based on the score assigned by DIOPT (Figure 2). Proteins with scores greater
than 9 (Figure 2, highlighted in green, and Table S1) are considered true homologs, with
conserved topological characteristics and cellular functions between fission yeast and
humans.
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Figure 2. Prediction of a PPI network for Ermp1 in S. pombe. The network was edited using Cytoscape
3.10 software.

The proteins were classified based on their subcellular localization and biological
processes using the GO categories. A total of 29 proteins were found to be abundantly
located in the ER membrane, cell membrane, and cytosol, while the remaining proteins were
categorized in other cellular compartments such as the nucleus, vacuole, mitochondria,
peroxisome, and Golgi apparatus (Figure 3A, Table S1). Fifteen proteins have been classified
under transmembrane transport based on the biological process. The primary function of
these proteins is to transport ions, including but not limited to Ca2+, Cu2+, Zn2+, and H+.
Additional details can be found in Figure 3B and Table S1.

Mammalian cells rely on the endoplasmic reticulum (ER) as the primary organelle
for Ca2+ storage due to the high oxidant potential required for the activity of numerous
enzymes responsible for folding, post-translational processing, and protein trafficking [71].
Similarly, in S. pombe, calcium-dependent ATPases such as Pmr1 and Pmc1 are re-sponsible
for regulating Ca2+ homeostasis in both the ER and vacuole [72]. Both transporters were
identified in the S. pombe PPI network, which suggests a relationship between Ermp1
and Ca2+ homeostasis. On the other hand, 9 proteins associated with lipid and peptide
metabolism were identified (Figure 3B). As previously noted, the ER plays a crucial role
in various cellular processes, such as protein synthesis, Ca2+ storage, detoxification of
chemical compounds, lipid synthesis, and lipid membrane assembly [73]. It is possible that
the interaction of Ermp1 with metabolic proteins is linked to the maintenance of lipid and
protein homeostasis within the organelle.
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Figure 3. Clustering of Ermp1-interacting proteins in S. pombe: (A) Go cellular component and
(B) biological process annotation.

Considering that Ermp1 is a transmembrane protein, it is likely to interact with proteins
involved in protein insertion into the ER membrane and vesicular trafficking. Moreover,
Ermp1 could be regulated at the mRNA and protein levels through transcriptional regula-
tion, ubiquitination, and palmitoylation mechanisms (Figure 3B). The proteins that were
classified in a reduced proportion in the biological processes, such as DNA repair, nuclear
division, and mitochondrial fission, could potentially interact with Ermp1 in the ER before
being directed to different cellular compartments.

3.2. Comparing the M28 Domain of Ermp1 between Humans and S. pombe

Fxna peptidases are classified as members of the M28 family of metalloproteases due
to their conservation of the His-Xaa-Asp and Glu-Glu motifs [74,75]. This family includes
representative members such as aminopeptidase Y from S. cerevisiae, aminopeptidase S
from Streptomyces griseus, aminopeptidase IAP from E. coli, and aminopeptidase Ap1 from
Vibrio proteolyticus. The metalloproteases in question are characterized by the presence of
two Zn2+ ions in their active center. These ions are tetrahedrally coordinated with three
amino acids (His, Asp, and Glu) and a water molecule. Additionally, an aspartate or
glutamate is coordinated to both metal ions [74,76].

Since Fxna peptidases such as Ermp1 have not yet been assigned to a subfamily due
to their putative status, their structural or enzymatic characterization is not referenced.
Therefore, the M28 domain of human ERMP1 was compared to its orthologous pair in
S. pombe based on a sequence alignment. Both proteins share 37% identity and retain the
active center residues: His, Asp, and Glu, which bind to Zn2+. The residues Glu, His, and
Tyr play important roles in the catalytic process (Figure 4, highlighted in orange, purple,
and magenta, respectively).
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According to experimental evidence provided by PhosphoSitePlus [77], it has been
shown that the Ser326 residue of human ERMP1 is phosphorylated [78]. In light of this
information, we decided to investigate whether Ermp1 from S. pombe could also contain
this site. As shown in Figure 4, we aligned Ser326 with Ser279 of Ermp1 from S. pombe,
which is located within a conserved consensus sequence (highlighted in cyan and gray,
respectively). The sequences of the metalloproteases were analyzed using NetPhos 3.1 [45].
It was observed that one of the predicted potential phosphorylation sites matched the
reference and alignment (Tables S2 and S3).

