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Abstract: Hematopoietic stem cell transplantation (HSCT) remains a cornerstone in the management
of patients with hematological malignancies. Endothelial injury syndromes, such as HSCT-associated
thrombotic microangiopathy (HSCT-TMA), veno-occlusive disease/sinusoidal obstruction syndrome
(SOS/VOD), and capillary leak syndrome (CLS), constitute complications after HSCT. Moreover,
endothelial damage is prevalent after immunotherapy with chimeric antigen receptor-T (CAR-T)
and can be manifested with cytokine release syndrome (CRS) or immune effector cell-associated
neurotoxicity syndrome (ICANS). Our literature review aims to investigate the genetic susceptibility
in endothelial injury syndromes after HSCT and CAR-T cell therapy. Variations in complement
pathway- and endothelial function-related genes have been associated with the development of HSCT-
TMA. In these genes, CFHR5, CFHR1, CFHR3, CFI, ADAMTS13, CFB, C3, C4, C5, and MASP1 are
included. Thus, patients with these variations might have a predisposition to complement activation,
which is also exaggerated by other factors (such as acute graft-versus-host disease, infections, and
calcineurin inhibitors). Few studies have examined the genetic susceptibility to SOS/VOD syndrome,
and the implicated genes include CFH, methylenetetrahydrofolate reductase, and heparinase. Finally,
specific mutations have been associated with the onset of CRS (PFKFB4, CX3CR1) and ICANS
(PPM1D, DNMT3A, TE2, ASXL1). More research is essential in this field to achieve better outcomes
for our patients.

Keywords: allogeneic; autologous; CAR-T; CRS; endothelial; hematopoietic stem cell transplantation;
HSCT-TMA; ICANS; gene; SOS/VOD

1. Introduction

Hematopoietic stem cell transplantation (HSCT) constitutes a cornerstone in the man-
agement of hematological malignancies, while several complications increase the morbidity
and mortality in HSCT recipients [1,2]. Graft-versus-host disease (GVHD) is considered
the major cause of death in these patients, mainly due to infections complicating this
clinical entity, while cardiovascular disease (CVD) burden is also substantially increased,
as shown by both clinical and laboratory data [3–6]. Endothelial dysfunction and injury
plays a substantial role in the pathogenesis of vascular complications post-HSCT, while
it is also implicated in the development of HSCT-associated thrombotic microangiopathy
(HSCT-TMA), veno-occlusive disease/sinusoidal obstruction syndrome (SOS/VOD), cap-
illary leak syndrome (CLS), and GVHD [7,8]. Markers of endothelial injury such as the
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Endothelial Activation and Stress Index (EASIX) have been used as predictors of survival
in allogeneic HSCT (alloHSCT) survivors [9,10]. Genetic susceptibility has been recognized
as a predisposing risk factor in the development of endothelial injury syndromes [11,12].

Chimeric antigen receptor-T (CAR-T) immunotherapies have become the standard
of care in the treatment approach of patients with relapsed/refractory b-cell malignan-
cies [13]. To date, two CAR-T cell therapies have been approved for the treatment of
relapsed/refractory multiple myeloma: idecabtagene vicleucel and ciltacabtagene au-
toleucel [14]. Furthermore, lisocabtagene maraleucel, tisagenlecleucel, brexucabtagene au-
toleucel, and axicabtagene ciloleucel are administered in patients with relapsed/refractory
lymphomas and b-cell acute lymphoblastic leukemia [15]. Cytopenias and subsequent infec-
tions might complicate patients who receive CAR-T cell immunotherapy [16–18]. Toxicities,
which include cytokine release syndrome (CRS) and immune effector cell-associated neuro-
toxicity syndrome (ICANS), limit the therapeutic efficacy of this treatment approach [19–21].
CRS might also complicate patients with severe coronavirus disease (COVID-19), influenza,
and those who receive immunotherapy for solid tumors [22,23]. CRS and ICANS can be
described as “endotheliopathies” because endothelial dysfunction plays a significant role
in the pathogenesis of these syndromes [24,25]. Genetic factors have been associated with
the development of CRS post-CAR-T infusion [26].

The aim of the current literature review was to investigate the genetic susceptibility to
the manifestation of endothelial injury syndromes (HSCT-TMA, SOS/VOD) post-HSCT.
Moreover, we summarized the key gene mutations’ predispositions to the development of
CRS after CAR-T cell immunotherapy. For this purpose, a literature review was performed
using keywords such as “endothelial injury”, “transplant-associated thrombotic microan-
giopathy”, “SOS/VOD”, “gene”, “genetic”, “HSCT”, “allogeneic”, “CAR-T”, and “CRS”,
in different combinations, to identify relevant studies published in the English language.
In the era of precision and personalized medicine, a better understanding of these complex
disease entities is crucial not only for better outcomes for our patients but also for the early
prevention of the toxicities following treatment.

