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Abstract: Background and Objectives: Currently, only patients with osteonecrosis of the femoral head
(ONFH), who had bone defects involving 30–33.3% of the remaining femoral head, are indicated
in hip resurfacing arthroplasty (HRA). In an experimental cadaver model of ONFH involving up
to 50% of the remaining femoral head, the initial stability of the femoral head implant (FHI) at the
interface between the implant and the remaining femoral head was measured. Materials and Methods:
The ten specimens and the remaining ten served as the experimental group and the control group,
respectively. We examined the degree of the displacement of the FHI, the bonding strength between
the FHI and the retained bone and that at the interface between the FHI and bone cement. Results:
Changes in the degree of displacement at the final phase from the initial phase were calculated as
0.089 ± 0.036 mm in the experimental group and 0.083 ± 0.056 mm in the control group. However,
this difference reached no statistical significance (p = 0.7789). Overall, there was an increase in the
degree of displacement due to the loading stress, with increased loading cycles in both groups. In
cycles of up to 6000 times, there was a steep increase. After cycles of 8000 times, however, there was
a gradual increase. Moreover, in cycles of up to 8000 times, there was an increase in the difference
in the degree of displacement due to the loading stress between the two groups. After cycles
of 8000 times, however, such difference remained almost unchanged. Conclusions: In conclusion,
orthopedic surgeons could consider performing the HRA in patients with ONFH where the bone
defects involved up to 50% of the remaining femoral head, without involving the femoral head–neck
junction in the anterior and superior area of the femoral head. However, more evidence-based studies
are warranted to justify our results.

Keywords: bone defect; femoral head; osteonecrosis of femoral head; resurfacing arthroplasty; stability

1. Introduction

Osteonecrosis of the femoral head (ONFH), also referred to as avascular necrosis, is
defined as a pathologic condition arising from an ischemic injury that is characterized by
both a crucial disruption of blood supply to the bone and an increase in the intraosseous
pressure. Subsequently, this results in the degradation of the organic elements of the bone
and the marrow, thus commonly leading to a collapse of subchondral bone in the femoral
head [1–4]. As such, ONFH is a debilitating, progressive joint disease of idiopathic origin;
it is an interesting topic from both clinical and economic perspectives [5–7]. Over the past
few years, there has been an increase in the prevalence of ONFH [8]. Moreover, it has been
diagnosed with increasing frequency in young adults and has a significant socioeconomic
impact [9]. The annual number of patients who are hospitalized for the treatment of ONFH
is estimated at 10,000–20,000 in the US [5]. It is a serious disease entity that may affect
the quality of life in patients with ONFH [10]. Still, however, little is known about the
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risk factors associated with its pathogenesis and pathophysiology, although they include
the long-term use of chronic steroids, smoking, alcoholism, hip trauma and prior hip
surgery [11,12]. This makes it difficult to define surgical methods and curative effects [1,13].
It is, therefore, crucial to obtain a better understanding of the pathogenesis of and make
therapeutic approaches to ONFH [8]. Despite recent advancements in diagnostic modalities,
effective treatments have been elusive and a majority of cases of ONFH eventually result in
a collapse of the femoral head. Most of the surgical modalities for patients with ONFH aim
to prevent the collapse of the subchondral bone, although their clinical outcomes have been
reported to be inconsistent [1,13]. Core decompression may be effective for the treatment
of early-stage ONFH, although femoral osteotomy, vascularized or non-vascularized bone
grafting and total hip arthroplasty (THA) may also be attempted for that of advanced
ONFH [14].

Patients with ONFH account for 5–12% of those undergoing THA in the US [1]. If
treated conservatively, >80% of affected hips would progress to femoral collapse and the
destruction of the hip joint within four years of initial diagnosis; this often requires THA [15].
In the early stage of ONFH, joint-preserving surgical techniques are often considered.
However, this causes problems, such as a significant failure rate and morbidity [16–19].
THA is often a mainstay of treatment in patients with osteonecrosis of the hip [18]. However,
it may be not an attractive treatment option for younger patients; it would be desirable to
avoid or delay THA. This is not only because most of the younger patients would outlive
the current state-of-the art implants, but also because it has been suggested that such
patients are less satisfied with its clinical outcomes [17,20]. It is therefore imperative that
effective treatment modalities be developed, which would be essential for preventing the
collapse of affected femoral heads or prolonging the interval between initial diagnosis and
THA [7]. To date, diverse small animal models using rats or rabbits have been used to
develop new treatment modalities for ONFH. Thus, these animal models induce ONFH
by systematic insult, including steroid administration or steroid combined with another
adjunct agent [21–27]. It would also be mandatory, however, to improve the relevance of
animal models of ONFH in a clinical setting.