In addition, the analysis predicted the presence of a phosphorylation site for Ser212
of human ERMP1 and Ser168 of Ermp1 from S. pombe (Figure 4, highlighted in gray and
cyan, respectively; Tables S2 and S3). The specific type of kinases that could target this
type of metalloproteases is currently unknown. However, the PPI network proposed for
Ermp1 in fission yeast includes the serine/threonine kinase Gsk3. It is worth noting that
phosphorylation of Gsk3 substrates typically leads to their inactivation or degradation [79].
It is possible that under certain physiological conditions, Ermp1’s activity may be regulated
by kinases, such as Gsk3, as part of the cellular metabolic and energetic modulation [80].

In the PPI network, Ubi2, a ubiquitin protein ligase, was identified. As a result, a search
for ubiquitination consensus sequences for Ermp1 was also conducted. It is worth noting
that, according to experimental reference in PhosphoSitePlus, the Lys356 residue of human
ERMP1 can be ubiquitinated [81,82]. Furthermore, in the sequence analysis, the alignment
of Lys356 with Lys309 of Ermp1 from S. pombe was observed (Figure 4, highlighted in
green). It is possible that Ubi2 may be involved in the proteasomal degradation of Ermp1,
as suggested by the predictions.

3.3. 3D Modeling of the M28 Domain of Ermp1 from S. pombe

To proceed with the analysis, it was necessary to obtain a three-dimensional structure
of Ermp1. Unfortunately, there are no crystallographic structures of Fxna peptidases in the
Protein Data Bank. Therefore, we opted for in silico modeling of the protein.

The AlphaFold artificial intelligence has been widely recognized for its ability to
accurately predict complete 3D structures using a deep-learning neural network system [83].
However, the 3D model of Ermp1 (O94702) obtained from the AlphaFold database was
found to be unsuitable for analyzing the M28 domain due to its conformation, which
inhibits interaction with other proteins.

Due to the shortage of templates exhibiting high homology percentages, adequate
modeling coverage, and validation metrics essential for generating the 3D model of the
M28 domain of Ermp1 from S. pombe, the available templates were meticulously evaluated.
The selection process prioritized templates that could yield validation parameters closely
aligned with the ideal values of PDBeFold and PROCHECK. Consequently, the aminopep-
tidase Ap1 from V. proteolyticus (PDB ID: 1RTQ) was identified as the optimal template for
homology modeling in Phyre2.

The modeled sequence covered positions 39–339, with an identity percentage of 20%
with respect to the template. A model was obtained with a Q-score of 0.76 and an RMSD
of 0.72 Å. These parameters were observed to have a correlation with the percentage of
aligned residues and the quality of the alignment of secondary structures with respect to the
template. Figure 5A displays the 3D structure of the M28 domain of Ermp1, which shows
the typical topology of metalloproteases. The enzyme is composed of β-sheets surrounded
by α-helices, and its active center is represented by the Zn2+-binding residues located in
the turns, highlighted in orange.

To ensure good quality, it is recommended that a model include more than 85–90%
of its residues in the favored regions for each modeled secondary structure (β-sheets,
α-helices, and loops) on a Ramachandran plot [84]. The model obtained from the M28
domain of Ermp1 in Phyre2 represents 85.4% of the residues in the favored regions in
the Ramachandran plot (Figure 5B), which can be considered an acceptable model for the
purposes of this study.
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highlighting its globular conformation and the exposed active center available for 
interaction with the target proteins and peptides. The catalytic cavity of the protein, as 
shown in Figure 6A with orange, purple, and magenta highlights, is formed by several 
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Glu207 and Tyr306. This cavity restricts access to small peptides and secondary structures, 
such as protein loops. Figure 6B illustrates the amino acids that were identified in the 
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Figure 5. Three-dimensional structure of the M28 domain of Ermp1 from S. pombe. (A) Homology
modeling in Phyre2. Binding site Zn2+ shown in orange. (B) Model validation using the PROCHECK-
SAVES v6.0 server. Ramachandran plot shows 85.4% residues are in the most favored region. Editing
of the model performed in UCSF Chimera 1.17.1.