2. HSCT-TMA
2.1. HSCT-TMA: Complement Dysregulation and Endothelial Dysfunction in the Spotlight

HSCT-TMA is a distinct type of thrombotic microangiopathy, following HSCT, and
is characterized by the clinical triad of thrombocytopenia, macroangiopathic hemolytic
anemia, and target-organ damage [27]. In a meta-analysis published by Van Benschoten
et al., the pooled incidence of HSCT-TMA after alloHSCT was 12% (95% confidence in-
terval, range 9%–16%) [28]. HSCT-TMA can complicate both allogeneic and autologous
HSCT, mainly affecting pediatric patients with neuroblastoma, but it is more prevalent in
alloHSCT [29]. A three-hit hypothesis has been described for the pathogenesis of HSCT-
TMA [12]. The first hit includes underlying predisposing factors: female sex, African
American race, non-malignant hematological disorder, history of previous HSCT, and
genetic variants [7,28]. The second hit of transplant-related risk factors, such as transplant
conditioning regimen-related toxicity, total-body irradiation, unrelated donor transplan-
tation, and human leukocyte antigen (HLA) mismatch, leads to endothelial injury, and a
procoagulant state is developed [30,31]. Balassa et al. showed that the presence of HLA-
DRB1*11 antigen (p = 0.034) was associated with the development of HSCT-TMA [32].
Finally, post-HSCT risk factors, including the administration of calcineurin (CNI) or mTOR
inhibitors, the development of acute GVHD (aGVHD), and infections, result in complement
activation [33,34]. The activation of classical, lectin, and alternative pathways of the com-
plement is implemented, leading to the formulation of membrane attack complex (MAC)
(C5b-9) and subsequent complement-mediated cell lysis [35,36]. The pathophysiology of
HSCT-TMA is similar in pediatric and adult HSCT recipients.

The clinical implications of the syndrome are the result of organ injury and include
manifestations from the kidneys (hypertension, proteinuria, acute kidney injury), gas-
trointestinal (GI) tract, central nervous system (headache, confusion, seizures, posterior
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reversible encephalopathy), and lungs (pulmonary arterial hypertension, pulmonary in-
sufficiency) [37]. Moreover, multiple-organ failure might be established [38]. Various
criteria have been proposed for the diagnosis of patients with TA-TMA, while in the most
recently published criteria, HSCT-TMA is diagnosed based on clinical and laboratory data,
and kidney/GI biopsy can be implemented but is not essential for the diagnosis [37]. No
treatment guidelines are available for the management of HSCT-TMA. Historically, several
treatment approaches have been investigated for HSCT-TMA, including the discontinua-
tion of CNIs, therapeutic plasma exchange, defibrotide, immunosuppressant agents, and
rituximab, with various outcomes for patients [39]. Eculizumab (C5 complement inhibitor)
has been shown to be efficient and safe in HSCT-TMA [40,41]. However, an increase in the
overall survival of patients who receive eculizumab compared to those who do not, has not
yet been shown [42,43]. Next-generation complement therapeutics such as Pegcetacoplan,
Narsoplimab, Coversin, and Ravulizumab are under investigation for HSCT-TMA in both
pediatric and adult patients [44–48].