Both hemi-resurfacing arthroplasty and metal-on-metal hip resurfacing arthroplasty
(HRA) are alternatives to conventional THA for patients with ONFH [28–30]. Hemi-
resurfacing and total resurfacing arthroplasty are referred to as the prosthetic replacement
of the femoral side only and that of both the femoral head and the acetabular surface,
respectively [31]. According to a US nationwide study, the frequency of THA was the
highest (90%), followed by HRA (0.2%) and osteotomy (1%) [32]. Both hemi-resurfacing
arthroplasty and HRA are potentially advantageous in preserving bone and the loading of
the proximal femur, lowering a risk of dislocation and eliminating the polyethylene debris
that may cause osteolysis as compared with conventional THA [30,33,34]. Consequently,
HRA is considered an appropriate option for young and active patients with ONFH [35].

However, there are things to consider regarding the indications of HRA in the context
of regulatory requirements enforced by the US Food and Drug Administration (FDA).
In 2006, the US FDA approved the clinical use of a metal-on-metal (MoM) resurfacing
implant for primary HRA. This is based on the pre-market approval (PMA) process in
2385 patients with non-inflammatory or inflammatory arthritis receiving the Birmingham
Hip Resurfacing (BHR) System (Smith & Nephew Orthopaedics, Memphis, TN) [36,37].
Later, in 2007 and 2009, the US FDA approved the clinical use of two additional MoM resur-
facing implants, such as the Cormet™ Hip Resurfacing System (Corin, Tampa, FL, USA)
and the Conserve® Plus Total Hip Resurfacing System (MicroPort Orthopedics, Boston,
MA, USA), respectively, in patients with non-inflammatory degenerative or inflammatory
arthritis [38,39]. Since then, the US FDA has cleared a variety of implants for marketing
through the 510(k) process [40]. According to the US FDA, however, patients with ONFH
who had a necrotic area involving >50% of the femoral head are contraindicated in the use
of MoM implants [41].
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Given the above background, we created an experimental cadaver model of ONFH
involving 50% of the remaining femoral head. We conducted this study to measure the
initial stability of the FHI at the interface between the implant and the remaining femoral
head.

2. Materials and Methods
2.1. Experimental Materials and Setting

We conducted the current biomechanical study using ten pairs of specimens from
ten cadavers (n = 10). The specimens were preserved in a frozen state (−20 ◦C), and were
gradually defrosted at room temperature for 24 h. A total of 20 specimens were equally
divided into the experimental group (n = 10) and the control group (n = 10).

Inclusion criteria for the current experiment were a lack of pathologic bone lesions and
the Singh index > 5. The Singh index is a typical classification system for the bone density
of the femoral neck based on the qualitative visibility of the trabecular patterns [42].

The experimental procedures are schematically shown in Figure 1.
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Figure 1. Experimental schema. Abbreviation: ONFH, osteonecrosis of femoral head.

2.2. Creation of an Experimental Model of ONFH

With a free-hand technique at an angle of 135◦ to the axis of the femoral shaft on the
anterior–posterior plane and in parallel with the central axis of the femoral neck, we placed
the femoral guide pin on the lateral plane. This was followed by the femoral reaming
using a cannulated sleeve and a chamfering reamer with an appropriate size. After saline
irrigation, we confirmed a lack of notching and inappropriate exposure of the cancellous
bone at the femoral head–neck junction. Then, we dissected 50% of the antero-superior
area of the remaining femoral head, and thereby caused bone defects in the experimental
group. To consistently make bone defects, we mapped the area in dissecting the area of the
femoral head (Figure 2).

Then, we placed an MoM implant (Durom®; Zimmer Inc., Warsaw, IN, USA) in the
bone defect area and then fixed it using low-viscosity bone cement (Surgical Simplex®

P; Stryker Howmedica Osteonics Corp., Rutherford, NJ, USA) for both groups. In the
experimental group, however, we performed the same maneuver after restoring the bone
defect area using a sufficient amount of low-viscosity bone cement.