Figure 6A displays the surface representation of the M28 domain of Ermp1, highlight-
ing its globular conformation and the exposed active center available for interaction with
the target proteins and peptides. The catalytic cavity of the protein, as shown in Figure 6A
with orange, purple, and magenta highlights, is formed by several Zn2+-binding residues,
including His161, Asp173, Glu208, Glu234, and His307, as well as Glu207 and Tyr306. This
cavity restricts access to small peptides and secondary structures, such as protein loops.
Figure 6B illustrates the amino acids that were identified in the catalytic cavity.
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Based on the reference metalloprotease Ap1 from V. proteolyticus [85], Zn2+ is coordi-
nated by Asp173, Glu208, and His307 to activate a molecule from H2O to OH-. Additionally,
Glu207 plays a crucial role in accepting the proton, which is necessary to increase the polar-
ity of the nucleophilic attack of Zn2+ on the peptide bond of the substrate. It is important to
note that these findings are subject to further investigation and interpretation.

The additional Zn2+ ion coordinates with His161, Asp173, and Glu234 to lower the
pKa of the H2O molecule, promoting greater specificity and stabilization of the catalytic
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reaction [86]. Furthermore, Tyr306 (highlighted in magenta in Figure 6A,B) plays a role in
stabilizing the transition state of the substrate intermediate in the final catalysis step.

The hydrophobic amino acids corresponding to residues Leu210, Ala235, Ile277, and
Leu278 (highlighted in yellow in Figure 6A,B) could potentially play a crucial role in
maintaining the structural conformation of the catalytic cavity. Additionally, as shown
in Figure 6A,B, there are potential phosphorylation sites located near the active center
of Ermp1 (highlighted in cyan), specifically Ser168 and Ser279. It is possible that the
proteolytic activity of the metalloprotease is regulated by some type of kinase.

3.4. Identification of Potential Proteolytic Cleavage Sequences and Generation of 3D Models

In the absence of methodological references for investigating protein–protein inter-
actions involving zinc metalloproteases and target proteins, we conducted a prior study
focusing on predicting consensus sequences with proteolytic susceptibility. This investi-
gation utilized PROSPER in conjunction with molecular-docking tools such as ClusPro
and BioLuminate, as previously reported [52]. The analysis aimed to identify consensus
sequences of known proteins that can be cleaved by specific metalloproteases, for which
there was experimental evidence of enzymatic interaction. The study showed that the tools
used had a high predictive power. The results were similar to those of the published reports
on the Metalloproteinase 8-Fibronectin 1 [87] and Metalloproteinase 12-Factor XII [88],
which were used as validation controls.

Herein, the proteolytic analysis of selected proteins from the predicted Ermp1 PPI
network was also performed. A comparative analysis was conducted between the cleavage
segments of the proteins and their secondary structures, with a focus on the M28 domain
of Ermp1. This domain has a narrow catalytic cavity, which affects the cleavage prediction.
The consensus sequences were accepted for analysis if they were located in loops, as these
structures have a greater probability of being cleaved. The PPI network proteins were
selected for analysis based on the order of identification in the comparative analysis of
human–yeast interologues since 2020. Table 1 displays the results of the proteolytic analy-
sis of selected proteins from the Ermp1 PPI network, specifically the cleavage sequences
predicted by PROSPER for the proteins Amk2, Ypt5, Pex12, Oca8, Fis1, and Pmc1. Metallo-
proteinase 9 was found to have the highest scores, with scores > 0.8. The majority of the
proteolytic cleavages were found to be located at the N-amino terminus of the Met and
Leu residues.

Table 1. Prediction of PROSPER cleavage sites of Ermp1 target proteins in S. pombe.