2.2. Genetic Susceptibility to HSCT-TMA

As mentioned above, genetic variants may play a role in the pathogenesis of HSCT-
TMA. Jodele et al. performed targeted genomic analysis in 17 genes (CFH, CFHR1, CFHR3,
CFHR4, CFHR5, CD55, CD59, CD46, CFI, CFB, CFP, C5, ADAMTS13, CFD, C3, C4BPA,
and THBD) in 90 alloHSCT recipients (34 with HSCT-TMA) [49]. In total, 239 variants
were identified in 17 genes in the initial control and 42 were considered likely functional
variants. A total of 15 of them were associated before with the development of thrombotic
microangiopathies (6 were reported to be pathogenic and 9 were of uncertain clinical signif-
icance). Pathogenic variants previously described in other thrombotic microangiopathies
were shown in CFHR5, CFI, and ADAMTS13 (a disintegrin and metalloproteinase with
a thrombospondin type 1 motif, member 13) genes (only in patients with HSCT-TMA).
ADAMTS13 is a metalloprotease enzyme that cleaves von Willebrand factor (vWF), a large
protein involved in the formulation of blood clots [50]. Deficiency in the activity of plasma
ADAMTS13 (<10%) is typical in thrombotic thrombocytopenic purpura (TTP) [51]. Despite
the identification of mutations in the ADAMTS13 gene, the activity of ADAMTS13 was
between 43 and 50% in the whole group of patients, excluding the diagnosis of TTP [49,52].
CFHR5 is part of a complement factor H (CFH) gene cluster, located on chromosome 1,
encoding a protein that can bind to complement component 3 b (C3b), acting as an al-
ternative complement pathway regulator [53]). Mutations on CFHR5 genes have been
connected with FHR5 nephropathy, a glomerulopathy, characterized by the accumulation
of complement C3 deposits in the glomerulus [54]. Complement factor I (CFI) inactivates
C3b and C4b complement factors, regulating both classical and alternative pathways, while
loss-of-function mutations in the CFI gene lead to increased complement activation [55]. In
total, 65% (22 of 34) of HSCT-TMA patients were found to have at least one gene variant in
comparison to 9% (4 of 43) of those without TMA after the transplantation (p < 0.0001). The
median number of gene variants found in HSCT-TMA patients was one and zero in those
without (p < 0.0001). Gene variants were more common in nonwhite patients, compared to
white patients (p < 0.0001). Moreover, patients with ≥3 gene variants (all were nonwhite)
were found to be at a higher risk for transplant-related mortality (TRM) compared to those
with <3 (57% vs. 21% at 1 year, p = 0.02). RNA sequencing analysis was performed in pre-
transplantation samples and revealed the upregulation of various complement pathways
in HSCT-TMA patients who had gene variants in comparison to those without variants and
HSCT-TMA. Furthermore, CFHR3 and CFHR1 were considered other pathogenic variants.
CFHR1 and CFHR3 proteins are also part of the complement factor H-related protein family
and act as complement regulators. Mutations to these genes have been related to atypical
hemolytic uremic syndrome, which is also a complement-mediated disorder [56,57]. In
Figure 1, the role of potential gene variants of alternative complement pathway genes in
the pathogenesis of HSCT-TMA is presented.



Curr. Issues Mol. Biol. 2024, 46 4790

Curr. Issues Mol. Biol. 2024, 46, FOR PEER REVIEW  4 
 

 

complement-mediated disorder [56,57]. In Figure 1, the role of potential gene variants of 

alternative complement pathway genes in the pathogenesis of HSCT-TMA is presented. 

 

Figure 1. Role of potential gene variants of alternative complement pathway genes in the pathogen-

esis of HSCT-TMA. HSCT-TMA: hematopoietic stem cell transplantation-associated thrombotic mi-

croangiopathy; MAC; membrane attack complex. 

In a cohort of six pediatric patients with HSCT-TMA, five of the six patients (83%) 

had heterozygous CFHR3‐CFHR1 gene deletion [58]. Nozawa et al. reported a case report 

of a 1-year-old girl who underwent autologous HSCT for neuroblastoma and developed 

HSCT-TMA  [59]. After  targeted  genotyping  in  aHUS  genes,  a  heterozygous  CFHR3‐

CFHR1 gene deletion was found, leading to excess complement. Ardissino et al., in their 

study, performed targeted next-generation sequencing (NGS) in both recipients and their 

donors and  found  complement-regulatory-related mutations  in 6/16 donors of  the pa-

tients who developed HSCT-TMA  [60]. Variants  in CFB were  reported  in a donor of a 

patient with HSCT-TMA. CFB encodes complement factor B, which is part of the alterna-

tive complement pathway and provides catalytic activity to the C3 and C5 convertases 

[61]. However, in this study, standardized criteria were not implemented for the diagnosis 

of HSCT-TMA [62]. In a previous study from our team, we studied 40 patients with HSCT-

TMA, the donors of 18 patients who developed TMA, and 40 non-TMA HCT recipients 

[63]. NGS in TMA variants was performed in genomic DNA obtained from the pretrans-

plant blood of the study’s participants. We showed that in HSCT-TMA, there was a sig-

nificantly higher frequency of variants in ADAMTS13 (p < 0.025), C3 (p < 0.040), CFB (p < 

0.002), CFH (p < 0.002), and CFI (p < 0.041) in comparison to patients without TMA. More-

over,  variants  were  identified  in  exonic/splicing/untranslated  regions  (UTRs)  of 

ADAMTS13 (p < 0.047), C3 (p < 0.003), CFH (p < 0.013), and CFI (p < 0.044) in HSCT-TMA 

patients  in comparison  to  those without. Zhang et al.,  in  their study, showed  that rare 

variants in the VWF clearance pathway were significantly associated with HSCT-TMA (p 

= 0.008)  [64]. Furthermore,  the LRP1 variant was significantly  increased  in HSCT-TMA 

patients compared to controls (p = 0.025). LRP1 is a member of the low-density lipoprotein 

receptor family, implicated in VWF clearance and the protection against oxidative stress. 

Figure 1. Role of potential gene variants of alternative complement pathway genes in the patho-
genesis of HSCT-TMA. HSCT-TMA: hematopoietic stem cell transplantation-associated thrombotic
microangiopathy; MAC; membrane attack complex.