2.3. Assessment of the Biomechanical Stability of the Specimen

We transected the specimen at the isthmus and then fixed it using a resin fixative
(Vertex Self-Curing; Vertex-Dental B.V., Soesterberg, The Netherlands) (Figure 3A). We
placed it on the machine at a valgus angle of 30◦, thus attempting to preventing the fracture
of the femoral neck while repeatedly applying a mechanical load to it.
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Figure 2. Anatomic specimens of the femur obtained from ten cadavers. Note: A: Femoral head,
B: Femoral neck. We drew the 1st and 2nd lines along the midline of the femoral neck on the anterior–
posterior and lateral plane, respectively. Then, we drew the 3rd line that crosses the 1st and 2nd lines
from postero-superior to infero-anterior directions. We also drew the 4th line, that was vertical to the
3rd line and then crossed the center of the femoral head. In parallel with the 4th line, we drew the 5th
line at 5 mm proximal to the head–neck junction. Finally, we dissected 50% of the antero-superior
part of the remaining femoral head based on the 3rd and 5th lines.
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Figure 3. The preparation of the femoral specimens. (A) The femoral specimen was inserted in the
resin block along the anatomical axis. (B) The femoral specimen with the femoral head implant was
placed in a custom-made jig for the loading–unloading test.

We measured the biomechanical stability of the specimen using the dynamic testing
machine based on the biaxial fluid pressure (Instron 8500®; Instron Corp., Norwood, MA,
USA), for which we repeatedly applied a loading stress at a constant rate of 2 Hz [43,44].
The magnitude of loading stress ranged between 60 and 300 kg; it was five times higher as
compared with the non-loading condition. The loading and displacement were measured at
a sampling rate of 20 Hz using MAXTM software (Instron Corp.) in a total of 15,000 cycles
(Figure 3B) [45]. Then, we measured the strength against the displacement of the FHI
due to the loading stress [46,47]. In each cycle of loading, we measured the degree of the
displacement of the FHI through a scatter plotting analysis using a load versus displacement
graph [48,49]. In measuring the bond strength, we defined the initial and final phase of
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loading as that applied to the specimen in cycles ranging from 1 to 5000 times and 10,000 to
15,000 times, respectively. Thus, we compared differences in changes in the bond strength at
the final phase from the initial phase between the two groups, for which we maintained the
degree of loading stress consistently throughout the experiment. Therefore, the magnitude
of bond strength was solely dependent on the degree of the displacement of the FHI.

2.4. Scanning Electron Microscopy (SEM)

After selecting four pairs of the specimen obtained from the same cadavers in both
groups, we prepared cross-sectional samples by pulling the diamond saw across the center
of the bone defects on the coronal plane. Thus, we attempted to measure the bond strength
at the largest bone defects (Figure 4).
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Figure 4. Cross sections of the femoral specimens. (A) In the control group, bone cements were used
to fill the gap between bone and the implant. There were no other bone defects filled with bone
cement. (B) In the experimental group, bone defects were used to sufficiently fill 50% of the bone
defects. There were no other bone defects.

The samples were completely frozen in a refrigerator (−80 ◦C) for 24 h and then
underwent a freeze-drying process at a temperature of −77 ◦C for two days. We therefore
prepared dry femoral samples. This was followed by SEM to examine the bond strength
both at the bone–cement interface and at the implant–cement interface.

2.5. Statistical Analysis

Statistical analysis was carried out using the SPSS version 25.0 (IBM Corp., Armonk,
NY, USA). All data were presented as mean ± SD (SD: standard deviation). We compared
differences in the size of the FHI and changes in the bond strength at the final phase from
the initial phase between the two groups using the Student’s t-test. A p-value of <0.05 was
considered statistically significant.

3. Results
3.1. Size of the FHI

The mean size of the FHI was 49.4 ± 2.1 (range, 44–53) mm in the experimental group
and 49.1 ± 1.8 (range, 43–52) mm in the control group. However, this difference reached no
statistical significance (p = 0.7356).

3.2. Results of the Biomechanical Study

Overall, there was an increase in the degree of displacement due to the loading stress
with increased loading cycles in both groups. In cycles of up to 6000 times, there was a
steep increase. After cycles of 8000 times, however, there was a gradual increase. Moreover,
in cycles of up to 8000 times, there was an increase in the difference in the degree of
displacement due to the loading stress between the two groups. After cycles of 8000 times,
however, such difference remained almost unchanged (Figure 5).
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The degree of displacement at each phase is represented in Table 1. Changes in
the degree of displacement at the final phase from the initial phase were calculated as
0.089 ± 0.036 mm in the experimental group and 0.083 ± 0.056 mm in the control group.
However, this difference reached no statistical significance (p = 0.7789) (Figure 6).
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Figure 5. The degree of the displacement of the femoral head implant.