Human
Protein UniProt ID Ortholog

SCHPO 1 UniProt ID MMP 2

Prediction
Segment Position Score 3

PRKAB1 Q9Y478 Amk2 P78789 MMP9 RAQS

1 
 

 
 
 

 MISI Met40 1.16

RAB5C P51148 Ypt5 P36586 MMP9 SLAP

1 
 

 
 
 

 MYYR Met83 1.08

PEX12 O00623 Pex12 Q8TFH8 MMP9 FWRL

1 
 

 
 
 

 MI Met342 1.22

CYB5B O43169 Oca8 Q9USM6 MMP9 GEEV

1 
 

 
 
 

 LVDL Leu45 0.98

FIS1 Q9Y3D6 Fis1 Q9USZ8 MMP9 EALK

1 
 

 
 
 

 LKNR Leu117 1.05

ATP2B2 Q01814 Pmc1 Q9HDW7 MMP9 TTMA

1 
 

 
 
 

 MRTE Met429 1.23
1 Schizosaccharomyces pombe. 2 Metalloproteinase. 3 Values greater than 0.8 increase the confidence of predicting

proteolytic cleavage.

1 
 

 
 
 

 Cleavage site.

The predictions made in this study are consistent with the findings concerning other
metalloproteases of the M28 family, such as the aminopeptidase Y from S. cerevisiae and the
aminopeptidase Ap1 from V. proteolyticus. These proteases prefer cleaving the N-amino
of Leu, but they are also capable of hydrolyzing the N-amino of Lys, Arg, Met, Val, and
Ile [86,89]. Table 2 shows the templates that were used for the homology modeling of the
proteolytic candidates in Phyre2, with the exception of Amk2.
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Table 2. Homology modeling in Phyre2 of Ermp1 target proteins in S. pombe. Model validation
performed using PDBeFold and PROCHECK-SAVES v6.0.

Protein Template Organism PDB ID Identity
Percentage Q-Score 1 RMSD 2 (Å) Ramachandran Plot 3

Ypt5 Rab11 H. sapiens 2D7C [90] 43% 0.95 0.33 87.1%
Pex12 Ring 3 ligase S. cerevisiae 4R7E [91] 28% 0.71 0.71 85.1%
Oca8 Cytochrome b5 B. taurus 1M2I [92] 50% 1.00 0.00 90.3%
Fis1 Fis1 H. sapiens 1NZN [93] 25% 0.90 0.49 90.0%

Pmc1 SERCA2b H. sapiens 6LLE [94] 28% 0.80 0.47 87.5%
1 Q-score: quality of alignment, the highest score = 1. 2 RMSD: the lower the RMSD, the better the model is in
comparison to the target structure. 3 Ramachandran plot: a good quality model would be expected to find more
than 85–90% in the most favored regions.

From the list of templates returned by Phyre2, those that exhibited reliability per-
centages approaching 100% were subjected to analysis. The reliability percentage calcu-
lated by Phyre2 considers the homology of the sequences between the template and the
target; therefore, this percentage is distinct from the quality of the model. Moreover, due
to the limited availability of templates with high levels of homology, models for some
S. pombe proteins were selected based on their ability to achieve validation parameters that
were as close as possible to the ideal values. All the models passed the validation and
accuracy criteria, obtaining a Q-score > 0.7 and RMSD values < 1 Å. Additionally, in the
Ramachandran plots, over 85% of the modeled residues of each protein were found in the
favored regions for each secondary structure (please refer to Figure S1).

For molecular docking, the cleavable segments located in the loops were considered
instead of the β-sheets and/or α-helices of the 3D models of the proteolytic candidates.
This is because these regions are typically more accessible, flexible, and susceptible to
proteolytic cleavage [95].