In a cohort of six pediatric patients with HSCT-TMA, five of the six patients (83%)
had heterozygous CFHR3-CFHR1 gene deletion [58]. Nozawa et al. reported a case report
of a 1-year-old girl who underwent autologous HSCT for neuroblastoma and developed
HSCT-TMA [59]. After targeted genotyping in aHUS genes, a heterozygous CFHR3-CFHR1
gene deletion was found, leading to excess complement. Ardissino et al., in their study,
performed targeted next-generation sequencing (NGS) in both recipients and their donors
and found complement-regulatory-related mutations in 6/16 donors of the patients who
developed HSCT-TMA [60]. Variants in CFB were reported in a donor of a patient with
HSCT-TMA. CFB encodes complement factor B, which is part of the alternative complement
pathway and provides catalytic activity to the C3 and C5 convertases [61]. However, in this
study, standardized criteria were not implemented for the diagnosis of HSCT-TMA [62].
In a previous study from our team, we studied 40 patients with HSCT-TMA, the donors
of 18 patients who developed TMA, and 40 non-TMA HCT recipients [63]. NGS in TMA
variants was performed in genomic DNA obtained from the pretransplant blood of the
study’s participants. We showed that in HSCT-TMA, there was a significantly higher
frequency of variants in ADAMTS13 (p < 0.025), C3 (p < 0.040), CFB (p < 0.002), CFH
(p < 0.002), and CFI (p < 0.041) in comparison to patients without TMA. Moreover, variants
were identified in exonic/splicing/untranslated regions (UTRs) of ADAMTS13 (p < 0.047),
C3 (p < 0.003), CFH (p < 0.013), and CFI (p < 0.044) in HSCT-TMA patients in comparison to
those without. Zhang et al., in their study, showed that rare variants in the VWF clearance
pathway were significantly associated with HSCT-TMA (p = 0.008) [64]. Furthermore, the
LRP1 variant was significantly increased in HSCT-TMA patients compared to controls
(p = 0.025). LRP1 is a member of the low-density lipoprotein receptor family, implicated in
VWF clearance and the protection against oxidative stress.

Rachakonda et al., in their study, showed that a rs3092936 single-nucleotide poly-
morphism (SNP) in the CD40 ligand (CD40L) gene was related to the development of
HSCT-TMA [65]. Leimi et al. found that patients with endotheliopathies (HSCT-TMA,
SOS/VOD, CLS) had variants in several complement pathways. The most notable were
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detected in the terminal pathway (C6 and C9), lectin pathway (MASP1), and ITGAM, which
encodes CD11b, a part of the β-integrin complement receptor type 3, CR3 [66]. Genetic
variants in the ITGAM gene have been related to systemic lupus erythematosus (SLE)
and pre-eclampsia [67,68]. However, Okamura et al. performed NGS in 17 genes of the
genome obtained from 30 HSCT recipients (15 with HSCT-TMA) and failed to identify an
association between complement-associated genetic variants and HSCT-TMA [36]. To sum-
marize, the presence of specific gene variants and SNPs, especially in complement-related
genes, might act as a risk factor for HSCT-TMA development (first hit). However, data are
lacking to make conclusions about whether the use of pre-transplantation genetic testing
would be helpful for the identification of patients who are at great risk for HSCT-TMA
development. To summarize, as reported in the published studies, 29 to 83% of patients
with HSCT-TMA have one or more pathogenic genetic variant that predispose them to
the development of this syndrome. We have to underline, as mentioned above, that other
factors also contribute to the pathogenesis of HSCT-TMA, except genetic background.
In Table 1, we present studies examining the role of gene variants as risk factors for the
development of HSCT-TMA.

Table 1. Studies examining the role of gene variants as risk factors for the development of HSCT-TMA.

First Author,
Year Study Design Genetic Analysis Number of Study

Participants
Age Group of

Patients

Genetic Variants
Characterized as

Pathogenic

Jodele 2013
[58] Case series

NGS of alternative complement
pathway genes (CFH, CFI, MCP,

CFB, CFHR1,3,5)

6 HSCT-TMA
patients Pediatric patients CFHR3, CFHR1

Jodele 2016
[49]

Prospective
study,

case–control

NGS of 17 genes (CFH, CFHR1,
CFHR3, CFHR4, CFHR5, CD55,
CD59, CD46, CFI, CFB, CFP, C5,
ADAMTS13, CFD, C3, C4BPA,

and THBD) and RNA
expression analysis

90 alloHSCT
recipients (34 with

HSCT-TMA)
Pediatric patients

CFHR5, CFI,
ADAMTS13, CFHR3,

CFHR1

Ardissino 2017
[60] Case series

NGS of specific genes (CFH,
CFHR1, CFHR3, CFHR4,

CFHR5, CFI, CFB, CD46, C3,
DGKe, and THBD)