Table 1. The degree of displacement at each phase.

#
Values

Experimental Group (n = 10) Control Group (n = 10)
Initial Phase Final Phase ∆ Initial Phase Final Phase ∆

1 0.237 0.450 0.213 0.051 0.121 0.07
2 0.032 0.066 0.034 0.078 0.190 0.112
3 0.069 0.151 0.082 0.055 0.140 0.085
4 0.031 0.061 0.03 0.109 0.240 0.131
5 0.123 0.251 0.128 0.025 0.073 0.048
6 0.098 0.199 0.01 0.140 0.308 0.168
7 0.042 0.090 0.048 0.075 0.146 0.071
8 0.077 0.172 0.095 0.045 0.104 0.059
9 0.088 0.201 0.113 0.068 0.162 0.094

10 0.062 0.143 0.081 0.052 0.103 0.051
Note: #, specimen identification number; ∆, changes in the degree of displacement at the final phase from the
initial phase. All the values are presented at a unit of mm.
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3.3. The Bond Strength at the Bone–Cement Interface

With SEM, all the four pairs of the femoral specimens, obtained from both groups,
showed no gap at the bone–cement interface (Figure 7). However, there was a gap of
approximately 0.2 mm in size at the interface between the FHI and the bone cement
(Figure 8).
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4. Discussion

An appropriate experimental model of the human disease is a prerequisite for a
clinical trial to assess the efficacy and safety of a novel treatment model in the setting of
ONFH [1]. From this context, an animal model of ONFH played a key role in performing
a pre-clinical trial to identify more effective treatments, whereas a cellular model was
used to clarify the pathogenesis and pathophysiology of ONFH [50]. Nevertheless, many
experimental models do not share the same physiological and metabolic characteristics
with humans [51,52].

It is mandatory for orthopedic surgeons to obtain a complete understanding of human
anatomy; anatomy is a basic medical discipline by which they can achieve improvements
in their training. Moreover, cadaveric studies may allow orthopedic surgeons to study the
characteristics of many diseases and anatomical structures that are vulnerable to damages,
such as bone, muscle and ligament [53].

Cadaveric studies are also useful in performing an assessment of the biomechanics
of anatomical structures, thus allowing orthopedic surgeons to develop new surgical
techniques [53].

Biomechanical cadaveric studies can be performed when it is not easy to handle the
movement or force of interest in the joint or soft tissue in vivo. This enables orthopedic
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surgeons to assess biomechanical characteristics and properties. Indeed, biomechanical
cadaveric studies play a role in performing a pre-clinical assessment of new surgical
techniques and implant designs [54–56]. This justifies the current biomechanical cadaveric
study.

Mont MA et al. performed a systematic review of the previous published literature on
untreated asymptomatic ONFH, thus showing that >25% involvement of the femoral head
served as a risk factor of femoral head collapse [57]. Indeed, the HRA can be performed for
patients aged < 50 years old who had necrotic lesions involving <30–33.3% of the femoral
head [58,59].

To summarize, our results are as follows: First, changes in the degree of displacement
at the final phase from the initial phase were calculated as 0.089 ± 0.036 mm in the
experimental group and 0.083 ± 0.056 mm in the control group. However, this difference
reached no statistical significance (p = 0.7789). Second, overall there was an increase in the
degree of displacement due to the loading stress, with increased loading cycles in both
groups. In cycles of up to 6000 times, there was a steep increase. After cycles of 8000 times,
however, there was a gradual increase in it. Moreover, in cycles of up to 8000 times there
was an increase in the difference in the degree of displacement due to the loading stress
between the two groups. After cycles of 8000 times, however, such difference remained
almost unchanged. Third, with SEM, all the four pairs of the femoral specimens, obtained
from both groups, showed no gap at the bone–cement interface. However, there was a gap
of approximately 0.2 mm in size at the interface between the FHI and bone cement.

However, our results cannot be generalized; further studies based on computational
modeling are warranted to corroborate them. The necessity of computational modeling of
musculoskeletal structures cannot be overlooked; it may be useful in not only providing
the data about musculoskeletal structures, but also in simulating injuries and outcomes
of surgical operations [60]. Thus, computational modeling and personalized simulations
may provide fundamental insights into a better understanding of the pathophysiologic
mechanisms underlying injuries. This can contribute to not only reducing the necessity of
human or animal experiments, but also enabling orthopedic surgeons to implement novel
treatment strategies or to make a plan for surgery [61]. To date, sophisticated approaches
to the computational modeling of musculoskeletal structures have emerged. Indeed,
such a model has been employed in studies about a specific type of implant or surgical
procedure [62]. This is because a meticulous preoperative strategy based on computational
modeling is of paramount importance when orthopedic surgeons choose the optimal type
of implant [63].