In contrast to other proteins, it is worth noting that the 3D model of Amk2 was obtained
from AlphaFold (P78789). It is important to mention that the crystallographic structures of
Amk2 from S. pombe are deposited in the Protein Data Bank (PDBs ID: 2OOX, 2OOY, 2QR1,
2QRC, 2QRD, and 2QRE); however, it should be noted that they do not include the cleavage
sequence of interest. This is due to the fact that the sequence is situated in an area with a
consistent structural transition between order and disorder, referred to as an intrinsically
disordered region (IDR), which cannot be resolved through crystallography [96,97]. As a
result, homology modeling was also deemed unsuitable for incorporating IDRs.

Although the Ramachandran plot of the AlphaFold model indicated that 81.1% of the
residues were located in the most favored regions, this can be attributed to the presence
of residues in the IDRs. As these regions are considered dynamic, they lack a defined
secondary structure (see Figure S2). This is consistent with the pLDDT score < 50 calculated
in AlphaFold for that region, which, according to the program, would correspond to an
unstructured region.

In the past two decades, the existence and abundance of proteins with IDRs such as
Amk2 have been demonstrated [96]. The discovery of these proteins challenged the classic
concept that a well-defined structure is essential for a protein to perform its function. Cur-
rently, it is known that IDRs are functional, as they are considered dynamic structures that
are usually at the connection points of interactions with other proteins, mainly in cell sig-
naling pathways [97]. Consequently, AlphaFold has emerged as a valuable bioinformatics
tool for the prediction and modeling of IDRs.

3.5. Protein–Protein Docking between the M28 Domain of Ermp1 and Proteolytic Candidates

To further evaluate the PROSPER proteolytic susceptibility prediction, a protein–
protein rigid-docking analysis was conducted using the ClusPro 2.0 server and BioLuminate
software. The M28 domain of Ermp1 was docked with each of the proteolytic candidates.
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Table 3 shows the blind-docking prediction results that were identified within the TOP30
of the ranking and the size of the clusters.

Table 3. Prediction of cleavage sites by docking of target proteins and Ermp1 in S. pombe. Comparison
of molecular-docking results in ClusPro and BioLuminate.

Ligand
SCHPO 1

Docking
Prediction

Docking
Program

PIPER Energy
Score Cluster Size

Amk2 RAQS

1 
 

 
 
 

 MISI
ClusPro

BioLuminate
−923.2
−951.3

28
57

Ypt5 S

1 
 

 
 
 

 LAPMYYR
ClusPro

BioLuminate
−645.5
−638.4

31
28

Pex12 FWR

1 
 

 
 
 

 LMI
ClusPro

BioLuminate
−680.8
−667.4

124
78

Oca8 GEEVLVD

1 
 

 
 
 

 L
ClusPro

BioLuminate
−500.6
−542.6

62
54

Fis1 EALKLKN

1 
 

 
 
 

 R
ClusPro

BioLuminate
−607.1
−633.0

92
74

Pmc1 TT

1 
 

 
 
 

 MAMRTE
ClusPro

BioLuminate
−1137.7
−1212.5

35
20

1 Schizosaccharomyces pombe.

1 
 

 
 
 

 Cleavage site.

The scores obtained from ClusPro and BioLuminate were found to be similar, likely
due to the use of the same prediction algorithm. However, it is important to note that
these scores cannot be considered as measures of the binding affinity without the use of
refinement methods for energy minimization. Additionally, while the docking programs
did show interaction shifts of the cleavage sites (indicated by red arrows in Table 3), it is
worth noting that these interactions were found within the cleavage consensus sequences
predicted by PROSPER for each proteolytic candidate.

Figures 7A–F and S3 display the cleavage sequences of the evaluated proteins. These
sequences were located in flexible secondary structures, with the exception of Oca8 and
Fis1, which were located in the short chains of the α-helices. It is worth noting that although
proteolysis in α-helices is not common, the enzyme–substrate interaction may still occur
because secondary structures in the solution are typically in a dynamic equilibrium that
fluctuates between the α-helix and the loops [98,99].

The interaction complexes were identified near the N-amino terminus of the Leu, Met,
and Arg residues of the target proteins (Figures 7A–F, S3 and S4). It appears that Ermp1
may prefer these amino acids, which are similar to those found in the Ap1 aminopeptidase
of V. proteolyticus with respect to proteolysis.