16 HSCT-TMA
patients and their

donors

Adult and
pediatric patients

CFH, CFHR3, CFHR5,
CFI, CFB, C3

Nozawa 2018
[59] Case report

NGS of aHUS genes (CFH,
CFHR1, CFHR3, CFHR4,

CFHR5, CFI,
CFB, CD46, C3, and THBD)

1 autologous HSCT
recipient 1 year-old patient CFHR3, CFHR1

Rachakonda 2018
[65]

Prospective
study

CD40L and THBD SNP
genotyping 966 HSCT recipients Adult patients rs3092936 SNP in

CD40L

Gavriilaki 2020
[63]

Prospective
study,

case–control

NGS with a customized
complement-related

gene panel (CFH, CFHR1,
CFHR3, CFHR4, CFHR5, CFI,

CFB, CFD, C3, CD55, C5, CD46,
ADAMTS13)

80 HSCT recipients
(40 with HSCT-TMA,

40 without TMA)
Adult patients ADAMTS13, C3, CFB,

CFH, CFI

Okamura 2021
[36]

Retrospective,
case–control

study

NGS in 17 genes (C3, C5, CFB,
CFD, CFH, CFI, CFP, C4BPA,
CD46, CD55, CD59, THBD,

CFHR1, CFHR3, CFHR4,
CFHR5, and ADAMTS13)

30 HSCT recipients
(15 with HSCT-TMA,

15 without)
Adult patients No association was

found

Zhang 2023
[64]

Prospective
study,

case–control

NGS in panel of 52 genes,
focusing on 5 pathways:

complement system, vWF
function and associated
proteins, vWF clearance,

ADAMTS13 function and
associated proteins, and

endothelial activation

198 HSCT recipients
(100 with HSC-TMA,

98 without TMA)
Adult patients

Variants in the vWF
clearance pathway,

LRP1



Curr. Issues Mol. Biol. 2024, 46 4792

Table 1. Cont.

First Author,
Year Study Design Genetic Analysis Number of Study

Participants
Age Group of

Patients

Genetic Variants
Characterized as

Pathogenic

Leimi 2023, [66]
Retrospective,
case-control

study

WES in variations and
mutations in classical, lectin, or
terminal pathway factors or in

the membrane-bound
components of the complement

system

109 HSCT patients
(17 with

endotheliopathy,
including

HSCT-TMA,
SOS/VOD, capillary

leak syndrome)

Pediatric patients C6, C9, MASP1,
ITGAM

HSCT-TMA: hematopoietic stem cell transplantation-associated thrombotic microangiopathy; NGS: next-
generation sequencing; HSCT: hematopoietic stem cell transplantation; SNP: single-nucleotide polymorphism;
vWF: von Willebrand factor; WES: whole-exome sequencing; SOS/VOD: veno-occlusive disease/sinusoidal
obstruction syndrome.

3. SOS/VOD and Genetic Susceptibility

SOS/VOD is a rare and severe alloHSCT complication, characterized by high mortality
(up to 80%) [69]. Chemotherapy and radiotherapy (used as a preconditioning regimen or for
the initial treatment of the hematological malignancy) result in endothelial cell injury and ac-
tivation and the release of inflammatory and procoagulant factors [70]. In these factors, vWF
and tissue factor (TF) are included, leading to the formulation of microvascular clots in si-
nusoids and venules of the liver, obstruction to the blood flow, and portal hypertension [71].
Hyperbilirubinemia, painful hepatomegaly, jaundice, rapid weight gain unresponsive to di-
uretics, and ascites are among the clinical manifestations of SOS/VOD [72]. Multiple organ
failure affecting the lungs (hepatopulmonary syndrome), kidneys (hepatorenal syndrome),
and central nervous system (CNS) has also been described [73]. In the guidelines of the
British Society of Hematology, ursodeoxycholic acid is recommended for the prevention
of SOS/VOD post-HSCT [74]. Moreover, defibrotide, an agent with protective properties
for endothelial cells, has been investigated as a preventive agent for this syndrome and is
approved for the management of patients with moderate/severe SOS/VOD [75].

Bucalossi et al. studied seven patients who underwent alloHSCT (three with SOS/VOD)
and detected two CFH variants in patients with SOS/VOD [76]. The methylenetetrahydrofo-
late reductase (MTHFR) C677T/A1298C genotype has been found as a possible risk factor
for the development of SOS/VOD [77]. MTHF is a key enzyme in regulating folate and
homocysteine metabolism [78]. Moreover, in children with rs4693608 and rs4364254 SNPs
in the heparinase gene, the incidence of SOS/VOD syndrome decreased [79]. Various SNPs
in the glutathione S-transferase (GST) gene, encoding the GST enzyme, essential for the
metabolism of busulfan (which used a conditioning regimen), have been associated with
SOS/VOD disease post-HSCT [80]. In Table 2, the genes implicated in the pathogenesis of
various endothelial injury syndromes are summarized.

Table 2. Genes implicated in the pathogenesis of endothelial injury post-HSCT.