The usefulness of computational modeling in the context of ONFH deserves spe-
cial attention. It is more advantageous in predicting the whole process without actually
performing the surgery as compared with a traditional static analysis [64].

Computational modeling with finite element analysis (FEA) plays a key role in the
association with the design and development of a medical device [65]. More specifically, it
can be used to assess the deformation field, strain field and stress field of the femoral head
and support device [64]. It would, therefore, be worthwhile to explore the value of the FEA
in the context of an MoM implant. Of note, the previous literature has simulated a loading
by adopting a gait cycle reflecting the actual condition of an implant user [66–70].

An MoM implant is equipped with a higher stability and a lower risk of dislocations.
It is harder as compared with ceramic materials; its advantages include a lower rate of
fracture failure under high loads and a 20- to 100-fold lower rate of wear as compared with
conventional metal-on-polyethylene implants [71]. Due to these benefits, an MoM implant
may be used for younger and more active patients [72].

Efforts have been made to decrease the surface contact area (SCA) and to lower the
rate of adhesion wear and the coefficient of friction [73]. A dimple is surface texturing
that belongs to one such effort made for diverse types of mechanical components; it
plays a role in trapping wear debris, preventing the abrasive wear of SCA and generating
hydrodynamic pressure to provide additional lift [74,75]. Both theoretical and experimental
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studies have shown that surface texturing has a positive effect in improving the tribological
performance of a device [76–79].

Jamari J. et al. assessed the effect of dimples on the rate of wear in the context of
THA. These authors performed the FEA based on the prediction model with or without
dimples. After simulations using 3D physiological loading of the joint under normal
walking conditions, Jamari J. et al. showed that the dimples were effective in lowering the
contact pressure and wear [80].

To date, orthopedic research has been driven by both biomechanical studies and
clinical trials [81–84]. A cadaveric biomechanical study remains a useful method in that
it allows surgeons, engineers and researchers to achieve results similar to in vivo clinical
studies without endangering patients [53,85]. From this context, the current results are
of significance in that this is a pilot experiment using a cadaveric model of the ONFH
involving up to 50% of the remaining femoral head in Korea for future clinical studies.
However, more efforts should be made to translate the current results into clinical practice.

5. Conclusions

In conclusion, our results indicate that orthopedic surgeons could consider performing
the HRA in patients with ONFH where the bone defects involve up to 50% of the remaining
femoral head without involving the femoral head–neck junction in the anterior and superior
area of the femoral head. However, more evidence-based studies are warranted to justify
our results.

Author Contributions: Conceptualization, S.W., Y.L. and D.S.; data curation, S.W. and Y.L.; formal
analysis, S.W. and Y.L.; investigation, S.W. and Y.L.; methodology, S.W. and Y.L.; project administra-
tion, D.S.; resources, S.W. and Y.L.; supervision, D.S.; visualization, S.W. and Y.L.; writing—original
draft, S.W. and Y.L.; writing—review and editing, S.W., Y.L. and D.S. All authors will be informed
about each step of manuscript processing, including submission, revision, revision reminder, etc., via
emails from the assigned Assistant Editor. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: We obtained the ethical approval of the current study from
the Internal Institutional Review Board (IRB) of the Korea National Institute of Bioethics Pol-504 icy
(IRB approval #: P01-202101-15-019; date of approval: 23 March 2021) and conducted it in compliance
with the relevant guidelines and applicable laws. But a written informed consent was waived because
this is a cadaveric study.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data generated or analysed during this study are included in this
published article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cardín-Pereda, A.; García-Sánchez, D.; Terán-Villagrá, N.; Alfonso-Fernández, A.; Fakkas, M.; Garcés-Zarzalejo, C.; Pérez-Campo,

F.M. Osteonecrosis of the Femoral Head: A Multidisciplinary Approach in Diagnostic Accuracy. Diagnostics 2022, 12, 1731.
[CrossRef]

2. Murab, S.; Hawk, T.; Snyder, A.; Herold, S.; Totapally, M.; Whitlock, P.W. Tissue Engineering Strategies for Treating Avascular
Necrosis of the Femoral Head. Bioengineering 2021, 8, 200. [CrossRef]
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