During the simulation of the models in WaterMap, it was noted that hydration ap-
peared to facilitate the interaction of H2O molecules with Zn2+ in the catalytic cavity of the
M28 domain of Ermp1 (refer to Figure 7A–F).

In the hydration and water-exchange mechanism of Zn2+, the bond distance between
Zn2+ and the oxygen of H2O ranges between 2.0 and 2.1 Å in the first coordination sphere
of the metal, 3.6 Å in the second coordination sphere, and between 2.7 and 3.0 Å in the
transition states between both spheres [100].

The distances between Zn2+ and water oxygen were measured in each of the docking
models (see Figure S5). Variations in the length of the bonds were observed that ranged
between 2.46 and 3.51 Å; therefore, the interactions would be found between the first and
second coordination spheres of Zn2+. These results are consistent with other computational
chemistry studies, where ligand exchange and catalytic mechanisms are favored in the
transition states of both coordination spheres [101–103].



Curr. Issues Mol. Biol. 2024, 46 4621

Curr. Issues Mol. Biol. 2024, 46, FOR PEER REVIEW 13 
 

 

The scores obtained from ClusPro and BioLuminate were found to be similar, likely 
due to the use of the same prediction algorithm. However, it is important to note that these 
scores cannot be considered as measures of the binding affinity without the use of 
refinement methods for energy minimization. Additionally, while the docking programs 
did show interaction shifts of the cleavage sites (indicated by red arrows in Table 3), it is 
worth noting that these interactions were found within the cleavage consensus sequences 
predicted by PROSPER for each proteolytic candidate. 

Figures 7A–F and S3 display the cleavage sequences of the evaluated proteins. These 
sequences were located in flexible secondary structures, with the exception of Oca8 and 
Fis1, which were located in the short chains of the α-helices. It is worth noting that 
although proteolysis in α-helices is not common, the enzyme–substrate interaction may 
still occur because secondary structures in the solution are typically in a dynamic 
equilibrium that fluctuates between the α-helix and the loops [98,99]. 

The interaction complexes were identified near the N-amino terminus of the Leu, 
Met, and Arg residues of the target proteins (Figures 7A–F, S3 and S4). It appears that 
Ermp1 may prefer these amino acids, which are similar to those found in the Ap1 
aminopeptidase of V. proteolyticus with respect to proteolysis. 

During the simulation of the models in WaterMap, it was noted that hydration 
appeared to facilitate the interaction of H2O molecules with Zn2+ in the catalytic cavity of 
the M28 domain of Ermp1 (refer to Figure 7A–F). 

 
Figure 7. Molecular docking of the M28 domain of Ermp1 with protein targets (A–F). Highlighted 
are the binding sites for Zn2+ in orange, the catalytic site in purple, and the catalytic stabilizer in 
magenta. Additionally, the predicted phosphorylation sites are indicated in cyan. The hydrophobic 
areas are indicated by the yellow sites, and the ligand cleavage site is represented by the blue 
segment. The cleavage points are indicated by the pink residues. Solvation was performed using the 
WaterMap tool, and the models were edited in Maestro 13.0. 

Figure 7. Molecular docking of the M28 domain of Ermp1 with protein targets (A–F). Highlighted are
the binding sites for Zn2+ in orange, the catalytic site in purple, and the catalytic stabilizer in magenta.
Additionally, the predicted phosphorylation sites are indicated in cyan. The hydrophobic areas are
indicated by the yellow sites, and the ligand cleavage site is represented by the blue segment. The
cleavage points are indicated by the pink residues. Solvation was performed using the WaterMap
tool, and the models were edited in Maestro 13.0.

The results of the protein–protein docking procedure indicated that three systems
were worthy of further investigation through molecular dynamics studies. The Ermp1–
Amk2, Ermp1–ypt5, and Ermp1–Pex12 systems were selected based on the observation
of highly interactive behavior between the catalytic cavity of the M28 domain of Ermp1
and the cleavage sequences present in the target proteins. The root mean square deviation
(RMSD) of each snapshot relative to the initial energy-minimized structure was calculated
following alignment based on the Cα atoms for each trajectory. As depicted in Figure 8,
the RMSD values for all the systems exhibited reasonable fluctuations, ranging from 0.8
to 2.6 Å throughout the simulations. It can be noted that the interaction contacts of the
complexes exhibit a constant behavior throughout the 120 ns simulation time.