Gene Role of Gene Product Endothelial Injury
Syndrome

CFHR1
The protein encoded by this gene belongs to the
complement factor H protein family, acting as a

complement regulatory protein.
HSCT-TMA

CFHR3
The protein encoded by this gene belongs to the
complement factor H protein family, acting as a

complement regulatory protein.
HSCT-TMA

CFHR5
The protein encoded by this gene belongs to the
complement factor H protein family, acting as a

complement regulatory protein.
HSCT-TMA
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Table 2. Cont.

Gene Role of Gene Product Endothelial Injury
Syndrome

CFH The gene product acts as a regulator of
complement activation. SOS/VOD

CFI CFI protein regulates complement activation by cleaving
C3b and C4b. HSCT-TMA

CFB
The active subunit Bb of CFB (activated by factor D) is a

protease that binds with C3b to form the alternative
pathway, C3 convertase.

HSCT-TMA

C3 C3 has a crucial role in the activation of the
complement system. HSCT-TMA

MASP1 This gene encodes a protein involved in the lectin
pathway of the complement system. HSCT-TMA

C6 C6 is part of the complement system and is involved in
the formulation of MAC. HSCT-TMA

C9 C9 is part of the complement system and is involved in
the formulation of MAC. HSCT-TMA

ITGAM It encodes a protein subunit that forms the
heterodimeric complement receptor 3. HSCT-TMA

CD40L
CD40 is a transmembrane glycoprotein primarily

expressed on activated CD4+ T cells, playing a major
role in the regulation of immune response.

HSCT-TMA

LRP1 This receptor takes part in several cellular processes,
including the clearance of apoptotic cells. HSCT-TMA

ADAMTS13 A metalloprotease enzyme that takes part in
vWF cleavage. HSCT-TMA

MTHFR A key enzyme that regulates the folate and
homocysteine metabolism. SOS/VOD

Heparinase Heparinase is an enzyme that plays a major role in the
inflammatory process. SOS/VOD

GST Specific genetic polymorphisms have an impact on the
busulfan pharmacokinetics. SOS/VOD

HSCT: hematopoietic stem cell transplantation; HSCT-TMA: hematopoietic stem cell transplantation-associated
thrombotic microangiopathy; CFHR: complement factor H related; CFH: complement factor; SOS/VOD: veno-
occlusive disease/sinusoidal obstruction syndrome, CFI: complement factor I; C3b: complement component 3b;
C4b: complement component 4b; CFB: complement factor B; C3: complement component 3; MASP1: mannan-
binding lectin serine protease 1; C6: complement component 6; MAC: membrane attack complex; C9: complement
component 9; ITGAM: integrin alpha M; CD40L: CD40 ligand; LRP1: LDL receptor-related protein 1; ADAMTS13:
a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13; vWF: von Willebrand factor;
MTHFR: methylenetetrahydrofolate reductase; GST: glutathione S-transferase.

4. CRS and ICANS as Endotheliopathies: The Genetic Background

CRS and ICANS are the two principal complications post-CAR-T therapy that indicate
an unmet need for urgent patient management [81,82]. The frequency of the two syndromes
presented in phase 3 trials varies between the different patient cohorts (CRS 37–93% and
ICANS 23–65%) [83–85]. Clinical presentations of CRS include multiple system symptoms,
from general symptoms such as fever, fatigue, and anorexia to specific organ damage
symptoms (respiratory failure, acute kidney injury, hypotension, arrhythmias, acute heart
failure, liver damage, and GI symptoms) [86]. ICANS manifestations are disparate among
patients and include headache, the disruption of consciousness level, encephalopathy, and
seizures [87]. The pathophysiology of neurotoxicity and CRS is not fully understood yet,
but studies have supported the concept that the main mechanism involved is endothelial
injury [88,89].
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Several markers of endothelial injury have been found to increase in patients with
CRS and ICANS. Angiopoietin-II and vWF, as markers of endothelial injury, were found
to be elevated in patients with severe ICANS (stage 4) [90]. An increased angiopoietin-
II/angiopoietin-I ratio has been observed in those who were diagnosed with severe ICANS
(grade ≥ 3) compared to those with grades 0 to 2 [91]. The cytokine production sequence
of the CRS results in the activation of vascular inflammation leading to abnormal function
of the endothelium [24]. In particular, the EASIX and the modified EASIX (m-EASIX), as
markers involved in endothelial injury, have been suggested as potential predictors of se-
vere ICANS and CRS [10,92]. The activation of endothelial cells in the CNS and of pericytes
followed by CAR-T immunotherapy leads to the production of interleukin-6 (IL-6), vascular
endothelial growth factor (VEGF), and interferon-γ (IFN-γ), increasing the permeability
of the blood–brain barrier (BBB) [93–96]. The increase in these molecules combined with
increased levels of tumor necrosis factor-alpha (TNF-a) (secreted by activated CAR-T cells)
activates the production of matrix metalloproteinase (MMP) 2 and 9 by CNS endothelial
cells [97,98]. MMPs contribute to endothelial damage, activating cell adhesion molecules
and further increasing the permeability of the BBB [99].

The detection of the genetic mutations contributing to the onset of cytokine release
after CAR-T immunotherapy could lead to the development of preventive measures for
CRS [26,89]. The PFKFB4 gene mediates the development of CRS in patients who receive
CD22 CAR-T immunotherapy. The upregulation of PFKFB4 activates the glycolytic path-
way, leading to cytokine production. Specifically, CRS is positively correlated with the
presence of the PFKFB4 gene, while the PFKFB4 gene was gradually upregulated as CRS
became more severe [26]. Wang et al. performed a DNA-sequencing analysis in patients
who received CD19/CD22 CAR-T immune therapy. The study showed that a mutation in
the CX3CR1 gene (Mut I249/M280) leads to the onset of large B-cell lymphoma and to the
presence of mild-severity CRS in patients who received CAR-T products [100]. In a clinical
trial by Talleur et al., the CRLF2-r‡ hyperdiploid mutation was presented in patients with se-
vere CRS after CAR-T therapy [101]. The PPM1D mutation (amplification+ overexpression
in 17q chromosome) was presented in patients with severe ICANS (grade ≥ 3) in a cohort
of 85 patients who received CAR-T immunotherapies for hematological malignancies [102].
Severe ICANS (grade ≥ 3) has been associated with the DNMT3A, TE2, and ASXL1 gene
mutations (DTA mutations). The presence of DTA mutations increased the risk of severe
ICANS (58.9% vs. 25% in patients with the absence of DTA mutations, p = 0.02) in a cohort
of 114 patients with B-cell hematological malignancies [103]. In Figure 2, an overview
of the principal pathogenetic mechanisms involved in the onset of toxicities after CAR-T
immunotherapy is presented.

Zhou et al. developed an animal leukemic model and administered CD19 CAR-T
immune therapy with short hairpin RNA (shRNA), targeting the IL-6 gene. The IL-6
downregulation helped in the CRS prevention in this model, suggesting that the interplay
between IL-6 and IL-6 receptor (IL-6R) contributes to the onset of CRS [104]. The efficacy of
tocilizumab, an IL-6R antagonist, in preventing CRS underlines that IL-6 plays an important
role in CRS onset [105]. Interleukin-15 (IL-15) mediates the onset of neurotoxicity and CRS
in patients who received CAR-T immunotherapy [106]. Zhang et al. conducted a study in a
mouse model of CD-19 CAR-T immunotherapy along with increased IL-15 overexpression.
One of the groups studied received IL-15a receptor (IL-15Ra). The overexpression of IL-
15Ra reduced the severity and frequency of the CRS onset. These findings suggested that
IL-15Ra can contribute to the prevention of CRS [107].

Anti-CD19 CAR-T immunotherapy with IL-6 gene downregulation can limit the
adverse immunotoxicity originating from CAR-T immunotherapy [108]. The inhibition of
nuclear factor kappa beta (NF-κβ) by the suspension of the two genes responsible for the
transcription of this molecule (IRAK1, TRAF6) leads to the suppression of inflammation
in vivo. This study reports the role of the IRAK1 and TRAF6 genes in the onset of CRS [109].
Zhang and colleagues conducted an in vitro study evaluating the efficacy of double-IL-
6/INF-γ knockdown for the prevention of CRS after anti-CD19 CAR-T therapy. The
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study concluded that the double-gene knockdown contributes to the inhibition of CRS
development in vitro compared to controls (p < 0.001) [110]. The granulocyte-macrophage
colony-stimulating factor (GM-CSF) plays a vital role in the clinical manifestations of CRS
and ICANS [111]. The knockout of genes interplaying in the transcription of GM-CSF
reduced the inflammation mediated by cytokine release in patients who received CAR-T
immunotherapies [112–116]. Guercio et al. conducted a study in vivo and administered
the inducible caspase 9 (iC9) gene in a model of CAR-T cell lines. The induction of iC9
prevented cytokine production [117].
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Figure 2. Overview of principal pathogenetic mechanisms involved in the onset of toxicities after
CAR-T immunotherapy. TNF-a: tumor necrosis factor-alpha; INF-γ: interferon-γ; CAR-T: chimeric
antigen receptor-T; IL-6: interleukin-6; ANGPT2: angiopoietin 2; VWF: von Willebrand factor; CRS:
cytokine release syndrome; VEGF: vascular endothelial growth factor; TGF-β: transforming growth
factor beta; ICANS: immune effector cell-associated neurotoxicity syndrome.