The RMSF trajectory data revealed that the fluctuations among most amino acids
ranged from 0.4 to 3.2 Å (see Figure S6). Notably, the initial residues displayed the most
substantial variations, spanning from residue 39 to 100. These residues correspond to protein
regions serving as loops, which grant greater flexibility of movement. In contrast, amino
acids located within the catalytic region displayed lower flexibility. Consequently, their
capacity to bind to the target proteins may be linked to the observed stability of interactions.
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Figure 8. Molecular dynamics simulation. Variation in the root mean square deviation (RMSD) of the
Ermp1–Pex12, Ermp1–Amk2 and Ermp1–Ypt5 complexes. Each simulation was 120 ns long in the
Desmond Molecular Dynamics System to assess the stability of the protein–protein interactions.

4. Discussion

This study presents the initial in silico predictions of the protein–protein interactions of
the putative protein Ermp1 in S. pombe. Based on the results, it can be proposed that Ermp1
could play a role in maintaining the homeostasis of Ca2+, amino acids, and proteins in the
endoplasmic reticulum, an organelle with high protein synthesis and degradation activity.
The analysis of the M28 domain of Ermp1 was interesting because two phosphorylation
sites near the active center were predicted. Therefore, it is hypothesized that the proteolytic
activity of Ermp1 could depend on serine phosphorylation. The molecular docking suggests
that Ermp1 could interact preferentially with consensus sequences located in the loops of
the proteins Amk2, Ypt5 and Pex12 from the PPI predictions. These interactions suggest
that Ermp1 could act as an aminopeptidase, particularly near the N-amino of the Leu and
Met residues.

Aminopeptidases have been found to be present in intracellular organelles, cytoplasm,
and cell membranes [104]. Their role in protein degradation is crucial, as they cleave
peptides generated by the proteasome or hydrolyze free amino acids for recycling and new
protein synthesis [105]. It is known that the proteasome releases peptides of 6–24 amino
acids, which can be rapidly degraded by cytosolic peptidases [104,105].

For many years, aminopeptidases have been extensively studied in relation to various
cellular processes and their implications in the development of different pathologies, such
as inflammatory processes, diabetes, and cancer [106]. It has been observed that in cancer
cells, the overexpression of aminopeptidases facilitates the exogenous supply of amino
acids, which is necessary for their survival and proliferation [104,107]. In addition, it has
been described that the tumor microenvironment increases the rate of protein synthesis,
which in turn favors the increase in the expression of aminopeptidases [105,108,109].

In vitro studies have suggested that human ERMP1 increases the proliferation and
invasion of cancer cells through the PIK3/AKT/mTOR/β-catenin pathway. However,
the molecular mechanism is still unclear [4–7]. This study proposes a possible interaction
of Ermp1 with Amk2 and Gsk3 in S. pombe. These two signaling proteins regulate the
metabolic and transcriptional activity of cells through TOR-dependent processes in response
to environmental signals [65,110–113]. In humans, orthologous proteins of Amk2 and Gsk3
(PRKAB1 and GSK3B, respectively) have been linked to the ER stress response through
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the modulation of the UPR pathway [114–116]. Furthermore, it would be interesting to
explore whether there is a correlation between Ermp1 and both Amk2 and Gsk3 in S. pombe
within signaling pathways such as TOR and UPR, which are highly conserved in mammals,
including humans [117,118]. In humans, these pathways are modified in some types of
cancer due to ERMP1 overexpression, but the mechanism is unknown. Therefore, study of
the Ermp1 in S. pombe could help elucidate its function in human cells.