The estrogen receptor-binding fragment-associated antigen 9 (EBAG9) gene upregulation
decreases the cytokine levels and can potentially prevent CRS onset [118]. Wirgers et al.
demonstrated that EBAG9 gene silencing in an animal model that received anti-CD8 CAR-
T immunotherapy was not effective in the prevention of CRS [119]. The transcription
suspension of cyclin-dependent kinase 7 (CDK7) inhibited the inflammatory release of
cytokines and prevented CRS [120]. This study reports that the CDK7 gene contributes to the
onset of CRS after CAR-T therapies. Genetic susceptibility to CRS has been investigated in
other clinical entities, such as COVID-19. Yang et al. studied the Gene Expression Omnibus
database of patients with COVID-19 and CRS. The study concluded that the upregulation of
IL-6R, Toll-Like Receptor 4 (TLR4), Toll-Like Receptor 2 (TLR2), and IFN-γ genes can contribute
to the onset of CRS in 10 patients with CRS and SARS-CoV-2 infection [121].

5. Conclusions

HSCT is a crucial and sometimes curative treatment approach for various hematologi-
cal malignancies [122]. COVID-19 disease formed a challenge for both transplant physicians
and their vulnerable patients [123]. Endothelial dysfunction, complement dysregulation,
and the activation of coagulation cascade are implemented in the pathogenesis of various
HSCT complications, which can be described as endotheliopathies. Variants in complement-
related genes, such as CFB, CFI, CFH-related, CFB, MASP-1, and C3, lead to a predisposition
to complement dysregulation. Classical, lectin, and alternative pathways are implicated. It
remains unclear whether pre-transplantation genetic testing for the identification of these
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variants in all the patients who are going to undergo an HSCT would be beneficial. More-
over, future studies should examine whether the patients with these variants might benefit
from complement inhibitors. Notably, complement inhibitors, and the first-ever used in
HSCT-TMA, eculizumab, increased the response rates of these patients. Furthermore, more
studies are essential for a better understanding of the genetic base of SOS/VOD, focusing
on both coagulation and complement-related genes.

CAR-T cell immunotherapy brought a revolution in the management of patients with
refractory/relapsed b-cell hematological malignancies. CRS and ICANS, novel toxicities
that have arisen from the use of CAR-T cell products in everyday clinical practice, reduce
the therapeutic efficacy of this treatment approach. More studies investigating the genetic
susceptibility to the development of severe CRS and ICANS after CAR-T infusions are
essential. Genes implicated in the pathogenesis of CRS accompanying other clinical entities
such as COVID-19 can be also examined for this purpose. This approach might be helpful
in both the development of ambulatory CAR-T infusion programs and the identification
of patients who could benefit from prophylactic measures, such as the administration
of tocilizumab as a prophylactic agent. Artificial intelligence algorithms that recognize
patients who are at greater risk for severe complications after the CAR-T infusion can
include the genetic data of patients in the future [124].
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Abbreviations

ADAMTS13 A disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13
aGVHD Acute graft-versus-host disease
alloHSCT Allogeneic HSCT
BBB Blood–brain barrier
C3b Complement component 3 b
CAR-T Chimeric antigen receptor-T
CD40L CD40 ligand
CDK7 Cyclin-dependent kinase 7
CFH Complement factor H
CFI Complement factor I
CLS Capillary leak syndrome
CNIs Calcineurin inhibitors
CNS Central nervous system
COVID-19 Coronavirus disease 2019
CRS Cytokine release syndrome
CVD Cardiovascular disease
EASIX Endothelial Activation and Stress Index
EBAG9 Estrogen receptor-binding fragment-associated antigen 9
GI Gastrointestinal
GM-CSF Granulocyte macrophage colony-stimulating factor
GST Glutathione S-transferase
GvHD Graft-versus-host disease
HLA Human leukocyte antigen
HSCT Hematopoietic stem cell transplantation
HSCT-TMA HSCT-associated thrombotic microangiopathy
iC9 Inducible caspase 9
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ICANS Immune effector cell-associated neurotoxicity syndrome
IFN-γ Interferon-γ
IL-15 Interleukin-15
IL-15Ra IL-15a receptor
IL-6 Interleukin-6
IL-6R IL-6 receptor
MAC Membrane attack complex
m-EASIX Modified EASIX
MMP Matrix metalloproteinase
MTHFR Methylenetetrahydrofolate reductase
NF-κβ Nuclear factor kappa beta
shRNA Short hairpin RNA
SLE Systemic lupus erythematosus
SNP Single nucleotide polymorphism
SOS/VOD Veno-occlusive disease/sinusoidal obstruction syndrome
TF Tissue factor
TLR2 Toll Like Receptor 2
TLR4 Toll Like Receptor 4
TNF-a Tumor necrosis factor alpha
TRM Transplant-related mortality
UTR Untranslated region
VEGF Vascular endothelial growth factor
vWF Von Willebrand factor
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