It is important to mention that the selection of appropriate 3D models is essential
for molecular-docking analysis. However, currently it has not yet been possible to ex-
perimentally determine the three-dimensional structures of a large number of proteins
from different organisms of biological interest. For this reason, the availability of suitable
templates for homology modeling is usually limited. In this study, the Phyre2 and Al-
phaFold Protein Structure databases were employed to generate 3D models of the proteins
of interest. Both tools are open access, facilitating exploration of bioinformatics analysis of
different proteins with satisfactory results [119–121]. Nevertheless, the use of other, more
powerful modeling tools should be considered for the validation of structural predictions.

Finally, ClusPro 2.0 and BioLuminate 4.5 are molecular-docking tools that have been
widely utilized in diverse biological systems due to their automated computational system
and the quality of the predictions, which exceed 50% of the success rate compared to other
tools [122–125]. Since the predictions in both programs were similar, it can be suggested
that they are congruent; however, other tools could be used to confirm the results.

5. Conclusions

This bioinformatics study proposes the first prediction of the PPIs of Ermp1 with
45 proteins in S. pombe, which are highly conserved in humans. According to the GO
classification, this group of proteins is mostly related to the transport of calcium in the ER
and the metabolism of amino acids and proteins. Therefore, it is very possible that Ermp1
is also related to these processes. The results of the molecular docking and dynamics of
the M28 domain with Amk2, Ypt5 and Pex12 support the idea that Ermp1 could act as an
aminopeptidase with a preference to hydrolyze the N-amino of leucine and methionine
residues. It is important to remember that enzymatic assays are necessary to confirm these
predictions. In conclusion, these results provide the basis for future experimental research,
which will contribute to the elucidation of the cellular function of other Fxna peptidases,
such as human Ermp1.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/cimb46050280/s1, Figure S1: Three-dimensional structures of target
proteins of Ermp1 from S. pombe. Homology modeling in Phyre2 and Ramachandran plot. Model
validation performed using the PROCHECK-SAVES v6.0 server. Editing of the model performed in
UCSF Chimera 1.17.1; Figure S2: AlphaFold prediction and Ramachandran plot of the 3D structure of
Amk2 from S. pombe; Figure S3: Molecular docking of the M28 domain of Ermp1 with protein targets.
Ligand cleavage segment is shown in blue. Cleavage residues are shown in pink. Solvation performed
in the WaterMap tool. Editing of the models performed in Maestro 13.0; Figure S4: DIMPLOT 2D-
interaction plot of the M28 domain of Ermp1 with protein targets (A–F). The horizontal dashed
line represents the interface. The green dotted line represents the hydrogen bond length, while the
arc represents the hydrophobic interaction. The dotted boxes delineate the identified interactions
between the residues of Ermp1’s catalytic cavity and the potential cleavage residues within the target
proteins; Figure S5: Representation of the solvation of the interaction complexes of the M28 domain
of Ermp1 and cleavage sites of protein targets. Binding sites of Zn2+ are shown in orange. Catalytic
site is shown in purple. Catalytic stabilizer is shown in magenta. Cleavage residues are shown in
pink. Solvation performed in the WaterMap tool. Editing of the models performed in Maestro 13.0;
Figure S6: Analysis of the RMSF trajectories of residues of the protein–protein complexes. The root
mean square fluctuation (RMSF) was calculated to examine the residual fluctuations throughout
the simulation time for Ermp1–Amk2, Ermp1–Pex12, and Ermp1–Ypt5 (A–C, respectively). Each
simulation was conducted for 120 ns in the Desmond Molecular Dynamics System to assess the
stability of the protein–protein interaction; Table S1: Comparison of orthologous proteins that interact

https://www.mdpi.com/article/10.3390/cimb46050280/s1
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Curr. Issues Mol. Biol. 2024, 46 4624

with ERMP1/Ermp1 in humans and S. pombe. GO cellular component, biological process annotation,
DIOPT score, similarity, and identity percentages. Proteins highlighted in gray were selected for
proteolytic propensity analysis and molecular docking; Table S2: Predictions of the phosphorylation
sites in NetPhos 3.1 of human ERMP1; Table S3: Predictions of the phosphorylation sites in NetPhos
3.1 of Ermp1 from S. pombe.
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